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Abstract

We consider the problem of automatically gen-
erating longer stories of over two thousand
words. Compared to prior work on shorter
stories, long-range plot coherence and rele-
vance are more central challenges here. We
propose the Recursive Reprompting and Re-
vision framework (Re3) to address these chal-
lenges by (a) prompting a general-purpose lan-
guage model to construct a structured overar-
ching plan, and (b) generating story passages
by repeatedly injecting contextual information
from both the plan and current story state into
a language model prompt. We then revise by
(c) reranking different continuations for plot
coherence and premise relevance, and finally
(d) editing the best continuation for factual con-
sistency. Compared to similar-length stories
generated directly from the same base model,
human evaluators judged substantially more of
Re3’s stories as having a coherent overarching
plot (by 14% absolute increase), and relevant
to the given initial premise (by 20%).

1 Introduction

Generating long-term coherent stories is a long-
standing challenge for artificial intelligence, requir-
ing a comprehensive grasp of linguistic, world, and
commonsense knowledge (Charniak, 1972; Turner,
1994). Recently, many works have automatically
generated short stories ranging in length from five
sentences to one or two paragraphs (Fan et al.,
2018; Yao et al., 2019; Rashkin et al., 2020). While
stories of such length serve as a good test bed for
text generation, they are much shorter than typical
short stories meant for human consumption, which
are often several pages in length.

In this work, we aim to bridge some of this gap
by generating much longer “short” stories: the final
generated stories in our experiments are 2000-2500
words. We are the first to automatically generate
plot-coherent stories of such length, with further
length increases limited primarily by evaluation
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Figure 1: High-level overview of Re3.

rather than technical issues.1 Generating stories
of such length faces qualitatively new challenges
compared to prior work on shorter stories. First, the
system must maintain a coherent overarching plot
over thousands of words. Given an initial premise,
it should maintain relevance to this premise over
thousands of words as well. Additional challenges
include preservation of narration style and avoiding
factual contradictions over a very long horizon.

Of course, recent years have also witnessed a
dramatic rise in the capabilities of general-purpose
(non-finetuned) large pretrained language models.
Of particular note are their strong zero-shot capabil-
ities, especially when given clever prompts (Brown
et al., 2020; Kojima et al., 2022). Yet despite recent
improvements, even the best models to date may
still struggle with complex long-form generation,
such as in our story generation task (Section 4).

In contrast, human writers successfully navigate
the myriad challenges of long-form generation on
a regular basis. We observe that a human writer
does not simply write a long document in one shot.
Rather, he or she may (a) create a detailed plan,

1We generate a 7500-word story in Appendix M.



then (b) draft each next passage of the document
according to that plan. He or she may then revise
by (c) rewriting passages entirely, and/or (d) post-
editing for �ner details.

Motivated by this observation, we propose the
RecursiveReprompting andRevision framework
(Re3, Figure 1) to generate longer stories. While
based on the human writing process, Re3 is a fully
automatic system with no human intervention, un-
like prior approaches which model the human writ-
ing process with a human in the loop (Goldfarb-
Tarrant et al., 2019; Coenen et al., 2021; Lee et al.,
2022). First, (a) Re3's Plan module generates a plan
by prompting GPT3 (Brown et al., 2020) to aug-
ment a given premise with a setting, characters, and
outline. (b) Re3's Draft module then generates each
next story continuation byrecursively reprompting
GPT3 using a strategically crafted prompt, in a
procedure which can be viewed as a generaliza-
tion of chain-of-thought prompting (Kojima et al.,
2022). Speci�cally, our prompt is dynamically re-
constructed at each step by selectively manifesting
contextually relevant information from the initial
plan—itself generated by prompting—and the story
thus far. We then divide the revision process into
(c) a Rewrite module which emulates a full rewrite
by reranking alternate continuations, and (d) an
Edit module which makes smaller local edits for
improving factual consistency with previous pas-
sages.

As an additional contribution, our Plan and Draft
modules are fully zero-shot rather than trained on
existing story datasets. Thus not only does Re3

generate stories an order of magnitude longer than
those of prior work, but it is not limited to any
particular training domain.

To evaluate Re3 for longer story generation, we
compare its generated stories to similar-length sto-
ries from two GPT3-based “rolling-window” base-
lines (Section 4). In pairwise comparisons, human
evaluators rated stories from Re3 as signi�cantly
and substantially more coherent in overarching plot
(up to 14% absolute increase in the fraction deemed
coherent), as well as relevant to the initial premise
(up to 20%). In fact, evaluators predicted up to
83% of stories written by Re3 to be written by hu-
mans. The results indicate that Re3 can be highly
effective at improving long-range coherence and
premise relevance in longer story generation.2

2All code and data available athttps://github.com/
yangkevin2/emnlp22-re3-story-generation .

2 Related Work

Automatic Story Generation. Several previous
works have modeled parts of our proposed writing
process, usually one part at a time.

Most similar to our Plan module are approaches
using an outline or structured schema to maintain
plot coherence (Li et al., 2013; Fan et al., 2018;
Yao et al., 2019; Rashkin et al., 2020). Other
methods for high-level planning include latent
variables (Miao and Blunsom, 2016; Wang and
Wan, 2019; Wang et al., 2022), coarse-to-�ne slot-
�lling (Fan et al., 2019; Goldfarb-Tarrant et al.,
2020), and keywords and/or control codes (Ippolito
et al., 2019; Xu et al., 2020; Lin and Riedl, 2021).

Meanwhile, our Rewrite module uses rerankers
similar to Guan et al. (2020) and Wang et al. (2020),
although we model both coherence and premise
relevance. Yu et al. (2020) iteratively edits and
improves the output like our Edit module, but we
additionallydetectwhen edits are required.

We emphasize again the length of stories we aim
to generate. In prior studies, out-of-the-box lan-
guage models struggled to generate even very short
stories (Holtzman et al., 2019; See et al., 2019).
Leveraging the ROCStories dataset of �ve-sentence
stories (Mostafazadeh et al., 2016), many works
focus on stories of about �ve sentences (Wang
and Wan, 2019; Yao et al., 2019; Qin et al., 2019;
Wang et al., 2022), even when using language mod-
els with hundreds of billions of parameters (Xu
et al., 2020). Some challenges of generating longer
stories are apparent in Wang et al. (2022): their
method generates high-quality few-sentence sto-
ries, but their forced long text generations, while
judged better than baselines', remain confusing
and repetitive. Moreover, maintaining long-range
plot coherence, premise relevance, and factual
consistency is substantially harder over multiple-
thousand-word horizons.

Human-In-The-Loop Story Generation. In con-
trast to fully automatic approaches like Re3, sev-
eral recent works have proposed human-interactive
methods to maintain quality in longer stories (Co-
enen et al., 2021; Lee et al., 2022; Chung et al.,
2022). Such works commonly combine both plan-
ning and revision systems (Goldfarb-Tarrant et al.,
2019; Coenen et al., 2021). In principle, Re3 is also
highly controllable via human interaction, as both
our planning and revision systems operate nearly
entirely in natural language space; however, we
focus on fully automatic generation in this work.

https://github.com/yangkevin2/emnlp22-re3-story-generation
https://github.com/yangkevin2/emnlp22-re3-story-generation


Prompting. Numerous works have demonstrated
general-purpose language models' strong zero-shot
ability on a wide variety of tasks via prompt-
ing (Brown et al., 2020; Zhong et al., 2021; Sanh
et al., 2021; Ouyang et al., 2022; Wu et al.,
2022). Careful prompt design can yield further
gains (Lee et al., 2021; Liu et al., 2021; Kojima
et al., 2022). However, most prompting methods
focus on shorter-answer tasks rather than long-form
generation. Instead of generating the output in one
shot, our recursive reprompting procedure treats
prompting as asubroutineto generate the �nal
output in conjunction with our planning and revi-
sion infrastructure. Compared to chain-of-thought
prompting approaches like Kojima et al. (2022),
Re3 goes a step further by repeatedly re-composing
the prompt in modular fashion, dynamically recom-
bining the most contextually relevant parts of both
the high-level plan and the story thus far.

3 Recursive Reprompting and Revision

We now describe our Recursive Reprompting and
Revision framework (Re3), which decomposes
the human writing process into our Plan, Draft,
Rewrite, and Edit modules. See Appendix K for
concrete examples of each component in practice.

3.1 Plan Module

Figure 2: Illustration of Re3 's Plan module, which prompts a
language model to generate a setting, characters, and outline
based on the premise. Highlighting indicates generated text.

The Plan module augments a story premise with
a setting, characters, and outline (Figure 2).

The setting is a simple one-sentence extension of
the premise, obtained by usingThe story is set
in to prompt GPT3-Instruct-175B (Ouyang et al.,
2022), a version of GPT3 �netuned to better follow
human instructions. Next, we use GPT3-Instruct-

175B to generate up to three character names and
then descriptions, conditioned on the premise and
setting. For names, we do rejection sampling using
simple heuristics to �lter out malformed outputs
(Appendix A). Finally, we prompt GPT3-Instruct-
175B to write a numbered outline of the story and
parse the output into a list of outline points, re-
sampling until the list is well-formed.

These plan components, themselves generated
by prompting, will be repeatedly reused to compose
prompts for generating story passages in the Draft
module; hencerecursive reprompting.

3.2 Draft Module

Figure 3: Illustration of the prompt constructed in Re3 's Draft
module to generate each next story continuation. Our recursive
reprompting approach combines pieces of the plan (blue) and
previously generated story (grey) into a single prompt by
concatenating the depicted components in order.

For each point of the outline, we will generate
several story passages before moving on to the
next outline point. Each passage is generated as a
�xed-length continuation from a structured prompt,
which is composed by our recursive reprompting
procedure as shown in Figure 3.

The prompt begins with a selection of “Rel-
evant Context” shown at the top of Figure 3.
As the story progresses, we dynamically update
the list of character descriptions using a named-
entity-recognition-based pipeline, which identi�es
new entities from each new story passage using
Flair (Akbik et al., 2018) and writes descriptions
using GPT3-Instruct-175B. Thus “Relevant Con-
text” initially contains all of the premise, setting,
and characters shown in Figure 2, but subsequently
selects only what is most relevant to the most recent
story passage using a pretrained Dense Passage Re-
trieval (DPR) model (Karpukhin et al., 2020).



The remainder of the prompt can be viewed as
a coarse-to-�ne description of the previous story,
following the intuition that an author needs detailed
information about the most recent passage but per-
haps only higher-level information about much
earlier passages. As shown in Figure 3, we in-
clude “Previous Sections' Outlines” as a very high-
level summary of previous larger story sections,
followed by a “Recent Story Summary” written by
GPT3-Instruct-13B3 of a few penultimate passages.
At the end we repeat verbatim the immediately pre-
ceding passage as “Autoregressive Context” from
which point the story should continue. Finally, to
enforce relevance to the current outline point, we
include the “Current Section Outline” in the prompt
just before “Autoregressive Context.”

Finally, the full prompt is fed to GPT3-175B to
generate the next story passage.4

3.3 Rewrite Module

Figure 4: Re3 's Rewrite module reranks the Draft module's
continuations for coherence and relevance.

The generator's �rst output continuation is often
low-quality, even with the planning and recursive
reprompting in the Plan and Draft modules. Hu-
mans may encounter a similar problem after a �rst
draft, particularly upon receiving feedback from
others, and be forced to rewrite a passage altogether.
Our Rewrite module models this rewriting process
by reranking Draft module outputs based on coher-
ence with the previous passage and relevance to the

3As economical usage of large language models is becom-
ing increasingly important (Strubell et al., 2019), we use the
13B model where we observe it is not substantially worse.

4This step doesnot use GPT3-Instruct-175B, as we ob-
served in preliminary experiments that an earlier version of
GPT3-Instruct-175B would frequently repeat sections of the
prompt. Generators other than GPT3-175B are also possible
in principle: for example, retrieval-augmented architectures
like RAG (Lewis et al., 2020) or architectures designed for
long-range dependencies like S4 (Gu et al., 2021). However,
it is critical to use a suf�ciently high-quality language model:
even scaling down to GPT3-13B resulted in noticeably less
coherent outputs in our preliminary experiments.

current outline point (Figure 4).
We note that this Rewrite module is the only

part of Re3 which uses prior story data. All of the
modules which actuallygeneratetext (Plan, Draft,
and to some extent Edit) do not require prior data.

Coherence Reranker.We train a discriminative
model to predict whether a continuation is coherent
with the previous story. As data, we split stories
from the WritingPrompts dataset (Fan et al., 2018)
into passages up to 1000 tokens long, labeling the
ending up to 200 tokens as the gold continuation.
Inspired by the contrastive learning setup of Wang
et al. (2020) and Guan et al. (2020), we obtain neg-
ative examples by replacing the gold continuation
with a random other continuation from either the
same story or a different one. We then �netune a
pretrained Longformer-Base (Beltagy et al., 2020)
to classify whether a continuation is the true con-
tinuation for a given passage.

Relevance Reranker.We train a relevance model
with the same architecture as our coherence model
to predict whether a continuation is relevant to the
current outline point. We construct a dataset of
2000 training examples, where each example con-
sists of a 200-token story passage from Writing-
Prompts and a brief summary written by GPT3-
Instruct-13B. Negative examples are constructed
by selecting the summary of a different passage,
whether in the same story or a different one.

Additional Heuristics. Finally, we �lter out con-
tinuations with some writing problems which are
easy to detect via rule-based heuristics. For exam-
ple, we check for repetition issues, e.g., repeating
chunks of the structured prompt. Similarly, to main-
tain consistent narration, we �lter out �rst person
continuations to enforce a consistent third person
perspective. Full details in Appendix B.

3.4 Edit Module

In contrast to the Rewrite module which reranks
complete alternate continuations, the Edit module
makes local edits to further re�ne a passage pro-
duced by careful planning, drafting, and rewriting.

Speci�cally, we aim to remove long-range fac-
tual inconsistencies. When a human detects a small
factual discontinuity upon proofreading, he or she
might simply edit the offending detail, rather than
making major changes to the high-level plan or do-
ing substantial rewriting. Our Edit module mimics
this process in two steps:detectingfactual incon-
sistencies, andcorrectingthem.



Figure 5: Illustration of Re3 's Edit module. Starting from the
Rewrite module's best continuation, we infer natural language
facts about each character, and convert them to attribute-value
pairs. New values (blue) are added to the attribute dictionary,
and contradictory values (red) are corrected.

Detecting Factual Inconsistencies.An inconsis-
tency involves two statements. As the number
of statement pairs scales quadratically with story
length, naively comparing all pairs can result in
a sea of false positive “contradictions” (Section
5.2). Flagging inconsistencies while avoiding false
positives requires overwhelming precision.

Task Framing.To make the task more tractable,
we focus on factual inconsistencies in character
attributes (e.g., age, occupation, relationship to an-
other character). At a high level, our detection
system maintains a compact knowledge base in the
form of Figure 5's “Attribute Dictionary” for each
character. With each new story passage, we check
for contradictions against only these attribute-value
dictionaries instead of all previous text. The dictio-
naries are then updated for the new passage, and
new dictionaries are created for new characters
when detected as described in Section 3.2.

Thus, the core of our detection system is a high-
precision information extraction procedure for ob-
taining attribute-value pairs for a given character
from a story passage. Rather than hard-coding a
�xed set of attributes, our system is inspired by
Open Information Extraction (Etzioni et al., 2008),
in order to capture the wide variety of possible
attributes which may be salient in different stories.

Implementation Details.We begin by prompt-
ing GPT3-Instruct-175B for a numbered list of
facts about the given character, shown as “Inferred
Facts” in Figure 5. Each fact is fed with a few-shot
prompt to GPT3-Instruct-13B to extract attribute
keys. We then prompt GPT3-Instruct-13B with

the fact and each attribute key to obtain complete
attribute-value pairs. In steps prone to hallucina-
tion, we generate three outputs and keep only those
which are repeated, or entailed by other outputs ac-
cording to a BART-Large-based (Lewis et al., 2019)
entailment model trained on MNLI (Williams et al.,
2018). See Appendix C for complete details on
information extraction, with example prompts.

Finally, we add new pairs to our dictionary, and
use the entailment model to �ag contradictions be-
tween new and old values for the same key.

Correcting Factual Inconsistencies.Once an in-
consistency is detected, we frame the task of cor-
recting it as controlled text editing. The original
natural language fact (i.e., “Inferred Facts” in Fig-
ure 5) from which we extracted the contradicted
attribute-value pair now becomes the basis for the
“Editing Instruction” in Figure 5. This instruction
is then fed along with the original continuation to
the beta GPT3 Edit API.

4 Evaluation

Task Setup. We frame the task as generating a
story given a brief initial premise. As a “story” is
dif�cult to de�ne in a rule-based manner, we do not
impose any rule-based constraints on acceptable
outputs, but will instead evaluate via several human-
annotated metrics as described later.

To generate the initial premises, we prompt
GPT3-Instruct-175B with high temperature to ac-
quire 100 diverse premises.5 All premises and sto-
ries are in English.

Method Instantiation. For fair comparison, it is
desirable for the concrete implementation (hence-
forth RE3) of our Re3 framework to output stories
of consistent length. While Re3 is capable of gen-
erating shorter or longer stories (see e.g., our 7500-
word example in Appendix M), here we aim for
roughly 3000 tokens (2000-2500 words).6 Thus
we re-sample the initial outlines (Section 3.1) until
they contain exactly three points, and generate ex-
actly four 256-token continuations for each outline
point before moving on to the next. As a story-
ending mechanism, we use the GPT3-175B Insert
API to complete the story to the suf�x “The End.”
Of course, more adaptive schemes for moving on

5Combining this simple premise generation scheme with
Re3 yields a story generation system which operates fully
from scratch, with no input premise required.

6See Appendix F for analysis on how story length may
impact quality.



Method Interesting " Coherent " Relevant" Humanlike " Misc. Problems#

ROLLING 45.0 45.7 44.0 74.0 1.20
RE3 54.3 60.0 64.0 83.3 1.07

ROLLING-FT 52.7 48.7 49.3 74.7 1.48
RE3 53.7 60.0 65.3 80.0 1.35

Table 1: Comparison ofRE3 against two baselines,ROLLING andROLLING-FT, in two separate experiments. The �rst two
rows show a pairwise comparison betweenROLLING andRE3 and the last two rows show the equivalent comparison between
ROLLING-FT andRE3 . Bolding indicates signi�cant differences withp < 0:05 on a pairedt-test. Workers judged stories from
RE3 as signi�cantly more coherent and relevant to the initial premise, in addition to having fewer writing problems.

to the next outline point and/or ending the story
are possible, and we explore one possible “outline
alignment” method in Appendix M.

Baselines.As prior methods focus on dramatically
shorter stories compared to Re3, they are dif�cult to
compare to directly.7 Instead, we use the following
two GPT3-175B-based baselines.8

1. ROLLING, a baseline which generates 256
tokens at a time via GPT3-175B using the
premise and all previously generated story text
as the prompt, left-truncating the prompt if it
exceeds 768 tokens. Hence, a “rolling win-
dow” with maximum context length 1024 (the
same maximum context length used inRE3).
After 3072 tokens are generated, we use the
same story-ending mechanism asRE3.

2. ROLLING-FT, which is identical toROLLING

except that GPT3-175B is �rst �netuned
on several hundred passages from Writing-
Prompts stories of at least 3000 tokens.9

Metrics. As our main metrics, we track the per-
centage of stories which are:

1. Interesting. Interesting to the reader.
2. Coherent. Plot-coherent.
3. Relevant.Faithful to the initial premise.
4. Humanlike. Judged to be human-written.

7Even thepremisesused as starting points in our task can
be as long or longer than the �nal stories generated in several
previous works. We believe that adapting any of the prior
systems from our related work to function on our long-form
story generation task could be an interesting contribution in its
own right. In fact, Re3 itself can be viewed as our attempt to
extend and combine high-level planning/revision ideas from
prior work, while simultaneously redesigning them to be able
to leverage large out-of-the-box pretrained generators (GPT3),
to scale up to long-form generation.

8Smaller (non-GPT3-175B) generators yielded qualita-
tively worse outputs in preliminary experiments.

9We initially considered a third rolling window baseline us-
ing GPT3-Instruct-175B rather than GPT3-175B, but observed
that this baseline frequently devolved into highly repetitive
text or gibberish. Thus we do not report a formal comparison.
In any case,ROLLING is in some sense the best comparison,
asRE3 uses the same un-�netuned GPT3-175B generator.

We additionally track how often generated sto-
ries suffer from any of the following writing issues:

1. Narration. Jarring change(s) in narration
and/or style.

2. Inconsistent.Factually inconsistent or con-
taining very odd details.

3. Confusing.Confusing or dif�cult to follow.
4. Repetitive.Highly repetitive.
5. Dis�uent. Frequent grammatical errors.

Binary indicators for these issues are summed
and reported together asMisc. Problems in the
main text, with individual numbers in Appendix G.

All metrics are judged by Amazon Mechanical
Turk workers, who are shown a premise and two
corresponding stories in random order: one gen-
erated byRE3 and one by a baseline. For interest,
coherence, and relevance, workers indicate which
story is better, or that both or neither are good. For
the remaining metrics (humanlike and writing is-
sues), workers mark each story individually. See
Appendix H for an example Mechanical Turk task.

Each pair of stories is judged by three workers.
We report results individually for each pairwise
comparison betweenRE3 and each baseline, never
mixing numbers from different comparisons. Work-
ers are segregated by comparison to prevent bias.

Results.As shown in Table 1,RE3 is highly effec-
tive at writing a longer story following a desired
premise while maintaining a coherent overarching
plot, validating our design choices inspired by the
human writing process as well as our recursive
reprompting approach to generation.RE3 signi�-
cantly and substantially improves overROLLING

andROLLING-FT in both coherence and relevance.
Annotators also markedRE3's stories as having sig-
ni�cantly fewer miscellaneous writing problems.
Finally, RE3 demonstrates strong performance in
an absolute sense: annotators thought 83.3% and
80.0% respectively ofRE3's stories were written by
humans in the two comparisons. Table 2 shows a



PREMISE:After years of being content with only
a small inheritance, Sarah's life is turned
upside down when she discovers she is actually
a millionaire. She must learn to navigate her
new life of luxury while also dealing with the
guilt she feels over her new-found fortune.

GENERATED STORY:
Sarah Jensen never knew she had inherited a

fortune until her mother died. In fact, she
had never met her father ...[15 words]...

The only thing Sarah did know was that he had
died long ago and that her mother had been left
a sizeable inheritance. ...[23 words]...

Sarah's mother never spent any of the money
... all that mattered to her was how much it
would mean to her daughter when she inherited
it ...[81 words]...

Sarah learned that she was a millionaire.
...[417 words]...

She would never have had a chance like this -
an opportunity to be financially independent,
to live on her own ...[544 words]...

Now that she was rich, things were going to be
different for her. She could afford a hotel
suite and a lavish meal if she wanted it.
...[450 words]...

The words "Forgive me, father, for I have
sinned" came unbidden into her mind as she
reached out for her drink and took a large sip
straight from the glass. ...[383 words]...

But the guilt was weighing on her now. ...[346
words]...

Table 2: A heavily abridged example story generated by
RE3 (see Appendix J, Table 39 for the complete version).
While certainly not perfect, the story demonstrates strong
long-range coherence and faithfulness to the premise.

heavily abridged example story byRE3, exhibiting
strong coherence and premise relevance.

Nonetheless, we observe qualitatively thatRE3

still has much room for improvement. Some pas-
sages remain confusing or contradictory. While
nearly all ofRE3's stories follow the initial premise
to a decent degree—which cannot be said of stories
written by baselines—RE3's stories often deviate
from parts of our more detailed outline (Figure 2
bottom), especially for more unusual or outlandish
premises. See Appendix J for complete, i.i.d. exam-
ples of stories generated by bothRE3 and baselines.

5 Analysis

5.1 Ablation Study

Ablated Modules. We investigate the relative con-
tribution of the individual modules of Re3: Plan,
Draft, Rewrite, and Edit. We ablate each module
in turn as follows, except the Draft module as it is
unclear how our system would operate without it.

1. DRAFT-REWRITE-EDIT, a version of RE3

without the Plan module. Accordingly, we

remove the recursive reprompting in Draft.
ThusDRAFT-REWRITE-EDIT generates text
identically to theROLLING baseline, but is
revised by our Rewrite and Edit modules.

2. PLAN-DRAFT-EDIT, a version ofRE3 without
the Rewrite module reranking.

3. PLAN-DRAFT-REWRITE, a version ofRE3

which no longer edits using the Edit module.

Results. Table 3 shows that both the Plan and
Rewrite modules, mimicking the human planning
and rewriting processes, are critical for overall plot
coherence and premise relevance. However, the
Edit module contributes little to these metrics. We
also observe qualitatively that there remain many
continuity issues inRE3's �nal stories which are not
resolved by our Edit module, but which could be
�xed by an attentive human editor. Such continuity
issues range from non-character-centric inconsis-
tencies, to facts which change over time, to outline
plot points which were omitted in the story.

5.2 Further Analysis of Edit Module

We use a controlled setting to investigate if the
Edit module can at least detect the character-
based factual inconsistencies for which it is de-
signed. We will refer to our detection subsystem
asSTRUCTURED-DETECT to avoid con�ation with
the Edit module as a whole.

Task Setup. We construct an evaluation dataset
as follows. First we generate setups following our
Plan module, up to but not including the outline.
For each setups we randomly resample a char-
acter's description until we manually observe a
contradiction with the original, yielding a contra-
dictory setups0. For each ofs ands0, we generate
a story (t andt0), resampling until the contradicted
attribute appears in the story. If the resampling
fails after 5 attempts we restart the whole proce-
dure. We generate 50(s; s0; t; t 0) tuples in total;
see Appendix L for an example.

The task is then framed as classi�cation: the
method should judge(s; t) and(s0; t0) as consistent
and(s; t0) and(s0; t0) as contradictory. Thus the 50
(s; s0; t; t 0) tuples yield 200 input pairs.

Baselines.We construct two simple baselines us-
ing the same BART-Large-MNLI entailment model
used inSTRUCTURED-DETECT. Given a(s; t) pair,
the �rst baseline,ENTAILMENT , simply checks
each sentence ofs pairwise against each sentence
of t, and returns the maximum probability of



Method Interesting " Coherent " Relevant" Humanlike " Misc. Problems#

DRAFT-REWRITE-EDIT 50.3 46.7 50.7 70.0 1.33
RE3 59.7 63.3 63.7 80.0 1.25

PLAN-DRAFT-EDIT 46.3 42.3 42.7 59.7 1.48
RE3 56.7 56.0 63.3 67.3 1.17

PLAN-DRAFT-REWRITE 55.0 60.3 59.3 87.7 1.10
RE3 57.0 57.3 59.3 87.0 1.12

Table 3: Ablations on individual components ofRE3 , removing the Plan, Rewrite, and Edit modules respectively. Each two rows
show a pairwise comparison experiment betweenRE3 and the corresponding ablation. Bolding indicates signi�cant differences
with p < 0:05. Both the Plan and Rewrite module are critical to performance, but the Edit module makes little difference.

contradiction across all pairs. The second base-
line, ENTAILMENT-DPR, checks each sentence oft
against only one sentence ofs based on relevance
judged by DPR (Karpukhin et al., 2020).

Results. As shown in Table 4, when detect-
ing character-based inconsistencies,STRUCTURED-
DETECT outperforms the two baselines according
to the standard ROC-AUC metric for classi�ca-
tion (Hanley and McNeil, 1982). Indeed, the most
naiveENTAILMENT system's ROC-AUC score is
barely better than chance performance (0.5), high-
lighting the core challenge wherein the detection
system must be overwhelmingly precise. More-
over,STRUCTURED-DETECT is designed to scale
to longer passages; we hypothesize that the perfor-
mance gap compared to baselines would widen in
an evaluation with longer inputs such as the stories
from our main experiments.

Even so, the absolute performance of all systems
remains low, even in this simpli�ed setting. Addi-
tionally, many of our generated full stories contain
non-character-based inconsistencies, such as in the
setting or current scene. Some stories also contain
false positives (�agged non-contradictions), such
as character attributes which change over time.

Additionally, while we did not formally analyze
the GPT3 Edit API's ability tocorrect inconsisten-
cies after they are detected (as this system is largely
not our contribution), we generally observed that it
can �x isolated details but may struggle with larger
changes. It also sometimes makes undesired ed-
its or additions. Taken together, the compounding

Method ROC-AUC "

ENTAILMENT 0.528
ENTAILMENT-DPR 0.610
STRUCTURED-DETECT 0.684

Table 4: ROC-AUC score of predicted contradiction probabili-
ties for different methods on our evaluation set.STRUCTURED-
DETECT outperforms our two entailment-based baselines.

errors from the detection and correction subsys-
tems make it dif�cult for our current Edit module
to effectively improve factual consistency over a
multiple-thousand-word horizon, without simulta-
neously introducing unnecessary changes.

6 Discussion

We have considered the problem of automatically
generating longer stories, proposing the Re3 frame-
work as an initial attempt at addressing the chal-
lenges of maintaining long-range coherence and
premise relevance. OurRE3 implementation ex-
hibits strong performance on these metrics while
generating stories over 2000 words long.

At its core, Re3 is a system for emulating the
human writing process for long-form generation
while leveraging only general-purpose language
models in the generation procedure. Thus concepts
from Re3 can potentially be adapted to non-story
domains as well, especially the idea of dynamically
re-injecting contextual information into a prompt.
Moreover, should human interaction be desired,
Re3 is in principle highly controllable: most mod-
ules operate almost entirely in natural language.

Nonetheless, our main goal remains to further
improve automatic long-form story generation.
While RE3's stories are an order of magnitude
longer than those from prior work, most humans
would still consider them to be “short stories”—and
on the shorter side at that. Our long term goal is to
generate interesting, long-range-coherent stories of
greater length—perhaps what humans might call
“novellas”—and eventually full-length novels. One
step in this direction could be to extend Re3 using
multiple levels of hierarchical outline generation to
obtain a much more detailed initial plan, as we do
in Appendix M to generate a 7500-word story.

In our view, the greatest barrier to further in-
creasing story length is evaluation, which frustrates
efforts to benchmark systems during both test time



and development. In this work, we have compared
RE3 to baselines solely through human evaluation,
which can be both noisy as well as costly even with
non-expert annotators. While prior works have
proposed some possible measures (Barzilay and
Lapata, 2008; Castricato et al., 2021), we hope that
analyzing our generated stories (bothRE3 and base-
lines) can inspire further research on metrics for
which we currently rely solely on human annota-
tion. For example, while there exist reasonable
metrics for text similarity on a sentence or para-
graph level, long-form generation could bene�t
from metrics detecting when a longer passage be-
gins on-topic but slowly veers off-topic, or when
a passage uses on-topic vocabulary but is other-
wise nonsensical in context. Similarly, improved
metrics forlong-rangefactual contradictions could
greatly aid efforts to improve generations' factual
consistency, such as our Edit module. Even if new
metrics do not completely replace human annota-
tions, they could help us both to evaluate longer
stories as well as conduct more detailed ablation
studies with larger sample sizes.

Additionally, while RE3's stories are relatively
plot-coherent and faithful to the premise, substan-
tial gaps remain along other axes compared to
even beginner human writers. One such axis is
long-range factual continuity: while we believe our
structured detection-correction method is a human-
like approach, our current Edit module is certainly
not human-level. Moreover, human stories exhibit
long-range continuity along many axes other than
just factual attributes of characters, such as overall
theme; scenes and world setting; pace and tempo of
storylines; and foreshadowing before major events.
It remains highly nontrivial to incorporate such
considerations into automatic story generation.

Limitations

The dif�culty of evaluating long-form generation
greatly constrains our experiments. Speci�cally,
we are limited in the sample sizes of all our exper-
iments as well as our ability to run more detailed
ablations. Improved evaluation would also enable
us to evaluate stories much longer than the current
2000-2500 words: while Re3 is capable of generat-
ing such stories (Appendix M), we do not formally
evaluate them in this work. Note that compared to
evaluation costs, the API costs associated with the
actual story generation are signi�cantly lesser.

The dif�culty of careful evaluation also affected
system development. Many system design choices
(e.g., prompt design, reranking heuristics) and hy-
perparameters (e.g., length of each story continu-
ation, thresholds for checking contradiction in the
Edit module) are simply selected manually, rather
than chosen based on careful validation. Thus it
is likely that substantial room for improvement
remains in the detailed design of our individual
modules.

Many of our modules are custom-designed for
story generation, especially the structured attribute-
value dictionary for story characters used in the
Edit module. Adaptation to a generation domain
other than stories, at least in our current setup, may
also require manually re-designing prompts and
experimenting with parameters.

Additionally, there remains substantial room for
improvement in our Edit module. While we believe
that a structured detection and correction system
such as our Edit module is a principled way to ad-
dress the important problem of long-range factual
continuity, empirically our current implementation
does not improve our main metrics (Table 3). Even
in the controlled setting where it outperforms our
baselines (Table 4), the absolute ROC-AUC score
remains low. Moreover, it is designed to handle
speci�cally contradictions related to character at-
tributes, which we observe are a common but cer-
tainly not all-encompassing class of errors.

Finally, we expect that Re3's performance may
decrease in languages which lack strong general-
purpose language models such as GPT3.

Ethics Statement

Strong natural language generation systems present
opportunities for abuse, for example in fake news
generation. We have attempted to mitigate this is-
sue by focusing on the comparatively innocuous



task of story generation. Additionally, in our Edit
module we have explored methods for maintaining
long-range factual consistency as a way to safe-
guard against model hallucination, and we envision
that our Edit module could be adapted to incorpo-
rate a real-world knowledge base as needed to aid
truthful generation.

Our system relies heavily on pretrained general-
purpose language models, speci�cally GPT3 in our
implementation, and thus may inherit the problem-
atic biases associated with such models (Radford
et al., 2019; Brown et al., 2020; Lucy and Bam-
man, 2021). These biases may be ampli�ed in sto-
ries, which could negatively affect human readers.
However, our overall framework Re3 is not neces-
sarily tied to GPT3, and can in principle function
with any other general-purpose language model.
Thus, improvements in debiasing language models
can translate into our Re3 framework as well. Ad-
ditionally, one could apply controlled generation
approaches (Dathathri et al., 2019; Krause et al.,
2020; Yang and Klein, 2021) for debiasing text to
our generation procedure.

Finally, as mentioned in Limitations, Re3's per-
formance is tied to the quality of the base language
model used as a generator, and thus may suffer on
non-English languages.
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A Character Name Generation

We elaborate on our name generation scheme used
in the Plan module (Section 3.1).

Names are generated by GPT3-Instruct-175B
with a prompt consisting of the premise, setting,
and any previous character descriptions, shown in
Table 5. Thus if e.g., a name already appears in
the premise, it can be easily copied. After each
name, we generate the corresponding description,
and both the name and description are appended to
the prompt before generating the next name.

Premise: Cathy is a high school student who is
trying to figure out her future. She has been
diagnosed with a rare disease that will cause
her to slowly go blind. As she tries to make
the most of her remaining sight, she also must
come to terms with the fact that she may never
be able to see again.

Setting: The story is set in a small town in
the United States.

List the names and details of all major
characters.

1.

Full Name:

Table 5: An example prompt used when generating the
�rst name in the Plan module.

To ensure that we sample reasonable names, we
use several heuristics as follows. Each time we
generate a name, we sample 10 names in total,
and �lter out those containing any of a �xed set of
strings which we observed were problematic (e.g.,
story roles like “protagonist,” or character attributes
like “age” and “gender” which are not names). We
additionally �lter out strings with punctuation and
strings not in the premise but which appear multi-
ple times in the 10 generated strings (to add more
diversity to the names). Finally, we prefer names
with two words in them in an effort to get charac-
ters' full family names.

While these simple heuristics are suf�cient for
this work, there remains ample room for improve-
ment both in generated names' quality (avoiding
the occasional edge cases which escape our heuris-
tic �lters) as well as fairness (by using a generation
system which is perhaps less biased than GPT3).



B Details on Additional Reranking
Heuristics

We elaborate on the details of the additional �lter-
ing heuristics used in our Rewrite system (Section
3.3). There are a few broad categories of prob-
lems which we aim to largely �lter out with simple
heuristics.

First, we �lter out any empty outputs.
Second, we aim to reduce repetition in the gen-

eration both within itself and with the prompt. We
simply check for repeated sequences of 5 words or
more, and also check if the edit distance between
any two sentences is a suf�ciently small fraction of
their length.

Third, we aim to avoid jarring changes in narra-
tion. For example, this can result from the GPT3
generator reverting to the style of the prompt, with
e.g., headings for story commentary or author notes.
Thus we �lter out any generations containing any
of a �xed list of strings, such as “\nComment” and
“copyright”. For some strings which may reason-
ably appear in a normal story passage as well, we
�lter out passages if two or more appear. We also
�lter out generations where any paragraph contains
a colon within the �rst few words (a likely indicator
of an analysis header).

Fourth, we aim to maintain consistent third per-
son narration, so we detect whether a continuation
is written in �rst or second person by searching
for the presence of “I,” “we,” and “you” outside of
quotations and �lter out such continuations.

C Details on Editing System Information
Extraction

As discussed in Section 3.4, the core subroutine
of our Edit module's detection system is an infor-
mation extraction system for gathering structured
information about a given character from a newly
generated passage. We will illustrate this process
using a running example taken mid-generation for
a story starting from the plan shown in Table 6.

Premise: In a future world where the sun has
gone out, a group of people huddle around a
fire in a small cabin. They are waiting for a
message from the outside that will tell them
what to do next.

Setting: The story is set in a dark cabin lit
only by a fire.

Characters:
1. Karen Zellerion is a strong and determined
woman. She is the leader of the group and is
always looking for ways to help her people.
2. Luke Zellerion is Karen's husband and the
second-in-command of the group. He is a skilled
hunter and often uses his knowledge to help the
others.
3. Maria Zellerion is Karen and Luke's daughter.
She is a bright and curious girl who is always
asking questions about the world they live in.

Outline:
1. The group receives a message from the outside
that tells them to go to a certain location.
2. The group sets out on their journey,
encountering various challenges along the way.
3. The group arrives at the location and
discovers what they are supposed to do next.

Table 6: The plan generated by the Plan module for our
running example illustrating the Edit module's attribute-
value detection procedure.

We begin by feeding GPT3-Instruct-175B a
prompt containing the passage, the name of the
character, and a request to list facts about the char-
acter, as shown in Table 7. We generate 3 outputs,
parse the lists into individual facts, and retain those
facts which are agreed upon by at least 2 of the out-
puts (according to an entailment model) to reduce
hallucination.

Next, we extract the attribute keys from each
fact. This is done via a few-shot prompt to GPT3-
Instruct-13B, selecting examples based on DPR
relevance from a small collection of about 80 hand-
written examples, as shown in Table 8. Note we do
not keep the attributevaluesgenerated in this step
as we observed frequent hallucination. Addition-



"I don't know," answered Maria, "but I'll go
with you if you're going to meet someone." so
they left together.

They walked down to the main part of the
community where everyone else was gathering and
found an older woman there named Lucy that Karen
knew.

"You know what's going on don't you?" Karen
asked Lucy.

"Yes, I do but I don't think I can tell you
much because I've been sworn to secrecy," she
replied. "I just have a feeling that if we're
going to get any answers from this person we're
looking for we're going to have to see them
face-to-face," assured Lucy. They all agreed
that this was the best way to do things and
went looking for their neighbor Lizzy who had
a car that worked. They met her again in the
cafeteria and told her about their plans and
Lizzy said she would like nothing better than
a little adventure so she agreed to take them
as long as no one got hurt along the way.

Question: List very brief facts about Lucy's
appearance, personality, and relationship to
other characters.

1. Lucy is an older woman.

2. Lucy is sworn to secrecy.

3. Lucy is a good friend of Karen's.

Table 7: An example prompt for listing initial facts about
a given character based on a newly written passage, used in
the Edit module's detection procedure. We show one of the
three generated continuations in highlighting. (Note that
Lucy was not one of the original three characters generated
by the Plan module, but rather was detected and added
to our knowledge base over the course of generation as
discussed in Section 3.2.)

ally, we �lter out any attribute keys which return
either no answer or a suf�ciently low-con�dence re-
sult from a T5-large-based Uni�edQA question an-
swering model (Khashabi et al., 2020) when given
either the fact or original passage as context.

Extract attributes from the given context using
the format Attribute: Value.

�-
Context (Nora Johnson): Selma Vincenti is
Nora's friend who recently got engaged to Bill.
Nora Johnson's friend's name is Selma Vincenti
Nora Johnson is Selma's friend
�-
Context (Shannon): Kathleen O'Brien is
Shannon's mother.
Shannon's mother's name is Kathleen O'Brien
Shannon is Kathleen's daughter
�-
Context (Rachel Kim): Rachel Kim's father loves
her children dearly.
Rachel Kim's gender is female
�-
Context (Johnny): Johnny is a friendly and
outgoing person, and he loves spending time
with his sister Mira.
Johnny's gender is male
Johnny's sister's name is Mira
Johnny is Mira's brother
�-
Context (Tina Palmer): Tina Palmer befriends
Amy Sinkhorn.
Tina Palmer is Amy's friend
Tina Palmer's friend's name is Amy Sinkhorn
�-
Context (Lucy): Lucy is a good friend of
Karen's.
Lucy is Karen's friend
Lucy is a good friend of Karen
Karen is Lucy's friend

Table 8: An example prompt for extracting attributes from
a natural language fact (“Lucy is a good friend of Karen's.”)
in the Edit module. Attribute key-value pairs are extracted
from each generated line in a rule-based manner, and we
discard outputs for which our rule-based parser fails (both
the second and third output lines in this case). After extrac-
tion, we keep only the key, while the value is discarded due
to a high rate of hallucination in this step; we regenerate it
later.

To recompute the attribute values, we prompt
GPT3-Instruct-13B with the original fact, charac-
ter name, and attribute key as shown in Table 9,
and take the most agreed upon of 3 outputs as the
attribute value. We �lter out any key-value pairs
which are not entailed with suf�ciently high prob-
ability by the original fact from which they were
extracted.



Lucy is a good friend of Karen's.

Lucy is Karen's friend.

Table 9: An example prompt for extracting values after
identifying attribute keys in the Edit module. In this case,
the character for which we are inferring is Lucy, and the
attribute key is “Karen's.”

After acquiring key-value pairs, we need to up-
date the structured attribute dictionary for the given
character. When we detect a con�ict (i.e., an at-
tribute key is already present in the dictionary), we
compare the new and old attribute values using an
entailment model by converting the attribute-value
pairs into simple sentences in a rule-based man-
ner (e.g., “gender: female” in Karen's dictionary
will convert to “Karen's gender is female.”). If one
attribute value entails the other, then we keep the
former as the attribute value. If there is a neutral
relation, we make no change. If there is a contra-
diction, we �ag it for editing.

Lastly, we can “complete” attributes involving
other characters in the dictionary. For example, if
Ben's teacher is Anna, GPT3-Instruct-175B can in-
fer that Anna's student is Ben, and add this relation
to our dictionary for Anna. Additionally, we can
infer that Anna's relationship to Ben is “teacher”
and that Ben's relationship to Anna is “student.”
An example of this procedure is shown in Table 10.

Lucy is Karen Zellerion's friend.

Karen Zellerion is Lucy's friend.

Table 10: Example prompt for “completing” attributes
involving other characters in the Edit module. Note that we
automatically matched “Karen” to our existing character
“Karen Zellerion.” From the initial fact that Lucy is Karen's
friend, we infer that Karen is Lucy's friend, that Lucy's
friend is Karen, and Karen's friend is Lucy. (This example
also hints at one limitation of our current system, namely,
that it implicitly assumes one value per attribute: e.g., if
Lucy had a second friend it would �ag a contradiction.)

For the controlled setting evaluation in Sec-
tion 5.2, we modify the system to output contin-
uous probabilities of contradiction (to compute a
ROC-AUC score) rather than discrete decisions on
whether a previously detected attribute is contra-
dicted. Thus for each passage, we simply return the
entailment model's maximum probability of contra-
diction observed across all attribute key con�icts.

D Data on API Usage

In Table 11, we report the average number of API
calls and number of tokens processed (including
both prompts and generations) for each GPT3 API
endpoint across 5 runs ofRE3, using the same set-
tings as in our main experiments.

The large number of tokens generated from
GPT3-175B and GPT3-Instruct-175B can be at-
tributed to our �ltering and reranking in the Plan
and Rewrite modules; typically we generate 10 out-
puts per call. The Edit module is responsible for
most of the GPT3-Instruct-13B usage as well as
some of the GPT3-Instruct-175B usage. Finally,
the Edit module is naturally the sole user of the
Edit API, which also involves rejection sampling
when the API either makes no change or returns an
overly lengthy response.

The total cost for generating a singleRE3 story
with these settings adds up to a few dollars. The
baselines and ablations require fewer calls than
reported here.

E Dataset Usage

The only preexisting story dataset used in this work
is the WritingPrompts dataset (Fan et al., 2018),
which is used to train our relevance and coherence
rerankers (and the generator for theROLLING-FT

baseline). GPT3 is additionally used to derive sum-
maries of WritingPrompts passages for training the
relevance reranker. Finally, we generated some
examples of contradictory story setups and story
beginnings when analyzing our Edit module in Sec-
tion 5.2, which relied solely on prompting GPT3,
and not any preexisting dataset.

All data used or generated for this paper, to-
gether with documentation, can be found through
our codebase located athttps://github.com/
yangkevin2/emnlp22-re3-story-generation .



Model API Endpoint Average Calls Average Tokens

GPT3-175B davinci 12.0 34510.0
GPT3-Instruct-175B text-davinci-002 70.2 25558.0
GPT3 Edit API text-davinci-edit-001 7.0 19425.2
GPT3-Instruct-13B text-curie-001 362.6 48401.8

Table 11: For each API endpoint that we use, we report the average number of API calls and tokens processed per story generated
by RE3 . Note that for the Edit API, we simply add the total number of tokens in both prompt and output when calculating
the number of tokens, although it is not obvious if this is the appropriate count. Calls to the Insert API are included under
text-davinci-002 .

Method Interesting " Coherent " Relevant" Humanlike " Misc. Problems#

RE3 -SHORT 44.7 47.3 59.3 89.3 1.29
RE3 52.0 56.0 62.0 87.3 1.45

RE3 -LONG 64.0 60.0 58.0 85.3 1.77
RE3 42.0 51.3 58.0 82.0 1.68

Table 12: Comparison ofRE3 against versions generating shorter and longer stories (RE3 -SHORTandRE3 -LONG respectively).
The �rst two rows show a pairwise comparison betweenRE3 -SHORT and RE3 and the last two rows show the equivalent
comparison betweenRE3 -LONG andRE3 . Bolding indicates signi�cant differences withp < 0:05 on a pairedt-test. In most
metrics the differences are insigni�cant.

F Length vs. Story Quality Analysis

In our main experiments, we ranRE3 with three
outline sections and generated four 256-token pas-
sages per outline section. Here, experiment with
generating fromRE3 using the same outlines, but
with two or six 256-token passages per outline sec-
tion instead. We refer to these modi�ed version
of RE3 asRE3-SHORTandRE3-LONG respectively.
The results are shown in Table 12.

For the most part, the sample size of 50 sto-
ries for this comparison proved insuf�cient to draw
clear quantitative conclusions on the impact of
length onRE3 story quality. However, interest-
ingly, annotators judged the longer stories to be
more interesting. Additionally, it seems intuitive
that longer stories are more likely to suffer the pres-
ence of writing problems at some point in the story
simply due to having more total text.

Qualitatively, we also observe that the generator
may become repetitive or lose the plot thread over
longer time horizons, but ending generation too
early can also yield stories which seem “truncated”
before they reach the main plot points. Trying to
balance these factors by determining the length
of story passages more dynamically could be an
interesting avenue for future research.

G Full Metrics for Miscellaneous Writing
Problems

We show the metrics for individual writing prob-
lems as described in Section 4. Tables 13 and 14
show the results for the main baselines and abla-
tions respectively. The differences in individual
metrics are largely not signi�cant (althoughRE3

is never signi�cantly worse), but in many cases
become signi�cant when taken in aggregate.



Method Narration# Inconsistent# Confusing# Repetitive# Dis�uent # Misc. Problems#

RE3 0.15 0.27 0.24 0.3 0.11 1.07
ROLLING 0.2 0.28 0.3 0.29 0.13 1.2

RE3 0.21 0.35 0.29 0.3 0.2 1.35
ROLLING-FT 0.24 0.32 0.37 0.31 0.23 1.48

Table 13: Fraction of stories marked with individual writing problems from pairwise comparison ofRE3 against two baselines,
ROLLING andROLLING-FT. Bolding indicates signi�cant differences withp < 0:05. Differences in individual problems are
largely not signi�cant, but they become signi�cant in aggregate (Misc. Problems)

Method Narration# Inconsistent# Confusing# Repetitive# Dis�uent # Misc. Problems#

RE3 0.23 0.31 0.31 0.25 0.15 1.25
DRAFT-REWRITE-EDIT 0.29 0.32 0.34 0.21 0.18 1.33

RE3 0.26 0.35 0.25 0.17 0.15 1.17
PLAN-DRAFT-EDIT 0.43 0.34 0.38 0.14 0.18 1.48

RE3 0.23 0.29 0.22 0.25 0.14 1.12
PLAN-DRAFT-REWRITE 0.19 0.26 0.28 0.25 0.12 1.1

Table 14: Fraction of stories marked with individual writing problems from pairwise comparison ofRE3 against ablations which
remove the Plan, Rewrite, and Edit modules respectively. Bolding indicates signi�cant differences withp < 0:05. Differences in
individual problems are largely not signi�cant.

H Mechanical Turk Evaluation Details

In Figure 6 we show an example Mechanical Turk
survey from our evaluation in which the annotator
is asked to answer questions comparing two stories.
Workers were paid $1.50 per hit.




