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Types of information:

Labeled examples (specific) [standard supervised learning]

Constraints (general) [Chang, et al., 2007; Druck, et al., 2008]
Measurements: our unifying framework

Outline:

1. Coherently learn from diverse measurements
2. Actively select the best measurements
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Set o to reveal various types of information about Y through 7
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Fully-labeled example:
oi(x,y) =1z = View of Los ...,y =™ * * .. ]

Partially-labeled example:

oi(x,y) =z = View of Los ...,y1 = *]
Labeled predicate:
oj(z,y) = 2 1zi = View, y; = |
Label proportions:
oj(z,y) =2 ; Iy =~
Label preference:
oi(x,y) = ). lly; = FEAT] — I[y; = AVAIL]
Can get measurement values 7 without looking at all examples

Next: How to combine these diverse measurements coherently?
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Bayesian framework:
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Exponential families:
po(y | ©) = exp{{o(x,y),0) — A(0;x)}

o(z,y) € R model features

H € R* model parameters
A0y ) = [ exp{{o(x,y),0)}dy: log-partition function
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Learning via Bayesian inference

Goal: compute p(0,Y | 7, X) >@

Variational formulation:

min KL (q(Y,0) || p(6,Y | 7, X))
q€Qyy¢

Approximations:
® Oy¢: mean-field factorization of ¢(Y") and degenerate 6

e KL: measurements only hold in expectation (w.r.t. q(Y))
Algorithm:

Apply Fenchel duality — saddlepoint problem

Take alternating stochastic gradient steps
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Information geometry viewpoint

(assume zero measurement noise)

0= {q(y | ) : Eglo] = 7} PE {poly | z) : 6 € R}

n_ KL
i KL (a]lp)

Interpretation:
Measurements shape O Find model in P with best fit

Two ways to recover supervised learning:
1. Measure 0 = ¢: P N Q is the unique solution
2. Measure 0 = {l|lx = a,y = b }:
Q = {empirical distribution}, project onto P
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x
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n

Guidelines:

To set o, consider human (e.g., full labels)
To set ¢, consider statistical generalization (e.g., word suffixes)

Intuition: consider feature f(x,y) =1z € A,y = 1]

If f is a measurement feature (direct):

“inputs in A should be labeled according to 7"
If f is a model feature (indirect):

“inputs in A should be labeled similarly”
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Results on the Craigslist task

n = 1000 total examples (ads), 11 possible labels
Model:

Conditional random field with standard NLP features
Measurements:

o fully-labeled examples
e 33 labeled predicates (e.g., > . I|z; = View,y; = FEAT])
Per-position test accuracy (on 100 examples):

# labeled examples 10 25 100
General Expectation Criteria | 74.6 77.2 80.5
Constraint-Driven Learning | 74.7 78.5 81.7
Measurements 714 765 82.5

Able to integrate labeled examples and predicates gracefully




So far: given measurements, how to learn

Next: how to choose measurements?
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What do we do with an (approximate) posterior p(6,Y | X, 7)7?

Bayes-optimal predictor:

average over X', max over Y’, average over Y’ of reward

R(o,7) = expected reward of Bayes-optimal predictor

(i.e., how happy we are with the given situation)
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Experimental design (active learning)

%a

n

Utility of measurement (o, 7):

U(o,7) = R(o,7) —Q(Q

reward cost

When considering o, don't know 7, so integrate out:
U(o) = Epi-1x)|U(0, 7))
Choose best measurement feature o:

o* = argmax_ U(o)
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