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y: feat feat feat feat feat ...

x: View of Los Gatos Foothills ...

avail avail avail ... size size size size ...

Available July 1 ... 2 bedroom 1 bath ...

Types of information:

Labeled examples (specific) [standard supervised learning]
Constraints (general) [Chang, et al., 2007; Druck, et al., 2008]
Measurements: our unifying framework

Outline:

1. Coherently learn from diverse measurements
2. Actively select the best measurements
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... ...
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... ...
σ( Xn , Yn )

+ noise

+ τ

Measurement features: σ(x, y) ∈ Rk

Measurement values: τ ∈ Rk

τ =
n∑

i=1

σ(Xi, Yi) + noise

Xi

Yi
n

τ

Set σ to reveal various types of information about Y through τ
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Partially-labeled example:

σj(x, y) = I[x = View of Los ..., y1 = *]
Labeled predicate:

σj(x, y) =
∑

i I[xi = View, yi = *]
Label proportions:

σj(x, y) =
∑

i I[yi = *]
Label preference:

σj(x, y) =
∑

i I[yi = feat]− I[yi = avail]
Can get measurement values τ without looking at all examples

Next: How to combine these diverse measurements coherently?
4



Prediction model

Bayesian framework:

Xi

Yi
n

τ

5



Prediction model

Bayesian framework:

θ

Xi

Yi
n

τ

5



Prediction model

Bayesian framework:

θ

Xi

Yi
n

τ

Exponential families:

pθ(y | x) = exp{〈φ(x, y), θ〉 −A(θ;x)}

5



Prediction model

Bayesian framework:

θ

Xi

Yi
n

τ

Exponential families:

pθ(y | x) = exp{〈φ(x, y), θ〉 −A(θ;x)}

φ(x, y) ∈ Rd: model features

5



Prediction model

Bayesian framework:

θ

Xi

Yi
n

τ

Exponential families:

pθ(y | x) = exp{〈φ(x, y), θ〉 −A(θ;x)}

φ(x, y) ∈ Rd: model features

θ ∈ Rd: model parameters

5



Prediction model

Bayesian framework:

θ

Xi

Yi
n

τ

Exponential families:

pθ(y | x) = exp{〈φ(x, y), θ〉 −A(θ;x)}

φ(x, y) ∈ Rd: model features

θ ∈ Rd: model parameters
A(θ;x) =

∫
exp{〈φ(x, y), θ〉}dy: log-partition function
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Variational formulation:

min
q∈QY θ

KL (q(Y, θ) || p(θ, Y | τ,X))

Approximations:

• QY θ: mean-field factorization of q(Y ) and degenerate θ̃

• KL: measurements only hold in expectation (w.r.t. q(Y ))

Algorithm:

Apply Fenchel duality → saddlepoint problem

Take alternating stochastic gradient steps
6



Information geometry viewpoint

(assume zero measurement noise)

P def= {pθ(y | x) : θ ∈ Rd}

7



Information geometry viewpoint

(assume zero measurement noise)

Q def= {q(y | x) : Eq[σ] = τ} P def= {pθ(y | x) : θ ∈ Rd}

7



Information geometry viewpoint

(assume zero measurement noise)

Q def= {q(y | x) : Eq[σ] = τ} P def= {pθ(y | x) : θ ∈ Rd}

min
q∈Q,p∈P

KL (q || p)

7



Information geometry viewpoint

(assume zero measurement noise)

Q def= {q(y | x) : Eq[σ] = τ} P def= {pθ(y | x) : θ ∈ Rd}

min
q∈Q,p∈P

KL (q || p)

Interpretation:

Measurements shape Q Find model in P with best fit

7



Information geometry viewpoint

(assume zero measurement noise)

Q def= {q(y | x) : Eq[σ] = τ} P def= {pθ(y | x) : θ ∈ Rd}

min
q∈Q,p∈P

KL (q || p)

Interpretation:

Measurements shape Q Find model in P with best fit

Two ways to recover supervised learning:

1. Measure σ = φ: P ∩Q is the unique solution

7



Information geometry viewpoint

(assume zero measurement noise)

Q def= {q(y | x) : Eq[σ] = τ} P def= {pθ(y | x) : θ ∈ Rd}

min
q∈Q,p∈P

KL (q || p)

Interpretation:

Measurements shape Q Find model in P with best fit

Two ways to recover supervised learning:

1. Measure σ = φ: P ∩Q is the unique solution

2. Measure σ = {I[x = a, y = b]}:
Q = {empirical distribution}, project onto P
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Model features φ versus measurement features σ

θ
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τ

φ σ

Guidelines:

To set σ, consider human (e.g., full labels)
To set φ, consider statistical generalization (e.g., word suffixes)

Intuition: consider feature f(x, y) = I[x ∈ A, y = 1]
If f is a measurement feature (direct):

“inputs in A should be labeled according to τ”
If f is a model feature (indirect):

“inputs in A should be labeled similarly”
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n = 1000 total examples (ads), 11 possible labels

Model:

Conditional random field with standard NLP features

Measurements:

• fully-labeled examples

• 33 labeled predicates (e.g.,
∑

i I[xi = View , yi = feat])

Per-position test accuracy (on 100 examples):

# labeled examples 10 25 100
General Expectation Criteria 74.6 77.2 80.5
Constraint-Driven Learning 74.7 78.5 81.7
Measurements 71.4 76.5 82.5

Able to integrate labeled examples and predicates gracefully
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So far: given measurements, how to learn

Next: how to choose measurements?
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What do we do with an (approximate) posterior p(θ, Y | X, τ)?

Bayes-optimal predictor:

average over X ′, max over Ŷ ′, average over Y ′ of reward

R(σ, τ) = expected reward of Bayes-optimal predictor

(i.e., how happy we are with the given situation)
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U(σ, τ) = R(σ, τ)︸ ︷︷ ︸

reward

−C(σ)︸ ︷︷ ︸
cost

When considering σ, don’t know τ , so integrate out:

U(σ) = Ep(τ |X)[U(σ, τ)]

Choose best measurement feature σ:

σ∗ = argmaxσ U(σ)
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