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Abstract

We introduce Ghostbuster, a state-of-the-art
system for detecting AI-generated text. Our
method works by passing documents through
a series of weaker language models, running a
structured search over possible combinations of
their features, and then training a classifier on
the selected features to predict whether docu-
ments are AI-generated. Crucially, Ghostbuster
does not require access to token probabilities
from the target model, making it useful for de-
tecting text generated by black-box or unknown
models. In conjunction with our model, we
release three new datasets of human- and AI-
generated text as detection benchmarks in the
domains of student essays, creative writing, and
news articles. We compare Ghostbuster to sev-
eral existing detectors, including DetectGPT
and GPTZero, as well as a new RoBERTa base-
line. Ghostbuster achieves 99.0 F1 when eval-
uated across domains, which is 5.9 F1 higher
than the best preexisting model. It also out-
performs all previous approaches in generaliza-
tion across writing domains (+7.5 F1), prompt-
ing strategies (+2.1 F1), and language models
(+4.4 F1). We also analyze our system’s ro-
bustness to a variety of perturbations and para-
phrasing attacks, and evaluate its performance
on documents by non-native English speakers.

1 Introduction

Language models such as ChatGPT are capable of
producing a wide range of fluent text that closely
approximates human language use. However, the
proliferation of these models has raised concerns
about the authenticity and trustworthiness of text
across a variety of domains. For example, concerns
that students are submitting assignments ghostwrit-
ten by language models have led many schools to
adapt by restricting the use of ChatGPT in class-
rooms and homework assignments (Heaven, 2023).
Meanwhile, because language models are prone to
factual errors and hallucination, readers may desire

to know if such tools have been used to ghostwrite
news articles or other informative text when decid-
ing whether to trust a source.

Several detection frameworks have been pro-
posed to address this issue, such as DetectGPT
(Mitchell et al., 2023) and GPTZero (Tian, 2023).
While these frameworks offer some level of detec-
tion, we found that their performance falters on
datasets that they were not originally evaluated on
(Section 6). In addition, the high false positive rates
of these models raise potential ethical concerns be-
cause they jeopardize students whose genuine work
is misclassified as AI-generated. Furthermore, pre-
vious work has indicated that text by non-native
speakers of English is disproportionately flagged as
AI-generated (Liang et al., 2023). These concerns
underscore the need for AI-generated text detectors
with strong generalization performance.

We present Ghostbuster, a method for detection
based on structured search and linear classification
(Figure 1). First, Ghostbuster passes paired human-
authored and AI-generated documents through a
series of weaker language models, ranging from a
unigram model to the non-instruction-tuned GPT-3
davinci. Given the word probabilities from these
models, it then searches over a space of vector
and scalar functions that combine these probabil-
ities into a small set of features. Finally, it feeds
these features into a linear classifier, as described
in Section 4. Our model obtains 99.0 F1 on in-
domain classification, outperforming DetectGPT
and GPTZero by an average margin of 23.7 F1. We
also evaluated Ghostbuster’s generalization to new
datasets, prompting strategies, and models (Sec-
tion 6) and conducted a number of ablations and
robustness experiments (Section 7). Ghostbuster
is available at ghostbuster.app; we release code
for our method and replicating our experiments at
github.com/vivek3141/ghostbuster.

ghostbuster.app
github.com/vivek3141/ghostbuster
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It was a typical 
Friday night, and I 
had decided to 
spend it at home, 
browsing the 
internet and 
catching up on some 
of my favorite 
shows. My roommate 
had gone…

Figure 1: An outline of our model training procedure. First, we fed each document into a series of weaker language
models to obtain token probabilities. Then, we ran a structured search over combinations of the model outputs and
trained a linear classifier on the selected features.

2 Related Work

Language models exhibit only some statistical
properties of human-authored text. Meister and
Cotterell (2021) found that AI-generated text ad-
hered to Heaps’ type-token law less than human-
authored text, but was similar to human text in
terms of unigram distribution, length, stopword us-
age, and adherence to Zipf’s rank-frequency law.
Ippolito et al. (2020) found that improved decoding
strategies, such as top-k sampling, fooled humans
more often but introduced statistical abnormalities
that made generated text easier to detect with mod-
els. AI-generated text also differs qualitatively, and
often subtly, from human-authored text. Jawahar
et al. (2020) found that GPT-2 responses that a
model misclassified as human-authored tended to
be short and contained issues of factuality, repe-
tition, contradiction, and incoherence; Dou et al.
(2022) found that larger models had fewer errors
in areas such as factuality or coherence. Guo et al.
(2023) also found that ChatGPT answers were
more formal and focused than human ones.

AI-generated text also exhibits qualitative dif-
ferences from human-authored text, though these
are often subtle. Jawahar et al. (2020) found that
GPT-2 responses that a model misclassified as hu-
man authored tended to be very short and contained
issues of factuality, repetition, contradiction, and
incoherence; however, Dou et al. (2022) had hu-
man labelers annotate AI-generated text and found
that larger models were less likely to produce re-
sponses that were factually incorrect, contradicted
common sense, or were incoherent, while the de-
gree of self-contradiction and redundant text varies
substantially depending on the model. More re-

cently, Guo et al. (2023) found that while volun-
teers often rated ChatGPT answers as more help-
ful than human ones, ChatGPT answers were still
more formal, more strictly focused, and used more
conjunctions.

One line of work aims to ensure that AI-
generated text can be detected through deliber-
ate watermarking of AI outputs (Aaronson, 2023;
Kirchenbauer et al., 2023; Zhao et al., 2023; Ka-
maruddin et al., 2018). Watermarking has the ben-
efit of providing guarantees on the probability that
text is successfully detected, though it relies on
devlelopers incorporating watermarks into models.

Several tools have been introduced to detect
AI-generated text in the absence of watermarking.
Gehrmann et al. (2019) introduced GLTR, a suite
of statistical tools to aid humans in detecting AI-
generated text, which include overlaying text with
the text’s top-k annotation in different colors. De-
tectGPT (Mitchell et al., 2023) used the fact that
unlike human-authored text, generated text lies in
regions of the probability space where nearby sam-
ples often have lower model probability. Their
model generates random perturbations of the text
from a generic LM to detect AI-generated text, then
gets probabilities of the original text and perturba-
tions from the model that might have generated
the text. Recent supervised methods have used lo-
gistic regression, RoBERTa, and T5 to distinguish
between human-authored and AI-generated text
(Guo et al., 2023; Chen et al., 2023; Uchendu et al.,
2020). Concurrent with this work, Bhattacharjee
et al. (2023) used contrastive domain adaptation
for unsupervised AI-generated text detection.

However, Sadasivan et al. (2023) argued that
there is an upper bound on the performance of gen-



All of this should be such a joy, a wondrous time 

where people all around the world are brimming with 

love and excitement over what they might have been 

brought. But it's not, I'm worried, I'm borderline 

panicked. Every single year, I've felt my anxiety 

grow as the temperature drops, all because of one 

question nagging me between the ears. Am I on the 

naughty list this year? And there's no answer, 

there's never an answer because we weren't given a 

guideline, there's no clear line drawn in the sand 

that we must not cross lest we end up on the naughty 

list. So we're left to our own devices, trying to 

live our lives as best we can, but people slip…

It was a sunny December morning when the annual 

tradition of receiving Christmas presents took a 

peculiar turn. The streets were filled with laughter, 

carolers singing joyously, and children eagerly 

awaiting the arrival of Santa Claus. But this year, 

things were different. Word had spread like wildfire 

that everyone, without exception, would receive a 

Christmas present. Yet, there was an unsettling twist 

– these gifts would be based on how “good” one had 

been throughout the year. Authorities were baffled, 

for no one knew who was behind this curious 

occurrence. As the clock struck midnight on Christmas 

Eve, parcels began appearing on doorsteps…

Prompt: Every authority is baffled but for the past few years everyone has been receiving a 
Christmas present. To some delight and others horror, the gifts are based on how 'good' you've been.

Human Written Text ChatGPT Generated Text

Figure 2: An example comparison between human-written and ChatGPT-written text. Whenever possible, all
ChatGPT-generated documents were generated based on the same prompts seen by human writers. When prompts
were not available, we used ChatGPT to first generate a prompt conditioned on the human-written text and then
used ChatGPT again to generate a document conditioned on the generated prompt.

erated text detectors and found that many are brit-
tle to paraphrasing attacks, including DetectGPT
(Mitchell et al., 2023), GLTR (Gehrmann et al.,
2019), and other zero-shot methods (Ippolito et al.,
2020; Solaiman et al., 2019), as well as OpenAI’s
generated text detectors (OpenAI, 2019). In this
paper, we focus primarily on the setting in which
entire paragraphs or documents were generated by
language models, leaving adversarial prompting
and paraphrasing attacks as an avenue for future
work. In addition, Liang et al. (2023) found that
essays by non-native English speakers were dispro-
portionately misclassified as AI-generated by seven
commercial GPT-generated text detectors. In Sec-
tion 9, we discuss Ghostbuster’s performance on
non-native English speaker data and other ethical
considerations regarding detection models.

3 Datasets

We collected three new datasets for benchmark-
ing detection of AI-generated text across the do-
mains of creative writing, news, and student es-
says. For each of the three datasets, we col-
lected ChatGPT-generated text corresponding to
the human-authored text. All training datasets were
generated using gpt-3.5-turbo.

Our creative writing dataset is based on the sub-
reddit r/WritingPrompts, a forum in which users
share creative writing prompts and craft stories
in response to these prompts. In order to avoid
contamination from ChatGPT-written content, we

collected data from the top 50 posters in October
2022 and scraped the last 100 posts by each of these
users.1 We used the scraped prompts to generate
ChatGPT-written essays.

Our news dataset is based on the Reuters 50-50
authorship identification dataset (Houvardas and
Stamatatos, 2006), which consists of 5000 news
articles by 50 journalists. Because we did not have
access to ground truth headlines or summaries for
these articles, we first prompted ChatGPT to gen-
erate a headline for each article (see Appendix A),
then prompted it to write an article based on each
generated headline.

Finally, our student essay dataset is based on es-
says from IvyPanda, which consists of high school
and university level essays across a range of disci-
plines. As with the news dataset, we did not have
access to the original prompts for these essays, so
we used ChatGPT to first generate a prompt cor-
responding to the essay and then generate a cor-
responding essay that responds to that prompt. In
order to avoid spurious effects of document length,
for each of the three domains, we also prompted
ChatGPT to approximately match the length of the
corresponding human-written article, as shown in
Table 8.

Additional details on the prompting process and
dataset statistics are provided in Appendix A. For
each task, the datasets were divided into train, vali-

1ChatGPT was publicly released on November 30, 2022.



dation, and test sets. To validate task difficulty and
ensure no major artifacts remained in the datasets,
we asked human reviewers to label subsets of the
essays as human or AI generated (see Section 5).

Evaluation Datasets To evaluate generalization
across different models and prompting strate-
gies, we collected Claude-generated text based
on the original prompt in Table 8, as well as
ChatGPT-generated text across a variety of addi-
tional prompts. Only human and ChatGPT-written
essays from the original prompt in Table 8 were
used for model training, and all other data was used
solely for evaluation. Because reducing the false
positive rate is particularly important for applica-
tions such as detecting student use of AI-generated
text, we evaluated accuracy on some datasets of
human text alone (i.e., a precision-only evaluation),
including several datasets of text by non-native En-
glish speakers (details in Section 9).

4 Model

Given the concerns of brittleness raised for
many current AI-generated text detection systems
(Bakhtin et al., 2019; Pu et al., 2023; Sadasivan
et al., 2023, inter alia), a principal objective for
Ghostbuster was to train a model with strong gen-
eralization ability across a variety of distribution
shifts, including different text domains, prompts,
and models. Two of our baselines, a perplexity-
only model and a RoBERTa-based model, represent
the extremes that Ghostbuster aims to avoid (see
baselines in Section 5). The simplest approach,
using document perplexity alone to distinguish
AI-generated and human-authored text, resulted
in a brittle and insufficiently expressive model
with particularly poor performance on domain and
style shifts, including worse-than-random accuracy
on some out-of-domain tasks and on some non-
native English speaker data (see Section 6). How-
ever, we also found that highly expressive models
such as RoBERTa can exhibit catastrophic worst-
case performance, performing even worse than the
perplexity-only baseline for certain domain shifts
(up to 21.3 F1 drop). We designed Ghostbuster to
take a middle path, using combinations of features
based on the probabilities of documents under a
series of language models that are weaker than the
target model. This combination of operations pro-
vides a comparatively simple way to add model
capacity without creating a fully neural architec-
ture, which is more likely to overfit.

Vector Functions Scalar Functions

faddi = p1i + p2i fmax = max p
fsubi = p1i − p2i fmin = min p
fmuli = p1i · p2i favg = 1

|p|
∑

i pi

fdivi = p1i/p2i favg-top25 = 1
|p|

∑
i∈Tp

pi

f>i = 1{p1i>p2i} flen = |p|
f<i = 1{p1i<p2i} fL2 = ||p||2

fvar =
1
n

∑
i(pi − µp)

2

Table 1: List of vector and scalar functions used for
feature generation. Vector functions take in two vectors
of probabilities p1, p2 ∈ Rn and output a single vector
f ∈ Rn, where n is the number of tokens in a document.
On the other hand, scalar functions take in an input
vector p ∈ Rn and output f ∈ R. Here, Tp denotes the
indices that contain the top 25 lowest values in p and µp

denotes the average value of p.

Ghostbuster uses a three-stage training process
(see Figure 1): probability computation, feature
selection, and classifier training. First, we con-
verted each document into a series of vectors by
computing per-token probabilities under a series of
language models. Then, we selected features by
running a structured search procedure over a space
of vector and scalar functions that combine these
probabilities. To do so, we defined a set of opera-
tions that combine these features and ran forward
feature selection on them. Finally, we trained a sim-
ple classifier on the best probability-based features
and some additional manually-selected features.

4.1 Probability Computation

Ghostbuster first passes each document through a
series of language models that are weaker than the
target model to compute vectors of token probabili-
ties for each document. Our approach uses a uni-
gram fertility model, a Kneser-Ney trigram model,
and two early GPT-3 models (ada and davinci,
without instruction tuning) to obtain these proba-
bilities. We describe additional details of model
training in Appendix C.

4.2 Feature Selection

Feature selection proceeded in two stages: we first
generated a set of features and then combined them
using Algorithm 1. To generate features, we first
constructed 13 vector and scalar operations, which
are outlined in Table 1. The scalar operations (such
as avg or var) convert vectors to scalars, and vec-
tor operations (such as add) combine two vectors



Algorithm 1 Subroutine FIND-ALL-FEATURES

Require: The previously picked feature p, depth
d ≤ max_depth, vectors V of token probabili-
ties (from unigram, trigram, ada, and davinci
models), scalar functions Fs, vector functions
Fv

Ensure: A list of all possible features
Let S = ∅
for all scalar functions fs ∈ Fs do

Add fs(p) to S
end for
for all combinations of features and vector func-
tions (p′, fv) ∈ V × Fv do

Add FIND-ALL-FEATURES(fv(p, p
′), d + 1)

to S
end for

into one. In order to generate all possible features,
we ran Algorithm 1 four times, with the probabil-
ity vectors from each model as the starting fea-
tures and a maximum depth of 3. Features thus
took the form of combining three arbitrary vec-
tors of probabilities with vector functions, then
reducing them to a scalar function. An example
feature is var(unigram_probs > ada_probs -
davinci_probs). This approach defines a struc-
tured search space, in which only a limited set of
easily interpretable features are used as input to our
classification model. We provide more details on
the implementation and outputs of the algorithm in
Appendix C. For a version of Ghostbuster trained
on each dataset, we ran forward feature selection
to find the best features, as listed in Appendix E.

4.3 Classifier Training

Ghostbuster’s classifier was trained on combi-
nations of the probability-based features chosen
through structured search, as well as seven addi-
tional features (Appendix D) based on word length
and the largest token probabilities. These addi-
tional features are intended to incorporate qualita-
tive heuristics observed about AI-generated text.

The classifier itself is a logistic regression clas-
sifier trained with L2 regularization and setting
C = 1 that takes in these features and those chosen
through structured search (Section 4.2).

5 Baselines

We evaluated Ghostbuster’s performance relative to
multiple existing methods, including unsupervised

and supervised detectors, and conducted human
evaluation to validate task difficulty.

We compared our model to DetectGPT (Mitchell
et al., 2023), an unsupervised method that gener-
ates random perturbations of the text from a generic
LM to detect AI-generated text, then gets proba-
bilities of the original text and perturbations from
the model that might have generated the text. How-
ever, DetectGPT is known to perform poorly when
the scoring and target models differ, making it less
suitable for detection of text generated from com-
mercial models like ChatGPT or Claude that do
not surface token probabilities. Following the im-
plementation in Mitchell et al. (2023), we used
GPT-2 XL as the scoring model for DetectGPT. We
also compared with GPTZero (Tian, 2023), a com-
mercial model that uses a mixture of approaches,
including supervised training, perplexity, variance
in perplexity, and internet search. Because nei-
ther DetectGPT nor GPTZero are trained on our
datasets, their in-domain and OOD results do not
differ, and the generalization experiments provide
the fairest comparison to Ghostbuster. For both
DetectGPT and GPTZero, we also performed ora-
cle thresholding, where we set the distributions of
predicted labels to match those of our test sets for
a fairer comparison. However, we did not perform
oracle thresholding on the precision-only evalua-
tion in Section 9, since it would trivially result in
perfect accuracy. We also did not perform oracle
thresholding on Ghostbuster or any of the super-
vised baselines discussed below.

Our simplest supervised baseline is a linear clas-
sifier trained only on the perplexities of human-
authored and AI-generated documents, as mea-
sured by davinci; this classifier learns a single
threshold parameter based on its training set. In ad-
dition, we fine-tuned a supervised RoBERTa-based
model on the same data, similar to the RoBERTa-
based approaches in Uchendu et al. (2020), Guo
et al. (2023), and Chen et al. (2023). We employed
roberta-large with a logistic regression head,
and fine-tuned with early stopping.

Human Evaluation We collected human anno-
tations to validate the difficulty of our datasets
and provide a human baseline. Six undergraduate
and PhD students with previous experience using
text generation models were given a random set of
50 documents, evenly sampling human-authored
and AI-generated documents, and asked to label
whether the documents were written by a human or



In-Domain Out-of-Domain

Model All
Domains

News Creative
Writing

Student
Essays

News Creative
Writing

Student
Essays

Perplexity only 81.5 82.2 84.1 92.1 71.9 49.0 93.4
DetectGPT 57.4 56.6 48.2 67.3 56.6 48.2 67.3
GPTZero 93.1 91.5 93.1 83.9 91.5 93.1 83.9
RoBERTa 98.1 99.4 97.6 97.4 88.3 95.7 71.4
Ghostbuster 99.0 99.5 98.4 99.5 97.9 95.3 97.7

Table 2: Results of our model across a variety of text domains (F1). We first trained and evaluated Ghostbuster
on each of three domains individually (news, creative writing, or student essays); in the “All Domains” condition,
Ghostbuster was trained and evaluated on all three domains at once. For each out-of-domain setting, Ghostbuster was
trained on two domains and evaluated on one held-out domain. Because DetectGPT and GPTZero are unsupervised
methods, their performance does not differ across the in-domain and out-of-domain conditions. Out-of-domain
performance therefore yields the fairest comparison across models.

AI. The average human accuracy was 59% (max-
imum = 80%, minimum = 34%), suggesting that
our task is difficult for humans. We then collected
additional data via an interface for human eval-
uation, available at https://ghostbuster.app/
experiment. Through this interface, a total of 233
participants contributed by labeling whether doc-
uments were written by a human or AI; of these,
17 participants made at least 25 guesses. Among
these 17, the average accuracy (in balanced class
binary classification) was 58.1 ± 11.1% (maximum
= 82.0%, minimum = 39.7%).

6 Results

6.1 In-domain Classification

We first evaluated Ghostbuster in-domain, where
we trained and classified on the same domain (Ta-
ble 2, left). We found that Ghostbuster achieves
99.0 F1 across all three datasets, outperforming
GPTZero by a margin of 5.9 F1 and DetectGPT
by 41.6 F1. DetectGPT’s weak performance was
not unexpected, however, as Mitchell et al. (2023)
reported that accuracy degrades significantly when
the scoring and target models differ. While our
RoBERTa baseline achieved an impressive 98.1 F1
when evaluated in-domain on all datasets, it per-
formed inconsistently in our generalization experi-
ments, as discussed in the following sections.

6.2 Generalization Across Domains

We also found that Ghostbuster’s performance
gains over previous models are robust with re-
spect to the similarity of the training and testing
datasets. While Ghostbuster outperformed previ-
ous approaches when evaluating and training on
the same domain, we note that this comparison

is potentially unfair since these datasets are out-
of-domain for GPTZero and DetectGPT. Table 2
(right) provides results on evaluating Ghostbuster
out-of-domain (evaluated on one domain, trained
on all other domains). When evaluated out-of-
domain, Ghostbuster achieved 97.0 F1 averaged
across all conditions, outperforming DetectGPT
by 39.6 F1 and GPTZero by 7.5 F1. Ghostbuster
outperformed the RoBERTa baseline on all do-
mains except creative writing out-of-domain, and
RoBERTa had much worse out-of-domain perfor-
mance on average (13.8 F1 margin). We also eval-
uated on non-native English data; performance
dropped on one dataset, though this may be largely
due to shorter document length (see Section 9).

6.3 Generalization Across Prompts
We also evaluated Ghostbuster’s robustness to
changes in prompts, finding that its performance
is maintained when different prompts are used to
generate training and evaluation data (Table 3).
For each domain, we wrote five different prompts
intended to capture natural variation in language
model prompting strategies across users, as well
as specific stylistic requests users might make to
avoid detection, such as asking a model to write
in the style of a high-school student. Ghostbuster
achieved 99.5 F1 across prompt variants, compared
to 97.4 F1 for RoBERTa and 96.1 F1 for GPTZero.
These results suggest that Ghostbuster’s perfor-
mance is not hindered by stylistic or semantic shifts
induced by the variations in prompting strategies.

6.4 Generalization Across Models
In addition to providing out-of-domain results
when generalizing across domains and prompting
strategies, we also evaluated Ghostbuster’s abil-

https://ghostbuster.app/experiment
https://ghostbuster.app/experiment


Model Prompts (F1) Claude (F1) Lang8 (Acc.) TOEFL 11 (Acc.) TOEFL 91 (Acc.)

Perplexity only 85.3 84.1 98.6 98.1 13.2
DetectGPT 70.8 64.2 98.6 100.0 63.7
GPTZero 96.1 75.6 99.2 100.0 92.3
RoBERTa 97.4 87.8 98.6 98.1 96.7
Ghostbuster 99.5 92.2 95.5 99.9 74.7

Table 3: Additional generalization results. We evaluated model performance across a variety of prompting strategies
(example prompts in Table 8). We also evaluated our model’s ability to detect essays generated by Claude. Finally,
we evaluated the model accuracy on a set of three datasets of text written by non-native English speakers. For all
conditions, we trained the RoBERTa and Ghostbuster models on all three domains of human and ChatGPT-written
text; we applied oracle thresholding on the DetectGPT and GPTZero models only for the prompt and model
generalization experiments. For generalization across models and prompts, we report F1; for the non-native English
speaker data, we report accuracy (equivalent to precision, since there is no corresponding AI-generated text).

In-Domain Out-of-Domain

Ablation All
Domains

News Creative
Writing

Student
Essays

News Creative
Writing

Student
Essays

Handcrafted features only 80.5 79.6 78.2 83.6 75.8 77.2 77.2
Limited search (depth = 1) 93.7 96.9 89.6 93.9 93.7 81.3 87.3
Limited search (depth = 2) 98.3 98.1 98.1 98.8 95.9 95.2 93.1
Further search (depth = 4) 98.3 99.5 97.8 99.4 96.4 95.8 97.7
Without ada and davinci 88.2 91.8 93.7 96.5 70.1 78.5 75.5
Without davinci 98.8 99.3 99.5 99.8 97.3 90.3 91.9
Without handcrafted features 98.9 99.0 98.9 99.5 97.8 93.4 97.4
With random features 97.8 98.7 97.3 99.4 94.3 93.1 94.3
Ghostbuster (full model) 99.0 99.5 98.4 99.5 97.9 95.3 97.7

Table 4: Model ablations (F1). We first evaluated the performance of Ghostbuster using only handcrafted features,
without the structured search procedure defined in Section 4.2. We also experimented with only allowing one or
two operations during structured search, effectively limiting the space of potential features. Finally, we evaluated
the performance of our model without access to ada and/or davinci, or without access to any of the handcrafted
features, finding that a model which uses only n-gram and ada features (i.e., the without davinci condition) nearly
matched the performance of our full model.

ity to generalize to different target models. Ta-
ble 3 provides results when evaluating on a Claude-
generated dataset. Although Ghostbuster outper-
formed all other tested approaches with 92.2 F1,
the 6.8 F1 decrease in Ghostbuster’s performance
on Claude data suggests that generalization to dif-
ferent models without training on data from them
remains a more challenging task.

7 Analysis

To understand the performance of Ghostbuster in
more depth, we performed ablations that suggest
the structured search and use of probabilities from
a neural LLM are crucial to performance (Sec-
tion 7.1). We also ran experiments on robustness to
editing essays under different perturbations, finding
that most global edits do not significantly affect per-
formance and numerous local edits are required to
fool the model. Analyzing performance on shorter
documents, we found that Ghostbuster’s perfor-

mance improved with document length, and was
generally more reliable on documents with more
than 100 tokens.

7.1 Ablations

We conducted multiple ablations to understand the
role of the depth of structured search over features,
probabilities from different models, and type of
features used (structured search or handcrafted) on
model performance. We observed that conducting
structured search with depth lower than 3 tends to
underfit the data, whereas performance plateaus
or degrades for search depths greater than 3 (Ta-
ble 4). In addition, we saw that omitting the us-
age of davinci results in out-of-domain general-
ization performance decreasing by 0.6 to 5.8 F1.
This suggests that incorporating token probabil-
ities from a model closer in quality to the target
model improves generalization. Training the model
without ada and davinci probabilities (i.e., using
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Figure 3: Robustness experiments on Ghostbuster (F1). We evaluated the performance of our system on documents
that underwent a number of character- and word-level perturbations (left) as well as sentence- and paragraph-level
perturbations (right). We describe the details of these perturbations in Section 7.2.
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Figure 4: Model performance across document lengths,
for various domain shifts (F1). We evaluated our model
on trimmed documents. Our model predictably per-
formed better on longer documents, whether evaluated
in-domain or out-of-domain. We note that Ghostbuster
may be unreliable for documents with ≤ 100 tokens,
and its performance levels off with ≥ 500 tokens.

unigram and trigram features only) resulted in per-
formance decreases of up to 10.8 F1 in-domain
and 27.8 F1 out-of-domain, highlighting the impor-
tance of probabilities from a neural LLM for model
performance, and particularly generalization per-
formance. We also observed that while in-domain
performance remains similar without handcrafted
features, generalization performance decreases by
0.1 to 2.9 F1, suggesting that the handcrafted fea-
tures play a more limited role in preventing overfit-
ting. By contrast, removing the structured search
features and training on only the handcrafted fea-
tures decreased performance by 15.9 to 22.1 F1,
suggesting that the structured search is crucial.

7.2 Robustness

We also ran a series of robustness experiments
in which we evaluated the performance of Ghost-
buster on modified essays, under a number of dif-
ferent perturbation functions. These experiments
were intended to determine whether our detector
can be easily evaded by simply misspelling a word
or adding nonsense tokens at the beginning of the
document. In Figure 3, we plot both local pertur-
bations (character and word-level; left) and global
perturbations (sentence or paragraph level; right).
Our local perturbations consisted of randomly (1)
adding a character, deleting a character, or swap-
ping a pair of adjacent characters; (2) adding or
removing space or newline characters; (3) capital-
izing or lowercasing letters; (4) swapping adjacent
words; and (5) replacing words with their closest
synonyms, using NLTK’s wordnet.synset imple-
mentation. Our global perturbations consisted of
(6) swapping adjacent sentences; (7) swapping adja-
cent paragraphs; (8) replacing sentences with para-
phrases; and (9) replacing paragraphs with their
paraphrases.2 In general, we found that perfor-
mance smoothly degrades when performing local
edits, and that numerous edits are typically required
to produce a false negative. Most global edits did
not significantly affect model performance, e.g.,
swapping adjacent sentences or paragraphs had a
negligible effect. However, repeated calls to a para-
phrasing model will lead to worse results. We also
experimented with the commercial detection evader
Undetectable AI (see Appendix C), finding that re-
call degraded from 99% to 62%. While targeted

2We used https://huggingface.co/tuner007/
pegasus_paraphrase as the paraphrase model.

https://huggingface.co/tuner007/pegasus_paraphrase
https://huggingface.co/tuner007/pegasus_paraphrase


attacks like these may lead to more misclassifica-
tions than random perturbations on the input, we
find that sites like Undetectable AI still fool our
model less than half of the time. Full details of this
experiment are available in Appendix C.

7.3 Non-Native English Speaker Data

Liang et al. (2023) sampled 91 TOEFL3 essays and
found that more than half of the essays were mis-
classified as AI-generated by seven GPT-generated
text detectors. We evaluated Ghostbuster’s per-
formance on three datasets of non-native English
speaker data: the TOEFL 11 dataset (Blanchard
et al., 2013), the 91 TOEFL essays that (Liang et al.,
2023) tested on, and the Lang8 dataset (Mizumoto
et al., 2011) (details in Appendix B).

We found that all tested models had over 95%
accuracy, but experienced significant performance
drops on the 91 TOEFL essays from previous work.
This may be partly due to the fact that the 91
TOEFL essays are significantly shorter (median
104 words) than the TOEFL 11 essays (median 315
words) and our other datasets (all above median
350 words). Ghostbuster also experienced some
performance drop on the Lang8 dataset, which also
consists of shorter documents (median Lang8 docu-
ment length is 77 words). This performance is sim-
ilar to Ghostbuster’s out-of-domain performance
on documents of similar length: performance on
out-of-domain documents with 100 words ranged
from 75.6 to 93.1 F1, compared to 74.7 F1 for the
91 TOEFL essays. This suggests that the perfor-
mance drop on the 91 TOEFL essays and on Lang8
can be largely, though not entirely, attributed to the
challenge of classifying shorter documents.

7.4 Performance Across Document Lengths

Previous work has shown that AI-generated text
detectors perform better on longer documents (e.g.,
Solaiman et al., 2019; Chakraborty et al., 2023).
We replicated this finding by training Ghostbuster
on full-length documents and running it on doc-
uments trimmed to N tokens, for each value of
N ∈ [10, 25, 50, 100, 250, 500, 1000]. We found
that document length had a similar effect on both
in-domain and out-of-domain performance (Fig-
ure 4). In line with prior work, we found model
performance degraded substantially on documents
with ≤ 100 tokens, making it difficult to deter-

3Test of English as a Foreign Language, an exam taken
by non-native speakers of English to attend English-speaking
universities.

mine whether individual paragraphs of documents
were generated by language models. To encour-
age future work on this issue, we propose an ad-
ditional paragraph-level detection benchmark in
Appendix F.

8 Conclusion

We introduced Ghostbuster, a model for detect-
ing AI-generated language that uses structured
search on token probabilities from weaker mod-
els to identify whether a given document was AI-
generated. We validated Ghostbuster by evalu-
ating its performance on datasets from three do-
mains (news, student essays, and creative writing),
as well as through generalization experiments on
text generated by different models and using dif-
ferent prompts. We also release our three datasets
as benchmarks for evaluating performance on de-
tecting AI-generated text. Ghostbuster achieved
over 98.4 F1 across all datasets on in-domain detec-
tion of AI-generated text, representing substantial
progress over currently available models.

Future work could examine tradeoffs between
the false positive and false negative rates of AI-
generated text detectors for different applications.
For detection of AI-generated student essays, low-
ering the risk of false positives is a key priority
to avoid false accusations of student misconduct.
In other settings, however, false positives are less
concerning. For example, if detectors are used
to prevent AI-generated text from being used in
language model training data, or to flag poten-
tially AI-generated content on the web, the ideal
model calibration may differ. Other avenues for
future work include improving robustness to per-
turbations of AI-generated outputs, such as lightly
editing to avoid detection, and different task formu-
lations, including detection at the paragraph level
for documents that combine human-authored and
AI-generated text. Finally, future AI-generated text
detectors could provide additional explanations for
classification decisions, so that human users can
use their own judgment when evaluating the deci-
sions of these systems.



9 Ethics and Limitations

We trained and evaluated Ghostbuster on three
datasets that represent a range of domains, but
note that these datasets are not representative of
all writing styles or topics and contain predomi-
nantly British and American English text. Thus,
incorrect predictions by Ghostbuster may be partic-
ularly likely for text that represents a distributional
shift from Ghostbuster’s training. Issues relating
to improving model performance on shorter text, a
broader range of domains, varieties of English be-
sides American and British English, and robustness
to edits are important areas for future work.

More broadly, users wishing to apply Ghost-
buster to real-world cases of potential off-limits
usage of text generation (e.g., identifying ChatGPT-
written student essays) should be aware that incor-
rect predictions by Ghostbuster may be particularly
likely for shorter text, domains further from those
on which Ghostbuster was trained (e.g., text mes-
sages), text in varieties of English besides Standard
American or British English, or in non-English
languages, text written by non-native speakers of
English, AI-generated text that has been edited or
paraphrased by a human, and text that was gen-
erated by prompting an AI model to paraphrase
or adjust a human-authored input. To avoid per-
petuation of algorithmic harms due to these lim-
itations, we strongly discourage incorporation of
Ghostbuster into any systems that automatically
penalize students or other writers for alleged usage
of text generation without human supervision. In-
stead, we recommend cautious use of Ghostbuster,
in conjunction with human supervision and ad-
ditional factors, if classifying a person’s writing
as AI-generated could harm that person. Ghost-
buster can also be used for a variety of lower-risk
applications, including filtering AI-generated text
out of language model training data and checking
whether potential online sources of information are
AI-generated.
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A Prompting and Dataset Details

For the news and creative writing datasets, we
first prompted the model to generate a headline
or writing prompt, respectively, before generating
the documents themselves from those prompts. Ta-
ble 7 gives the full prompting strategy for the orig-
inal prompts. Table 8 gives all the generalization
prompts used by dataset. Table 5 gives details on
training dataset sizes and splits, and Table 6 pro-
vides details on additional evaluation datasets used
to evaluate the performance of our model on docu-
ments written by non-native English speakers.

B Non-Native English Speaker Data
Descriptions

The TOEFL 11 dataset contains university-level
essays written on the TOEFL exam, with an even
number of essays by authors whose first languages
(L1s) were Arabic, Chinese, French, German,
Hindi, Italian, Japanese, Korean, Spanish, Telugu,
and Turkish. (Liang et al., 2023)’s 91 TOEFL es-
says were drawn from a Chinese educational forum.
The Lang8 dataset contains data from an online fo-
rum used by language learners from a range of
countries, and particularly from Japan. We evalu-
ated Ghostbuster’s out-of-the-box performance on
1,000 examples from each of the Lang8 and TOEFL
11 datasets, as well as the 91 TOEFL essays from
(Liang et al., 2023).

C Additional Implementation Details

Feature Selection Algorithm In Algorithm 1,
we describe the algorithm used to compute all pos-
sible features. We perform a brute-force approach,
pruning out features which apply the same function
twice. For each depth d, we consider all possible
combination of d−1 vector functions, then append
all scalar functions on top.

Unigram and Trigram Models In order to ob-
tain vectors of identical length, the unigram and
trigram models are both trained over the GPT-3 tok-
enizer vocabulary, without UNKing; the Kneser-Ney
model uses a discount factor of δ = 0.9 for back-
off to both the bigram and unigram fertility model.
The unigram and trigram models were both trained
using counts from the Brown Corpus (Francis and
Kucera, 1979).

Pruning Candidate Features While the algo-
rithm presented in Algorithm 1 produces equivalent

results to our implementation, we make a simple
additional optimization. Because many vector func-
tions in Table 1 are commutative, we prune our list
of possible vector combinations to avoid double-
counting. This pruning results in around a 2/3rd
reduction in the feature space. At a search depth of
3, we have 2534 available features to select from; at
a search depth of 2, we have 322 available features.

Undetectable.ai We ran additional robustness ex-
periments using the commercial detection evader
service https://undetectable.ai. We ran-
domly selected 100 AI-generated essays across
each of the three domains (news, fiction, and stu-
dent essays) and fed them into the Undetectable
API. For documents from the writing prompts
dataset, we use the university readability setting
and the story purpose; for documents from the
Reuters dataset, we use the journalist readability
setting and the article purpose; and for the stu-
dent essay dataset, we use the high school read-
ability setting and the essay purpose. We use the
balanced setting across all three datasets, which
controls the extent of text modification.

D Additional Features

Ghostbuster uses the following handcrafted fea-
tures in addition to those chosen through feature
selection:

• Number of outliers (pi > 10), average value
of top 25 and 25-50th largest token probabili-
ties

• Average value of the 25 largest and 25-50th

largest token probabilities of the vector d− a,
where d is a vector of davinci token proba-
bilities and a is a vector of ada token proba-
bilities.

• Average length of the 25 longest and 25-50th

longest words, measured in tokens.

E Best Features

In Figure 5, we present the best features chosen
through validation on each of the datasets. For a
list of functions and features used, refer to Table 1.

F Additional Benchmarks

Whether detection of AI-generated text is a trivial
or intractable task depends greatly on the framing
of the problem. Generated text that contains hu-
man paraphrases or was generated from particularly

https://undetectable.ai


Domain Human Text Source # Docs Median Words per Document

Human
(1,000 docs)

ChatGPT
(5,000 docs)

Claude
(1,000 docs)

Student Essays IvyPanda (IvyPanda) 7,000 529 559 442
News Articles Reuters 50-50 (Houvardas

and Stamatatos, 2006)
7,000 498 510 384

Creative Writing r/WritingPrompts 7,000 455 512 384

Table 5: Datasets introduced in this paper. For each domain, the 5,000 ChatGPT-generated documents are divided
into 1,000 documents from the same prompt, and a 4,000-document “generalization set” that used different prompts
to evaluate generalization. For each domain, 1,000 human-authored documents and the 1,000 ChatGPT-generated
documents that used the same prompt were split into train, validation, and test sets used by Ghostbuster. The
ChatGPT-generated generalization set and the Claude-generated articles were used only for evaluation of Ghostbuster,
not training.

Source # Docs Median Words per Document

Lang8 (Mizumoto et al., 2011) 1,000 77
TOEFL 11 (Blanchard et al., 2013) 1,000 315
TOEFL from (Liang et al., 2023) 91 104

Table 6: Non-native English datasets evaluated on in this paper. For these datasets, only the original human data
was evaluated on (no parallel data was generated).

clever prompts is especially difficult to detect with
machine learning methods (Sadasivan et al., 2023).
However, trained humans have consistently been
able to spot ChatGPT’s style (Guo et al., 2023).

We introduce benchmarks for several framings
of the detection task, with ascending levels of dif-
ficulty: author identification, detecting whether a
document was AI-generated or written by a single
author, given a history of documents by that au-
thor; document-level detection, detecting whether
a full document was AI-generated; and paragraph-
level detection, detecting which paragraphs in a
document were AI-generated.

These tasks are motivated by real-world appli-
cations of these detectors. For example, when
questioning whether a student assignment was AI-
generated, instructors often have access to previ-
ous work by that student; document-level detec-
tion may be useful when instructors do not have
access to a history of student writing, or cannot
verify that students did not include AI-generated
text in previous assignments; and paragraph-level
detection is useful when, as is often the case, AI
assistance was only used for portions of the as-
signment. Although the modeling work in the
main body of our paper focuses only on document-
level detection, we will release these additional

benchmarks as a testbed for future work at https:
//github.com/vivek3141/ghostbuster-data/

G Qualitative Analysis of Trends in
Token Probabilities

In this section, we visualize a subset of the vec-
tors fed into our model, motivated by Verma et al.
(2023). For each document in a given domain, we
plot the average per-token probability across docu-
ments in the dataset. For instance, at token position
i, we compute the value

f(i) =
1

|W |
·
∑
w∈W

logPθ(wi)

where w denotes a document in an article W ,
wi denotes the ith token in that document and
Pθ(wi) = Pθ(wi | wi−1, ..., w1) is the conditional
probability given by GPT-3. We refer to the trend
of f(i) as entropy rate, although we note that this
definition differs from the classic definition of en-
tropy rate in information theory.

As shown in Figure 6, both human documents
and ChatGPT documents follow a similar trend to
the one described in Verma et al. (2023), with a
sharp decline towards the beginning of documents,
followed by a gradual decline or a plateau towards
the end of the document. Furthermore, we observe

https://github.com/vivek3141/ghostbuster-data/
https://github.com/vivek3141/ghostbuster-data/


Dataset Prompting
Strategy

Prompt

Creative writing Generate story Write a story in {length} words to the
prompt: {prompt}

News Articles
(1) Generate title Create a headline for the following news

article: {doc}
(2) Generate
article

Write a news article in {length} words
with the following headline {headline}.

Student Essay
(1) Generate
prompt

Given the following essay, write a prompt
for it: {doc}

(2) Generate essay Write an essay in {length} words to the
prompt: {prompt}

Table 7: Prompts used to generate documents in each of the three proposed datasets. Ground truth prompts are
available for the r/WritingPrompts data but not for the news or student essay domains, so we use ChatGPT to first
generate a corresponding prompt or headline based on the original human-written article and then generate an entire
article based solely on the generated prompt in these domains.

max(ada / unigram + ada)
var(davinci / ada - davinci)
avg(unigram > trigram > davinci)
avg(unigram + trigram < davinci)
var(unigram * davinci)
avg-25(unigram - ada > davinci)
avg-25(unigram - davinci / unigram)

Stories News Essay

avg(ada > davinci / trigram)
avg(davinci)
var(trigram > davinci)
avg(unigram / ada > davinci)

avg-25(ada > davinci / trigram)
var(ada - davinci)
avg(trigram / ada > davinci)
var(unigram > ada - davinci)
avg(unigram > trigram + ada)

Figure 5: A list of features selected when performing forward feature selection on each of the three domains. We
show in Table 4 that these features lead to significantly better performance than using randomly chosen features or
classifying based on our set of manually-selected features alone.

that documents written by ChatGPT tend to be
more predictable than human written documents,
but the gap between human and ChatGPT docu-
ments increases towards the end. We believe that
this trend provides an example of the type of dis-
tributional difference that Ghostbuster may be able
to leverage during classification.
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Figure 6: Entropy rate of Writing Prompts, Reuters and IvyPanda under GPT-3 (Ada and Davinci). We notice that
entropy values sharply decline towards the beginning, with a plateau or slight decline towards the end. We also
notice that ChatGPT documents tend to be more predictable than human documents, but this difference is more
pronounced towards the end of documents.



Dataset Student Essays News Articles Creative Writing

Original
Prompt

Write an essay in
{length} words to
the prompt:
{prompt}

Write a news
article in {length}
words with the
following headline
{headline}.

Write a story in
{length} words to
the prompt:
{prompt}

Generalization
Prompt 1

You are a student,
who is writing an
essay in response
to the prompt
{prompt}. What
would you write in
{length} words?

You are a news
reporter, who is
writing an article
with the headline
{headline}. What
would you write in
{length} words?

You are an author,
who is writing a
story in response
to the prompt
{prompt}. What
would you write in
{length} words?

Generalization
Prompt 2

Hi! I’m trying to
write a
{length}-word essay
based on the
following prompt:
{prompt}. Could you
please draft
something for me?

Hi! I’m trying to
write a
{length}-word news
article based on
the following
headline:
{headline}. Could
you please draft
something for me?

Hi! I’m trying to
write a
{length}-word story
on the following
prompt: {prompt}.
Could you please
draft something for
me?

Generalization
Prompt 3

Write a
{length}-word essay
in the style of a
high-school student
in response to the
following prompt:
{prompt}.

Write a
{length}-word news
article in the
style of a New York
Times article based
on the headline
{headline}.

Write a
{length}-word story
in the style of a
beginner writer in
response to the
prompt {prompt}.

Generalization
Prompt 4

Write an essay with
very short
sentences in
{length} words to
the prompt
{prompt}.

Write a news
article with very
short sentences in
{length} words
based on the
headline
{headline}.

Write a story with
very short
sentences in
{length} words to
the prompt
{prompt}.

Table 8: Full set of prompts used to produce paired ChatGPT-generated data. We set length equal to the number
of words in the human-authored example rounded to the nearest 100, and prompt with the prompt or headline
corresponding to each story. This approach is intended to prevent document length or content effects from
trivializing the detection task. In the student essay and news domains, we follow the procedure described in Table 7
in Appendix A to obtain the prompts or headlines used to generate articles.
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