Variational Inference for Structured
NLP Models: Quick Reference

Berkeley

N L P

NAACL-HLT, June 3,2012
David Burkett and Dan Klein

(full slides available at http://nlp.cs.berkeley.edu/tutorials)

Berkeley

/\\ Models

N L P

* All models we discuss can be represented as
discrete Markov Random Fields

* We use factor graph notation, explicitly
separating variables and factors

/’

Ternary Factor
<— Variable

Binary Factor —

Unary Factor —l-

Berkeley

/\\ Notation

N

L P

Variables Y; take values Y;

Model output: Yy — [?Jla ey Yiy e - ayn]

Cliques are sets of variable indices:
c=A{c1,c2,...,CL}

Factors map partial variable assignments to real
numbers: Oc(Ye,s - - -5 Yer)

Probabilities are proportional to the product of

all factors: p(y) X H ¢C(ycl, - ,yck)

Berkeley

Abuse of Notation

N L P

* For brevity, we will typically drop subscripts on
potentials, for example writing ¢(y1, Y3, U5)
to mean:

P11350 (Y1 =1, Y3 = y3,Y5 = y5)

* It should always be clear from context which
potential function is meant

Berkeley

Models: Examples

N L P

* Generative HMM (with = observed)

Observed variables do not

¢(yz) — p(l‘i |yz) appear in the graphical

representation of the model,

¢(yi, yi—l—l) — p(yi—l—l ‘yz) but are included in the

relevant factors

Example application: computing posteriors for part-of-speech
tagging, conditioned on sentence; each variable represents one tag

Berkeley

Models: Examples

N L P

* Exponential Family Chain CRF

I Variable features: f»
Edge features: f.
¢(yz) — €Xp (wT fv (yz)) Weight vector: w

O(Yis Yit1) = €xXp (wae(yz', y7;+1))

Example application: named entity recognition; each variable takes

the value B(egin), I(nside), or O(utside) [Lafferty et al, 2001]

Berkeley

Models: Examples

N L P

e Factorial Chain CRF

Example application: joint models of named entity recognition and

part-of-speech tagging [Sutton et al, 2004]

Berkeley

Models: Examples

N L P

* Dependency parsing with 2"d-order features
(not all factors shown)

To encode the structural constraint on dependency parses, the
tree factor is an indicator that has a value of | for well-formed
trees and 0 otherwise

Tree factor —> / O‘I Edge variable Y ;
(arity n(n — 1)%) takes value from
(touches all L {left, right, off}
variables)

<)'.\ Edge factor
?;Itzil‘lcr;,ng)actor — — (arity 1)

(not all shown) [Smith & Eisner, 2008]

Berkeley
Mean Field Approximation

N L P

* General idea is to create an approximate
distribution ¢ whose parametric form is
defined by a subgraph of the original graph

* Example:
— Model: 6_.6 p(y) o< ¢(y1)d(y2) (Y1, y2)

— Approximate Graph:

6 5 q(y) = q(y1)q(y2)

Berkeley
Mean Field Approximation

N L P

* Given the structure of @, the actual
distribution is found by minimizing the KL

divergence to p:

q = argmin K L(q||p)
q

_ arg;min g q(y) log (2%>

Berkeley

Mean Field Inference

N L P

* Mean field inference is iterative:
|. Pick a component of ¢(y) (e.g. q(y1))

2. Find the distribution ¢(¥1) that minimizes KL
with other components of ¢(y) fixed

3. Repeat, cycling through components of q(y)
until convergence
* Finding the appropriate update in step 2 is the
tricky part, so that is what we will focus our
attention on

Berkeley

Mean Field Updates

N L P

* For naive mean field, where the approximate
graph contains only unary factors, the update

rule is fairly simple:
q(yi) o< exp (Z E,_, log ¢c(yc)>
c:itEc

* Here, IEq_yi denotes the expectation with
regard to all other components of ¢, so this

expands to: / /) \
q(ys) ocexp | Y > | T alw;) | log de(ye)

\c:iEc Y.=y.: | jEC))
Yi=y; \J#¢

Berkeley

g Mean Field Example Updates

Model: 6—.‘6 p(y) < ¢(y1)P(y2)P(y1,y2)

Approximate Graph:

OO

Update: q(y1) o exp (Eq, log(é(y1)9(y1,92)))

= exp (109; (Y1) + Z q(y2) log(o(y1, y2))>

Y2

Berkeley

Mean Field Example Updates

N L P

Model: Approximate Graph:

TR

Berkeley

Mean Field Example Updates

N L P
g:%:g ofoNe
PP
Update'
) o exp (]Eq A, log(¢ 1,ai)¢(az‘,ai+1)¢(@iabi)))

a; 1a+1b

— exp (loggb a;) + Z q(a;_1)q(a;11)q(b;) 10g(¢<aﬂilaai)¢(aiaai+l)¢(aiabz’)))
= exp (log(b a;) + Z q(a;—1)log(P(a;—1,a:))+

> alaiy) log(d(ai, aiyr) +Zq) log(¢)))

ai+1

Berkeley

Structured Mean Field

N L P
* In structured mean field, the subgraph defining
the family of approximate distributions is

selected by picking disjoint sets of variables to

form connected components and removing all
between-component links

S — - [Xing et al, 2003]

Berkeley

Structured Mean Field

N L P

* Subgraphs are picked so that exact inference is
possible within each individual connected
component, either because the components
are small or they have a dynamic program

* The mean field approximation then becomes a
product of distributions over components

* Notation:
— Connected components: d = {di,...,dn,}

— Approximation: ¢(y) = H q(Ydy s -+ Yd,,)
d

Berkeley

N

L

Component-Factorizable Factors
p

There is a simple form for structured mean field
updates, but its correctness is only guaranteed
under some additional assumptions about the
factor functions ¢.

We say ¢. is component-factorizable if its log can
be broken down to a product of per-component

potentials log ch yc H VYend ycﬂd)
d:cNd#(

The form we will give for structured mean field

updates is correct if all factors are component-
factorizable

Berkeley

Component-Factorizable Factors
N L P
* Note that while the component-factorizability
restriction may seem onerous, it is typically
achieved by the types of models common in
the NLP literature

* In particular, exponential family models where
de(ye) = exp(w f(y.)), with w a weight vector
and f(yc) a vector of indicator features, usually
satisfy this criterion (the overall indicator is
typically a product of indicators that each
component’s requirement is satisfied)

Berkeley

Structured Mean Field Updates

N L P

* Instead of iterating through variables, we
iterate over connected components, updating
each ¢(yq) using marginals from ¢(y—4):

q(ya) < exp (> E,_, log ¢(yc)>

c:cNd#()

\
/

Pq (Yenar) is the marginal probability of yc.na4’ under gg-

(
= exp Z Z (H Pq (ycmd’)) log(&(ye))

\c:cﬂd#@ Ye=yc: d’:cﬂd’#@T

Yi=yd

Berkeley

Structured Mean Field Updates
N L P
* Note that the “updates” now define entire
distributions g4 that are unlikely to ever be
enumerated explicitly

* In practice, the iterative inference procedure
consists of recomputing the marginal
probabilities Pg,(Ycnd) that appear in the
definitions of the other components of q(y)

Berkeley

/\\ Structured Mean Field Example Update

N L P

Model:

Approximation:

Berkeley

Structured Mean Field Example Update

N L P
Y e
el

a(a1....n) o exp (Z Eqg, log (Gﬁ(az‘)qﬁ(az’aaz’+1)¢(az‘»bz‘))>

= exp (Z > g, (bi) log(¢(ai)d(ai, aiv1)e(a, bz‘)))

i b
Marginals _ 1
- i) +1 iy @ +
qu(bz‘) are exXp (; og(¢(as)) +log(d(as, ai4+1))
computed using
forward-backward Zpr(b’i> log(é(as, b))
on Q(bl n) b,

Berkeley

N

L

Belief Propagation

P

A message-passing algorithm used to compute
approximate marginals

Does not compute an entire approximate
distribution — the “marginals” are not
guaranteed to be consistent (i.e., marginals of
any real distribution)

Gives marginals on variables and on factors

(marginals on ¢, are joint marginals on all the
variables in ¢)

Berkeley

/\\ Messages

N L P

* There are two types of messages: from a
variable to a neighboring factor, or from a
factor to a neighboring variable

* All messages take the form of a (not
necessarily normalized) distribution over the
variable sending or receiving the message

* Messages at time ¢ +] are computed from
messages at time ¢

Berkeley

/\\ Messages

N L P

* A message from variable Y to factor ¢. tells ¢,
what Y; thinks its own marginal distribution
should be, based on the messages it has

received from its other neighboring factors

° Examp|e: mg/t_j__izbcg (yz) X mgi)l Ly (yz)

mg) oy, (4i);

. i,)

Berkeley

/\\ Messages

N L P

* A message from ¢. to Y tells what ¢, thinks
Yi’s marginal should be based on ¢.’s own
factor function and the messages it has
received from other variables in c

* Example:)

m¢c_>y2 Y2) X YY Dc(Y1,Y2,Y3)-

Y1 Y3 t
my s (1)

my 4. (ys)

Berkeley

m Messages

N L P
e General form:

— Messages from variables to factors:

t+1 t
m$) i) o [T mS) oy, ()

c'#ec:
Y;ec

— Messages from factors to variables:

my (i) o< Y delye) [my:

Ye=vyc: i i
Yi:yi i/EC

Berkeley

/\\ Beliefs

N L P
* Marginal beliefs at time ¢ are computed by
just multiplying together all incoming messages
* Variable marginals:
t t
bg/z-) (yi) o H mgbc)_ﬂfi (95)

c:1EcC

* Factor marginals:

b()(yc) X ¢C Ye HmY — Qe y’b)

1EC

Berkeley

Belief Propagation Algorithm

N L P

* Initialize all messages to some default (often
uniform)

* Update each message according to equations
(1) and (2)

* Repeat until convergence or until the
maximum number of iterations is reached

Berkeley

Efficient Propagators

my L i) o< D delye) [mi s, (wir)

Ye=ye:
Yi=vy; \LEC
* Nailve computation of the sum in equation (2)
takes time exponential in the arity of the factor

N L P

* For high-arity factors (e.g. the tree factor for
dependency parsing), this means trouble

* Solution is to take advantage of sparsity (most
variable assignments yield a factor value of 0) and
the internal structure of the factor itself and use
a dynamic program to compute all outgoing
messages efficiently

Berkeley

N L P

Efficient Propagators

A large arity factor ¢, starts with incoming
messages Y, —¢cs -+ MY, —¢. and needs
to efficiently compute all outgoing messages:
m¢c—>Yc1 g oo s ,m¢c_>y6k

This can work if you have an appropriate dynamic
program

By initializing the dynamic program with values
from the incoming messages, you can use it to
compute marginal beliefs

Outgoing messages are computed from marginal
beliefs by dividing out the corresponding
Incoming message

Berkeley

Efficient Propagators

N L P

* Example: tree factor for dependency parsing

— We need to add up scores for all legal dependency trees ¢

— Denote the score of a single tree as s(t); this is a product
of n — 1 incoming message values for “left” or “right”, and
the incoming message values of “off” for all the remaining
edges (which do not appear in the tree)

— The outgoing messages we need to compute have the
form My, (Yif) = Z s(t) , Where y;;(t) has the

t:yij () =y,

value “left”, “right”, or “off”’, depending on whether, in 7,
¢ is the parent of J, J is the parent of i, or neither

[Smith & Eisner, 2008]

Berkeley

Efficient Propagators

N L P

* Example: tree factor for dependency parsing

— Fortunately, dependency parsing algorithms, such as the
Eisner algorithm, are really good at getting total scores for
all trees with a particular edge: let’s call these totals
ii(left) and pij(right)

— We can also use the parsing algorithm to get a total score
for all legal trees: we’'ll call this total Z

— We're not quite there yet; total scores like ,Uij(left) can’t
really incorporate messages from edges that don’t appear

— However, we can get around that by using the subsequent
procedure, which scores edges with ratios instead of raw
incoming message values

Berkeley

Efficient Propagators

N L P

* Example: tree factor for dependency parsing
— First, compute ™ = Hinj—wTREE(Off)

— Initialize a parsing chart with the edge score for
my,.
Yi; = left set to Y;,; — b (left)

m 1] TREE ff
— Run the parser Vi gmee O

(right is analogous)

— Marginal beliefs are: b;;(left) = mui;(left)

— Marginal off beliefs are computed by subtracting
from Z: bij(off) = 72 — (bi;(left) + bi;(right))

— Outgoing messages are computed by just dividing out

iIncoming messages: m,;, v (|eft) bij (left)
mYz’ _>¢TREE(Ieft)

Berkeley

Efficient Propagators

N L P

* General procedure:

— First, precompute the product of all incoming message
scores for the “default” value

— Initialize the chart of the dynamic program with odds
ratios from incoming messages (non-default score
divided by default score)

— Run the dynamic program

— Marginal beliefs for non-default values are the total
scores from the dynamic program times the
precomputed all-default score

— Marginal default beliefs are taken by subtracting other
marginal beliefs from the partition function

Berkeley

Belief Propagation Speed Tips

N L P

* Messages do not have to be updated in any
particular order, but try to pick a schedule that
tends to update messages after the ones they
depend on

* You do not have to update each message every
round; try doing multiple iterations of fast
messages before updating slower ones (e.g. large
structural factors)

* Messages for unary factors only have to be
computed once

Berkeley

/\\ References

N

L

P

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira

(2001). Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. In ICML.

David Smith and Jason Eisner (2008). Dependency Parsing by Belief
Propagation. In EMNLP.

Charles Sutton, Khashayar Rohanimanesh, and Andrew McCallum
(2004). Dynamic Conditional Random Fields: Factorized

Probabilistic Models for Labeling and Segmenting Sequence Data. In
ICML.

Eric P. Xing, Michael I. Jordan, and Stuart Russell (2003).A

Generalized Mean Field Algorithm for Variational Inference in
Exponential Families. In UAL.

(Full slides include a more thorough bibliography)

