
Variational Inference for Structured
NLP Models: Quick Reference	

NAACL-HLT, June 3, 2012	

David Burkett and Dan Klein	

(full slides available at http://nlp.cs.berkeley.edu/tutorials)	

	

Models	

•  All models we discuss can be represented as
discrete Markov Random Fields	

•  We use factor graph notation, explicitly
separating variables and factors	

Ternary	
 Factor	

Binary Factor	

Unary Factor	

Variable	

Notation	

•  Variables take values 	

•  Model output:	

•  Cliques are sets of variable indices: ���
	

•  Factors map partial variable assignments to real
numbers:	

•  Probabilities are proportional to the product of
all factors:	

Yi yi
y = [y1, . . . , yi, . . . , yn]

c = {c1, c2, . . . , ck}

�c(yc1 , . . . , yck)

P (y) /
Y

c

�c(yc1 , . . . , yck)

Abuse of Notation	

•  For brevity, we will typically drop subscripts on
potentials, for example writing���
to mean: ���
���
	

•  It should always be clear from context which
potential function is meant	

�(y1, y3, y5)

�{1,3,5}(Y1 = y1, Y3 = y3, Y5 = y5)

Models: Examples	

•  Generative HMM (with observed)	

…	

…	

Observed variables do not
appear in the graphical
representation of the model,
but are included in the
relevant factors	

�(yi) = p(xi|yi)

�(yi, yi+1) = p(yi+1|yi)

Example application: computing posteriors for part-of-speech
tagging, conditioned on sentence; each variable represents one tag	

Yi+1 Yi+2Yi�1 Yi

x

Models: Examples	

•  Exponential Family Chain CRF	

…	

…	

Variable features: ���
Edge features:	

Weight vector: 	

fv
fe

Example application: named entity recognition; each variable takes
the value B(egin), I(nside), or O(utside) 	

Yi+1 Yi+2Yi�1 Yi

�(yi) = exp

�
w>fv(yi)

�

�(yi, yi+1) = exp

�
w>fe(yi, yi+1)

� w

[Lafferty et al, 2001]	

Models: Examples	

•  Factorial Chain CRF	

…	

…	

…	

…	

Example application: joint models of named entity recognition and���
part-of-speech tagging	

Ai Ai+1 Ai+2Ai�1

Bi Bi+1 Bi+2Bi�1

[Sutton et al, 2004]	

Models: Examples	

•  Dependency parsing with 2nd-order features���
(not all factors shown)	

Edge factor���
(arity 1)	

Sibling factor���

(arity 2)	

(not all shown)	

Tree factor���
(arity)	

(touches all ���
 variables)	

To encode the structural constraint on dependency parses, the
tree factor is an indicator that has a value of 1 for well-formed
trees and 0 otherwise	

	

Edge variable
takes value from ���
{left, right, off}	

n(n� 1)
1

2

Yij

[Smith & Eisner, 2008]	

Mean Field Approximation	

•  General idea is to create an approximate
distribution whose parametric form is
defined by a subgraph of the original graph	

•  Example:	

– Model: ���
	

– Approximate Graph: ���
	

p(y) / �(y1)�(y2)�(y1, y2)

q

q(y) = q(y1)q(y2)

Mean Field Approximation	

•  Given the structure of , the actual
distribution is found by minimizing the KL
divergence to :	

q

p

q = argmin

q
KL(q||p)

= argmin

q

X

y

q(y) log

✓
q(y)

p(y)

◆

Mean Field Inference	

•  Mean field inference is iterative:	

1.  Pick a component of (e.g.)	

2.  Find the distribution that minimizes KL

with other components of fixed	

3.  Repeat, cycling through components of ���

until convergence	

•  Finding the appropriate update in step 2 is the
tricky part, so that is what we will focus our
attention on	

q(y1)
q(y1)

q(y)

q(y)

q(y)

Mean Field Updates	

•  For naïve mean field, where the approximate
graph contains only unary factors, the update
rule is fairly simple: ���

	

•  Here, denotes the expectation with

regard to all other components of , so this
expands to:	

q

Eq�Yi

q(yi) / exp

0

BB@
X

c:i2c

X

Yc=yc:
Yi=yi

0

BB@
Y

j2c
j 6=i

q(yj)

1

CCA log �c(yc)

1

CCA

q(yi) / exp

X

c:i2c

Eq�Yi
log �c(yc)

!

Mean Field Example Updates	

Model: ���
	

Approximate Graph: ���
���
���
	

Update:	

p(y) / �(y1)�(y2)�(y1, y2)

q(y) = q(y1)q(y2)

q(y1) / exp (Eq2 log(�(y1)�(y1, y2)))

= exp

log �(y1) +

X

y2

q(y2) log(�(y1, y2))

!

Mean Field Example Updates	

Model: 	

 	

 	

 	

 	

 	

 	

Approximate Graph: 	

	

…	

…	

…	

…	

…	

…	

…	

…	

p(y) /
Y

i

�(ai)�(bi)�(ai, bi)

�(ai, ai+1)�(bi, bi+1)

q(y) =
Y

i

q(ai)q(bi)

Ai Ai+1Ai�1

Bi Bi+1Bi�1

Ai Ai+1Ai�1

Bi Bi+1Bi�1

Mean Field Example Updates	

Update:	

q(ai) / exp

�
Eq�Ai

log(�(ai)�(ai�1, ai)�(ai, ai+1)�(ai, bi))
�

= exp

0

@
log �(ai) +

X

ai�1,ai+1,bi

q(ai�1)q(ai+1)q(bi) log(�(ai�1, ai)�(ai, ai+1)�(ai, bi))

1

A

= exp

0

@
log �(ai) +

X

ai�1

q(ai�1) log(�(ai�1, ai))+

X

ai+1

q(ai+1) log(�(ai, ai+1)) +

X

bi

q(bi) log(�(ai, bi))

1

A

Structured Mean Field	

•  In structured mean field, the subgraph defining
the family of approximate distributions is
selected by picking disjoint sets of variables to
form connected components and removing all
between-component links	

[Xing et al, 2003]	

Structured Mean Field	

•  Subgraphs are picked so that exact inference is
possible within each individual connected
component, either because the components
are small or they have a dynamic program	

•  The mean field approximation then becomes a
product of distributions over components	

•  Notation:	

– Connected components: 	

– Approximation:	

d = {d1, . . . , dm}
q(y) =

Y

d

q(yd1 , . . . , ydm)

Component-Factorizable Factors	

•  There is a simple form for structured mean field
updates, but its correctness is only guaranteed
under some additional assumptions about the
factor functions	

•  We say is component-factorizable if its log can
be broken down to a product of per-component
potentials:	

	

•  The form we will give for structured mean field

updates is correct if all factors are component-
factorizable	

�c

�c

log �c(yc) =
Y

d:c\d 6=;

 c\d(yc\d)

Component-Factorizable Factors 	

•  Note that while the component-factorizability
restriction may seem onerous, it is typically
achieved by the types of models common in
the NLP literature	

•  In particular, exponential family models where���
 , with a weight vector
and a vector of indicator features, usually
satisfy this criterion (the overall indicator is
typically a product of indicators that each
component’s requirement is satisfied)	

�c(yc) = exp(w>f(yc)) w
f(yc)

Structured Mean Field Updates	

•  Instead of iterating through variables, we
iterate over connected components, updating
each using marginals from : ���
���
���
���
���
	

q(yd) q(y�d)

pqd0 (yc\d0) is the marginal probability of under 	

yc\d0 qd0

q(yd) / exp

0

@
X

c:c\d 6=;

Eq�d
log �(yc)

1

A

= exp

0

BB@
X

c:c\d 6=;

X

Yc=yc:
Yd=yd

0

@
Y

d0:c\d0 6=;

pqd0 (yc\d0
)

1

A
log(�(yc))

1

CCA

Structured Mean Field Updates	

•  Note that the “updates” now define entire
distributions that are unlikely to ever be
enumerated explicitly	

•  In practice, the iterative inference procedure
consists of recomputing the marginal
probabilities that appear in the
definitions of the other components of	

qd

pqd(yc\d)
q(y)

Structured Mean Field Example Update	

Model: 	

 	

 	

 	

 	

 	

 	

Approximation: 	

���
���
���
���
���
���
���
	

…	

…	

…	

…	

…	

…	

…	

…	

Ai Ai+1Ai�1

Bi Bi+1Bi�1

Ai Ai+1Ai�1

Bi Bi+1Bi�1

p(y) /
Y

i

�(ai)�(bi)�(ai, bi)

�(ai, ai+1)�(bi, bi+1)

q(y) = q(a1,...,n)q(b1,...,n)

Structured Mean Field Example Update	

Update:	

Marginals ���
 are���
computed using	

forward-backward	

on 	

pqb(bi)

q(b1,...,n)

q(a1,...,n) / exp

X

i

Eqb log (�(ai)�(ai, ai+1)�(ai, bi))

!

= exp

X

i

X

b

pqb(bi) log(�(ai)�(ai, ai+1)�(ai, bi))

!

= exp

X

i

log(�(ai)) + log(�(ai, ai+1))+

X

bi

pqb(bi) log(�(ai, bi))

!

Belief Propagation	

•  A message-passing algorithm used to compute
approximate marginals	

•  Does not compute an entire approximate
distribution – the “marginals” are not
guaranteed to be consistent (i.e., marginals of
any real distribution)	

•  Gives marginals on variables and on factors
(marginals on are joint marginals on all the
variables in)	

c

�c

Messages	

•  There are two types of messages: from a
variable to a neighboring factor, or from a
factor to a neighboring variable	

•  All messages take the form of a (not
necessarily normalized) distribution over the
variable sending or receiving the message	

•  Messages at time are computed from
messages at time 	

t

t+ 1

m(t+1)
Yi!�c3

(yi) / m(t)
�c1!Yi

(yi)·

m(t)
�c2!Yi

(yi)·

m(t)
�c4!Yi

(yi)

Messages	

•  A message from variable to factor tells
what thinks its own marginal distribution
should be, based on the messages it has
received from its other neighboring factors	

•  Example:	

Yi �c �c

Yi

Yi

�c1

�c2 �c3

�c4

Messages	

•  A message from to tells what thinks ���
	

 ’s marginal should be based on ’s own
factor function and the messages it has
received from other variables in 	

•  Example:	

Yi�c �c

Yi �c

c

�c

Y1

Y2

Y3

m(t+1)
�c!Y2

(y2) /
X

y1

X

y3

�c(y1, y2, y3)·

m(t)
Y1!�c

(y1)·

m(t)
Y3!�c

(y3)

Messages	

•  General form:	

– Messages from variables to factors: ���
���
	

– Messages from factors to variables:	

(1)

(2)

m(t+1)
Yi!�c

(yi) /
Y

c0 6=c:
Yi2c0

m(t)
�c0!Yi

(yi)

m(t+1)
�c!Yi

(yi) /
X

Yc=yc:
Yi=yi

�c(yc)
Y

i0 6=i:
i02c

m(t)
Yi0!�c

(yi0)

Beliefs	

•  Marginal beliefs at time are computed by
just multiplying together all incoming messages	

•  Variable marginals: ���
���
	

•  Factor marginals:	

t

b(t)�c
(yc) / �c(yc)

Y

i2c

m(t)
Yi!�c

(yi)

b(t)Yi
(yi) /

Y

c:i2c

m(t)
�c!Yi

(yi)

Belief Propagation Algorithm	

•  Initialize all messages to some default (often
uniform)	

•  Update each message according to equations ���
 and 	

•  Repeat until convergence or until the
maximum number of iterations is reached	

(1) (2)

Efficient Propagators	

•  Naïve computation of the sum in equation
takes time exponential in the arity of the factor	

•  For high-arity factors (e.g. the tree factor for
dependency parsing), this means trouble	

•  Solution is to take advantage of sparsity (most
variable assignments yield a factor value of 0) and
the internal structure of the factor itself and use
a dynamic program to compute all outgoing
messages efficiently	

(2)

m(t+1)
�c!Yi

(yi) /
X

Yc=yc:
Yi=yi

�c(yc)
Y

i0 6=i:
i02c

m(t)
Yi0!�c

(yi0)

Efficient Propagators	

•  A large arity factor starts with incoming
messages and needs
to efficiently compute all outgoing messages: ���
	

•  This can work if you have an appropriate dynamic
program	

•  By initializing the dynamic program with values
from the incoming messages, you can use it to
compute marginal beliefs	

•  Outgoing messages are computed from marginal
beliefs by dividing out the corresponding
incoming message	

�c
mYc1!�c , . . . ,mYck

!�c

m�c!Yc1
, . . . ,m�c!Yck

Efficient Propagators	

•  Example: tree factor for dependency parsing	

–  We need to add up scores for all legal dependency trees 	

–  Denote the score of a single tree as ; this is a product

of incoming message values for “left” or “right”, and
the incoming message values of “off” for all the remaining
edges (which do not appear in the tree)	

–  The outgoing messages we need to compute have the
form , where has the���
���
���
value “left”, “right”, or “off”, depending on whether, in , ���
 is the parent of , is the parent of , or neither	

t

s(t)
n� 1

m�tree!Yij (yij) =
X

t:yij(t)=yij

s(t) yij(t)

t
i jj i

[Smith & Eisner, 2008]	

Efficient Propagators	

•  Example: tree factor for dependency parsing	

–  Fortunately, dependency parsing algorithms, such as the

Eisner algorithm, are really good at getting total scores for
all trees with a particular edge: let’s call these totals���
 left and right 	

–  We can also use the parsing algorithm to get a total score
for all legal trees: we’ll call this total 	

–  We’re not quite there yet; total scores like left can’t
really incorporate messages from edges that don’t appear	

–  However, we can get around that by using the subsequent
procedure, which scores edges with ratios instead of raw
incoming message values	

µij() µij()

Z

µij()

•  Example: tree factor for dependency parsing	

–  First, compute	

–  Initialize a parsing chart with the edge score for���
 set to (right is analogous)	

– Run the parser	

– Marginal beliefs are:	

– Marginal off beliefs are computed by subtracting
from :	

– Outgoing messages are computed by just dividing out
incoming messages:	

bij() = ⇡Z � (bij() + bij())

bij() = ⇡µij()

mYij!�tree()

mYij!�tree()

⇡ =
Y

ij

mYij!�tree()

Efficient Propagators	

off	

Yij =
off	

left 	

 left 	

left 	

 left 	

Z left 	

off	

 right	

m�tree!Yi() / bij()

mYi!�tree()left 	

left 	

left 	

Efficient Propagators	

•  General procedure:	

–  First, precompute the product of all incoming message

scores for the “default” value	

–  Initialize the chart of the dynamic program with odds

ratios from incoming messages (non-default score
divided by default score)	

– Run the dynamic program	

– Marginal beliefs for non-default values are the total

scores from the dynamic program times the
precomputed all-default score	

– Marginal default beliefs are taken by subtracting other
marginal beliefs from the partition function	

Belief Propagation Speed Tips	

•  Messages do not have to be updated in any
particular order, but try to pick a schedule that
tends to update messages after the ones they
depend on	

•  You do not have to update each message every
round; try doing multiple iterations of fast
messages before updating slower ones (e.g. large
structural factors)	

•  Messages for unary factors only have to be
computed once	

References	

•  John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira

(2001). Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. In ICML.	

•  David Smith and Jason Eisner (2008). Dependency Parsing by Belief
Propagation. In EMNLP.	

•  Charles Sutton, Khashayar Rohanimanesh, and Andrew McCallum
(2004). Dynamic Conditional Random Fields: Factorized
Probabilistic Models for Labeling and Segmenting Sequence Data. In
ICML.	

•  Eric P. Xing, Michael I. Jordan, and Stuart Russell (2003). A
Generalized Mean Field Algorithm for Variational Inference in
Exponential Families. In UAI.	

(Full slides include a more thorough bibliography)	

