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Models	



•  All models we discuss can be represented as 
discrete Markov Random Fields	



•  We use factor graph notation, explicitly 
separating variables and factors	



Ternary	
  Factor	
  

Binary Factor	
  

Unary Factor	
  

Variable	
  



Notation	



•  Variables        take values 	



•  Model output:	



•  Cliques are sets of variable indices: ���
	



•  Factors map partial variable assignments to real 
numbers:	



•  Probabilities are proportional to the product of 
all factors:	



Yi yi
y = [y1, . . . , yi, . . . , yn]

c = {c1, c2, . . . , ck}

�c(yc1 , . . . , yck)

P (y) /
Y

c

�c(yc1 , . . . , yck)



Abuse of Notation	



•  For brevity, we will typically drop subscripts on 
potentials, for example writing���
to mean: ���
���
	



•  It should always be clear from context which 
potential function is meant	



�(y1, y3, y5)

�{1,3,5}(Y1 = y1, Y3 = y3, Y5 = y5)



Models: Examples	



•  Generative HMM (with    observed)	



…	

…	



Observed variables do not 
appear in the graphical 
representation of the model, 
but are included in the 
relevant factors	
  

�(yi) = p(xi|yi)

�(yi, yi+1) = p(yi+1|yi)

Example application: computing posteriors for part-of-speech 
tagging, conditioned on sentence; each variable represents one tag	
  

Yi+1 Yi+2Yi�1 Yi

x



Models: Examples	



•  Exponential Family Chain CRF	



…	

…	



Variable features: ���
Edge features:	



Weight vector: 	
  

fv
fe

Example application: named entity recognition; each variable takes 
the value B(egin), I(nside), or O(utside) 	
  

Yi+1 Yi+2Yi�1 Yi

�(yi) = exp

�
w>fv(yi)

�

�(yi, yi+1) = exp

�
w>fe(yi, yi+1)

� w

[Lafferty et al, 2001]	





Models: Examples	



•  Factorial Chain CRF	



…	

…	



…	

…	



Example application: joint models of named entity recognition and���
part-of-speech tagging	
  

Ai Ai+1 Ai+2Ai�1

Bi Bi+1 Bi+2Bi�1

[Sutton et al, 2004]	





Models: Examples	



•  Dependency parsing with 2nd-order features���
(not all factors shown)	



Edge factor���
(arity 1)	

Sibling factor���

(arity 2)	


(not all shown)	



Tree factor���
(arity               )	


(touches all ���
 variables)	



To encode the structural constraint on dependency parses, the 
tree factor is an indicator that has a value of 1 for well-formed 
trees and 0 otherwise	


	
  

Edge variable 
takes value from ���
{left, right, off}	



n(n� 1)
1

2

Yij

[Smith & Eisner, 2008]	





Mean Field Approximation	



•  General idea is to create an approximate 
distribution     whose parametric form is 
defined by a subgraph of the original graph	



•  Example:	


– Model: ���
	



– Approximate Graph: ���
	



p(y) / �(y1)�(y2)�(y1, y2)

q

q(y) = q(y1)q(y2)



Mean Field Approximation	



•  Given the structure of   , the actual 
distribution is found by minimizing the KL 
divergence to    :	



q

p

q = argmin

q
KL(q||p)

= argmin

q

X

y

q(y) log

✓
q(y)

p(y)

◆



Mean Field Inference	



•  Mean field inference is iterative:	


1.  Pick a component of         (e.g.          )	


2.  Find the distribution         that minimizes KL 

with other components of         fixed	


3.  Repeat, cycling through components of ���

until convergence	



•  Finding the appropriate update in step 2 is the 
tricky part, so that is what we will focus our 
attention on	



q(y1)
q(y1)

q(y)

q(y)

q(y)



Mean Field Updates	



•  For naïve mean field, where the approximate 
graph contains only unary factors, the update 
rule is fairly simple: ���

	


•  Here,           denotes the expectation with 

regard to all other components of   , so this 
expands to:	



q

Eq�Yi

q(yi) / exp

0

BB@
X

c:i2c

X

Yc=yc:
Yi=yi

0

BB@
Y

j2c
j 6=i

q(yj)

1

CCA log �c(yc)

1

CCA

q(yi) / exp

 
X

c:i2c

Eq�Yi
log �c(yc)

!



Mean Field Example Updates	



Model: ���
	


Approximate Graph: ���
���
���
	



Update:	



p(y) / �(y1)�(y2)�(y1, y2)

q(y) = q(y1)q(y2)

q(y1) / exp (Eq2 log(�(y1)�(y1, y2)))

= exp

 
log �(y1) +

X

y2

q(y2) log(�(y1, y2))

!



Mean Field Example Updates	



Model: 	

 	

 	

 	

 	

 	

 	

Approximate Graph: 	

	



…	



…	



…	



…	



…	



…	



…	



…	



p(y) /
Y

i

�(ai)�(bi)�(ai, bi)

�(ai, ai+1)�(bi, bi+1)

q(y) =
Y

i

q(ai)q(bi)

Ai Ai+1Ai�1

Bi Bi+1Bi�1

Ai Ai+1Ai�1

Bi Bi+1Bi�1



Mean Field Example Updates	



Update:	


q(ai) / exp

�
Eq�Ai

log(�(ai)�(ai�1, ai)�(ai, ai+1)�(ai, bi))
�

= exp

0

@
log �(ai) +

X

ai�1,ai+1,bi

q(ai�1)q(ai+1)q(bi) log(�(ai�1, ai)�(ai, ai+1)�(ai, bi))

1

A

= exp

0

@
log �(ai) +

X

ai�1

q(ai�1) log(�(ai�1, ai))+

X

ai+1

q(ai+1) log(�(ai, ai+1)) +

X

bi

q(bi) log(�(ai, bi))

1

A



Structured Mean Field	



•  In structured mean field, the subgraph defining 
the family of approximate distributions is 
selected by picking disjoint sets of variables to 
form connected components and removing all 
between-component links	



[Xing et al, 2003]	





Structured Mean Field	



•  Subgraphs are picked so that exact inference is 
possible within each individual connected 
component, either because the components 
are small or they have a dynamic program	



•  The mean field approximation then becomes a 
product of distributions over components	



•  Notation:	


– Connected components: 	



– Approximation:	



d = {d1, . . . , dm}
q(y) =

Y

d

q(yd1 , . . . , ydm)



Component-Factorizable Factors	



•  There is a simple form for structured mean field 
updates, but its correctness is only guaranteed 
under some additional assumptions about the 
factor functions	



•  We say      is component-factorizable if its log can 
be broken down to a product of per-component 
potentials:	


	


•  The form we will give for structured mean field 

updates is correct if all factors are component-
factorizable	



�c

�c

log �c(yc) =
Y

d:c\d 6=;

 c\d(yc\d)



Component-Factorizable Factors 	



•  Note that while the component-factorizability 
restriction may seem onerous, it is typically 
achieved by the types of models common in 
the NLP literature	



•  In particular, exponential family models where���
                                , with    a weight vector 
and         a vector of indicator features, usually 
satisfy this criterion (the overall indicator is 
typically a product of indicators that each 
component’s requirement is satisfied)	



�c(yc) = exp(w>f(yc)) w
f(yc)



Structured Mean Field Updates	



•  Instead of iterating through variables, we 
iterate over connected components, updating 
each         using marginals from          : ���
���
���
���
���
	



q(yd) q(y�d)

pqd0 (yc\d0) is the marginal probability of          under   	

yc\d0 qd0

q(yd) / exp

0

@
X

c:c\d 6=;

Eq�d
log �(yc)

1

A

= exp

0

BB@
X

c:c\d 6=;

X

Yc=yc:
Yd=yd

0

@
Y

d0:c\d0 6=;

pqd0 (yc\d0
)

1

A
log(�(yc))

1

CCA



Structured Mean Field Updates	



•  Note that the “updates” now define entire 
distributions      that are unlikely to ever be 
enumerated explicitly	



•  In practice, the iterative inference procedure 
consists of recomputing the marginal 
probabilities                 that appear in the 
definitions of the other components of	



qd

pqd(yc\d)
q(y)



Structured Mean Field Example Update	



Model: 	

 	

 	

 	

 	

 	

 	

Approximation: 	

���
���
���
���
���
���
���
	



…	



…	



…	



…	



…	



…	



…	



…	



Ai Ai+1Ai�1

Bi Bi+1Bi�1

Ai Ai+1Ai�1

Bi Bi+1Bi�1

p(y) /
Y

i

�(ai)�(bi)�(ai, bi)

�(ai, ai+1)�(bi, bi+1)

q(y) = q(a1,...,n)q(b1,...,n)



Structured Mean Field Example Update	



Update:	



Marginals ���
            are���
computed using	


forward-backward	


on 	



pqb(bi)

q(b1,...,n)

q(a1,...,n) / exp

 
X

i

Eqb log (�(ai)�(ai, ai+1)�(ai, bi))

!

= exp

 
X

i

X

b

pqb(bi) log(�(ai)�(ai, ai+1)�(ai, bi))

!

= exp

 
X

i

log(�(ai)) + log(�(ai, ai+1))+

X

bi

pqb(bi) log(�(ai, bi))

!



Belief Propagation	



•  A message-passing algorithm used to compute 
approximate marginals	



•  Does not compute an entire approximate 
distribution – the “marginals” are not 
guaranteed to be consistent (i.e., marginals of 
any real distribution)	



•  Gives marginals on variables and on factors 
(marginals on     are joint marginals on all the 
variables in    )	

c

�c



Messages	



•  There are two types of messages: from a 
variable to a neighboring factor, or from a 
factor to a neighboring variable	



•  All messages take the form of a (not 
necessarily normalized) distribution over the 
variable sending or receiving the message	



•  Messages at time          are computed from 
messages at time 	

t

t+ 1



m(t+1)
Yi!�c3

(yi) / m(t)
�c1!Yi

(yi)·

m(t)
�c2!Yi

(yi)·

m(t)
�c4!Yi

(yi)

Messages	



•  A message from variable     to factor     tells 
what      thinks its own marginal distribution 
should be, based on the messages it has 
received from its other neighboring factors	



•  Example:	



Yi �c �c

Yi

Yi

�c1

�c2 �c3

�c4



Messages	



•  A message from     to     tells what     thinks ���
	

  ’s marginal should be based on     ’s own 
factor function and the messages it has 
received from other variables in  	



•  Example:	



Yi�c �c

Yi �c

c

�c

Y1

Y2

Y3

m(t+1)
�c!Y2

(y2) /
X

y1

X

y3

�c(y1, y2, y3)·

m(t)
Y1!�c

(y1)·

m(t)
Y3!�c

(y3)



Messages	


•  General form:	


– Messages from variables to factors: ���
���
	



– Messages from factors to variables:	



(1)

(2)

m(t+1)
Yi!�c

(yi) /
Y

c0 6=c:
Yi2c0

m(t)
�c0!Yi

(yi)

m(t+1)
�c!Yi

(yi) /
X

Yc=yc:
Yi=yi

�c(yc)
Y

i0 6=i:
i02c

m(t)
Yi0!�c

(yi0)



Beliefs	



•  Marginal beliefs at time    are computed by 
just multiplying together all incoming messages	



•  Variable marginals: ���
���
	



•  Factor marginals:	



t

b(t)�c
(yc) / �c(yc)

Y

i2c

m(t)
Yi!�c

(yi)

b(t)Yi
(yi) /

Y

c:i2c

m(t)
�c!Yi

(yi)



Belief Propagation Algorithm	



•  Initialize all messages to some default (often 
uniform)	



•  Update each message according to equations  ���
    and 	



•  Repeat until convergence or until the 
maximum number of iterations is reached	



(1) (2)



Efficient Propagators	



•  Naïve computation of the sum in equation     
takes time exponential in the arity of the factor	



•  For high-arity factors (e.g. the tree factor for 
dependency parsing), this means trouble	



•  Solution is to take advantage of sparsity (most 
variable assignments yield a factor value of 0) and 
the internal structure of the factor itself and use 
a dynamic program to compute all outgoing 
messages efficiently	



(2)

m(t+1)
�c!Yi

(yi) /
X

Yc=yc:
Yi=yi

�c(yc)
Y

i0 6=i:
i02c

m(t)
Yi0!�c

(yi0)



Efficient Propagators	



•  A large arity factor      starts with incoming 
messages                                         and needs 
to efficiently compute all outgoing messages: ���
	



•  This can work if you have an appropriate dynamic 
program	



•  By initializing the dynamic program with values 
from the incoming messages, you can use it to 
compute marginal beliefs	



•  Outgoing messages are computed from marginal 
beliefs by dividing out the corresponding 
incoming message	



�c
mYc1!�c , . . . ,mYck

!�c

m�c!Yc1
, . . . ,m�c!Yck



Efficient Propagators	



•  Example: tree factor for dependency parsing	


–  We need to add up scores for all legal dependency trees 	


–  Denote the score of a single tree as       ; this is a product 

of           incoming message values for “left” or “right”, and 
the incoming message values of “off” for all the remaining 
edges (which do not appear in the tree)	



–  The outgoing messages we need to compute have the 
form                                              , where           has the���
���
���
value “left”, “right”, or “off”, depending on whether, in   , ���
   is the parent of    ,     is the parent of    , or neither	



t

s(t)
n� 1

m�tree!Yij (yij) =
X

t:yij(t)=yij

s(t) yij(t)

t
i jj i

[Smith & Eisner, 2008]	





Efficient Propagators	



•  Example: tree factor for dependency parsing	


–  Fortunately, dependency parsing algorithms, such as the 

Eisner algorithm, are really good at getting total scores for 
all trees with a particular edge: let’s call these totals���
      left   and        right 	



–  We can also use the parsing algorithm to get a total score 
for all legal trees: we’ll call this total 	



–  We’re not quite there yet; total scores like       left  can’t 
really incorporate messages from edges that don’t appear	



–  However, we can get around that by using the subsequent 
procedure, which scores edges with ratios instead of raw 
incoming message values	



µij( ) µij( )

Z

µij( )



•  Example: tree factor for dependency parsing	


–  First, compute	



–  Initialize a parsing chart with the edge score for���
               set to                            (right is analogous)	



– Run the parser	



– Marginal beliefs are:	



– Marginal off beliefs are computed by subtracting 
from    :	



– Outgoing messages are computed by just dividing out 
incoming messages:	



bij( ) = ⇡Z � (bij( ) + bij( ))

bij( ) = ⇡µij( )

mYij!�tree( )

mYij!�tree( )

⇡ =
Y

ij

mYij!�tree( )

Efficient Propagators	



off	



Yij =
off	



left 	

 left 	



left 	

 left 	



Z left 	

off	

 right	



m�tree!Yi( ) / bij( )

mYi!�tree( )left 	


left 	



left 	





Efficient Propagators	



•  General procedure:	


–  First, precompute the product of all incoming message 

scores for the “default” value	


–  Initialize the chart of the dynamic program with odds 

ratios from incoming messages (non-default score 
divided by default score)	



– Run the dynamic program	


– Marginal beliefs for non-default values are the total 

scores from the dynamic program times the 
precomputed all-default score	



– Marginal default beliefs are taken by subtracting other 
marginal beliefs from the partition function	





Belief Propagation Speed Tips	



•  Messages do not have to be updated in any 
particular order, but try to pick a schedule that 
tends to update messages after the ones they 
depend on	



•  You do not have to update each message every 
round; try doing multiple iterations of fast 
messages before updating slower ones (e.g. large 
structural factors)	



•  Messages for unary factors only have to be 
computed once	
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