Maxent Models, Conditional
Estimation, and Optimization

Dan Klein and Chris Manning
Stanford University
http://nlp.stanford.edu/

HLT-NAACL 2003 and ACL 2003 Tutorial

Introduction

= In recent years there has been extensive use
of conditional or discriminative probabilistic
models in NLP, IR, and Speech

s Because:

= They give high accuracy performance

= They make it easy to incorporate lots of
linguistically important features

« They allow automatic building of language
independent, retargetable NLP modules

Joint vs. Conditional Models

= Joint (generative) models place probabilities over
both observed data and the hidden stuff (gene-
rate the observed data from hidden stuff):

= All the best known StatNLP models:
= n-gram models, Naive Bayes classifiers, hidden
Markov models, probabilistic context-free grammars
= Discriminative (conditional) models take the data
as given, and put a probability over hidden
structure given the data: P(cld)

= Logistic regression, conditional loglinear models,
maximum entropy markov models, (SVMs,
perceptrons)

P(c,d)

Bayes Net/Graphical Models

= Bayes net diagrams draw circles for random
variables, and lines for direct dependencies

= Some variables are observed; some are hidden

= Each node is a little classifier (conditional
probability table) based on incoming arcs

HMM Naive Bayes Logistic Regression

Generative Discriminative

Conditional models work well:
Word Sense Disambiguation

Training Set = Even with exactly the
same features, changing
from joint to conditional
Joint Like. 86.8 estimation increases

Cond. Like. 08.5 performance

Objective | Accuracy

= That is, we use the same
Test Set smoothing, and the same

word-class features, we
just change the numbers

Joint Like. 73.6 (parameters)

Cond. Like. 76.1
(Klein and Manning 2002, using Senseval-1 Data)

Objective | Accuracy

Overview: HLT Systems

s Typical Speech/NLP problems involve
complex structures (sequences, pipelines,
trees, feature structures, signals)

= Models are decomposed into individual local
decision making locations

= Combining them together is the global
inference problem

Sequence Model

Combine
Sequence % little models
Data together via
inference

Sequence Level “ence Model | e ence

Sequence
Data %

2 Local Level t

Classifier Type ||

Label |||
Feature i .
Local » Extraction » \i » Optimization
Data i; Features | |/ Smoothing
/
Maximum Conjugate | | Quadratic
Entropy Models Gradient Penalties

NLP Issues

Tutorial Plan

1. Exponential/Maximum entropy models
2. Optimization methods

3. Linguistic issues in using these models

Part I: Maximum Entropy Models

a. Examples of Feature-Based Modeling
b. Exponential Models for Classification
c. Maximum Entropy Models

d. Smoothing

We will use the term “maxent” models, but will
introduce them as loglinear or exponential models,
deferring the interpretation as “maximum entropy

models” until later.

Features

In this tutorial and most maxent work:

features are elementary pieces of evidence that
link aspects of what we observe d with a category
¢ that we want to predict.

A feature has a real value: : C x D — R

Usually features are indicator functions of
properties of the input and a particular class
(every one we present is). They pick out a subset.

n f(c, d)=[D(d) Ac=¢c|] [Value is O or 1]
We will freely say that ®(d) is a feature of the data

d, when, for each ¢, the conjunction ®(d) A c=c¢, is
a feature of the data-class pair (¢, d).

Features

= For example:
s fi(c, d) =[c=“NN” A islower(w,) A ends(w,, “d”)]
n (e, d)=[c=“NN"Aw_ =“to” AL, =“TO”]
s f3(c, d) =[c=“VB” A 1slower(w)]

IN NN TO NN TO VB IN)
in bed to aid to aid in blue

= Models will assign each feature a weight
= Empirical count (expectation) of a feature:

emplrlcal E(fl) - Z(c,d)eobserved(C,D) f’ (C’ d)
= Model expectation of a feature:

E(f)=Y ,.cnPled) fc.d)

Feature-Based Models

= The decision about a data point is based
only on the features active at that point.

Data Data Data
BUSINESS: Stocks ... to restructure DT] NN ...
hit a yearly low ... bank:MONEY debit. The previous fall ...

Label Label Label

BUSINESS MONEY NN
Features Features Features
{..., stocks, hit, a, {..., P=restructure, {w=fall, PT=]J

yearly, low, ...}

N=debt, L=12, ...}

PW=previous}

Text
Categorization

Word-Sense
Disambiguation

POS Tagging

Example: Text Categorization

(Zhang and Oles 2001)

= Features are a word in document and class (they
do feature selection to use reliable indicators)

= Tests on classic Reuters data set (and others)
=« Naive Bayes: 77.0% F,
« Linear regression: 86.0%
= Logistic regression: 86.4%
= Support vector machine: 86.5%

= Emphasizes the importance of regularization
(smoothing) for successful use of discriminative
methods (not used in most early NLP/IR work)

Example: NER

(Klein et al. 2003; also, Borthwick 1999, etc.)
= Sequence model across words
= Each word classified by local model

= Features include the word, previous Decision Point.
and next words, previous classes, State for Grace
previous, next, and current POS
tag, character n-gram features and

shape of word Local Contex
= Best model had > 800K features
= High (> 92% on English devtest set) Prev | Cur jNeXt
performance comes from Class | Other | ??? mn
combining many informative Word | at Grace | Road
features. Tag |IN |[NNP |NNP
= With smoothing / regularization, Sig x Xx Xx

more features never hurt!

Example: NER

(Klein et al. 2003)

Decision Point;:
State for Grace

Local Contex

Feature Weights

Prev | Cur jNext
Class | Other | 777 77
Word | at Grace | Road
Tag IN NNP | NNP
Sig X XX XX

Feature Type Feature PERS | LOC
Previous word at -0.73 | 0.94
Current word Grace 0.03| 0.00
Beginning bigram <G 0.45| -0.04
Current POS tag NNP 0.47| 0.45
Prev and cur tags IN NNP -0.10| 0.14
Previous state Other -0.70 | -0.92
Current signature XX 0.80| 0.46
Prev state, cur sig O-XXx 0.68| 0.37
Prev-cur-next sig X-XX-XX -0.69 | 0.37
P. state - p-cur sig O-x-Xx -0.20| 0.82
Total: -0.58 | 2.68

Example: Tagging

Features can include:
= Current, previous, next words in isolation or together.
= Previous (or next) one, two, three tags.

= Word-internal features: word types, suffixes, dashes, etc.

Decision Point
Local Context /

-3 -2 -1 0 +1
DT NNP [VBD |7?? 77
The |Dow | fell 22.6 | %

(Ratnaparkhi 1996; Toutanova et al. 2003, etc.)

Features
W, 22.6
W,, %
W, fell
T, VBD
T,-T, NNP-VBD
hasDigit? true

Other Maxent Examples

= Sentence boundary detection (Mikheev 2000)
= Is period end of sentence or abbreviation?
s PP attachment (Ratnaparkhi 1998)
« Features of head noun, preposition, etc.
= Language models (Rosenfeld 1996)

= P(wylw,,...,w_). Features are word n-gram
features, and trigger features which model
repetitions of the same word.

m Parsing (Ratnaparkhi 1997; Johnson et al. 1999, etc.)

« Either: Local classifications decide parser
actions or feature counts choose a parse.

Conditional vs. Joint Likelihood

= We have some data {(d, ¢)} and we want to place
probability distributions over it.

= A joint model gives probabilities P(d ¢) and tries
to maximize this likelihood.

= |t turns out to be trivial to choose weights:
just relative frequencies.

= A conditional model gives probabilities P(c|d). It
takes the data as given and models only the
conditional probability of the class.

s We seek to maximize conditional likelihood.
= Harder to do (as we’ll see...)
= More closely related to classification error.

Feature-Based Classifiers

= “Linear” classifiers:
» Classify from features sets {f;} to classes {c}.
» Assign a weight A to each feature f.
=« For a pair (¢,d), features vote with their weights:

» vote(c) = ZAf(c,d)

1.2 -1.8(TONN) (TOVB Y g 3
to aid to aid

» Choose the class ¢ which maximizes XAf(c,d)=VB

= There are many ways to chose weights

= Perceptron: find a currently misclassified example, and
nudge weights in the direction of a correct classification

Feature-Based Classifiers

= Exponential (log-linear, maxent, logistic, Gibbs) models:
= Use the linear combination XAf(c,d) to produce a
probabilistic model:
expz;tl_fi(c,d) «—| Makes votes positive.
Zexpz;tifi(c',d) <— Normalizes votes.

= P(NN|to, aid, TO) = el-2e71.8/(e!2e71-8 + ¢03) = 0.29
= P(VB|to, aid, TO) = 03 /(e'2e18 + 0-3) = 0.71

= The weights are the parameters of the probability
model, combined via a “soft max” function

= Given this model form, we will choose parameters

{1} that maximize the conditional likelihood of the
data according to this model.

P(c|d,A)=

Other Feature-Based Classifiers

= The exponential model approach is one way of
deciding how to weight features, given data.

= It constructs not only classifications, but
probability distributions over classifications.

= There are other (good!) ways of discriminating
classes: SVMs, boosting, even perceptrons -
though these methods are not as trivial to
interpret as distributions over classes.

= We'll see later what maximizing the conditional
likelihood according to the exponential model
has to do with entropy.

Exponential Model Likelihood

= Maximum Likelihood (Conditional) Models :

« Given a model form, choose values of
parameters to maximize the (conditional)
likelihood of the data.

s Exponential model form, for a data set (C,D):

exp > A f.(c.d)

logP(C|D,A)= D logP(c|d,A)= > log
(c,d)e(C,D) (c,d)e(C,D) Z exp Z ﬂﬁfi (C' ; d)

Building a Maxent Model

= Define features (indicator functions) over data
points.

= Features represent sets of data points which are
distinctive enough to deserve model parameters.

= Usually features are added incrementally to “target”
errors.

= For any given feature weights, we want to be able to
calculate:

= Data (conditional) likelihood

= Derivative of the likelihood wrt each feature weight
= Use expectations of each feature according to the model

= Find the optimum feature weights (next part).

The Likelihood Value

= The (log) conditional likelihood is a function of the iid data
(C,D) and the parameters A:

log P(C|D,A)=log []P(cld,)= > logP(c|d,A)

(c,d)e(C,D) (c,d)e(C,D)
= If there aren’t many values of ¢, it's easy to calculate:
exp) A f(c.d)

log P(C|D,A)= Z log ;
(c.d)e(C,D) Zexp Z A f.(c,d)

= We can separate this into two components:

log P(C| D,)= Y, logexpY A fi(e.d) = Y logY exp Y Afi(c'.d)

(c.d)e(C,D) (c.d)e(C,D) ¢!

log P(C|D,1)=N(A) — M(A)

= The derivative is the difference between the derivatives of each component

The Derivative |: Numerator

a Z lOg expzlcifi(cad) 5 ﬂ’ifi(cad)
aN(ﬂ“) _ (c,d)e(C,D) i _ (C,dg;?,D)Zi: o

0/, 04, 04

1 1

0> A, f(c.d)

- 3

(c,d)e(C,D) a/lz

= > fie.d)

(c,d)e(C,D)

Derivative of the numerator is: the empirical count(f;, ¢)

The Derivative II: Denominator

MO o > log;expzi:/lifi(c',d)

_ (c,d)e(C,D)
o7, o7,
. | 5;6Xp2%ﬁ(c',d)
(cdiec.0) D XD Z A1, (", d) oA
. R 1 Zexpzi:/i,.f,.(c',d) aZz,.f,.(c',d)
(cd)e(CD)ZeXpZﬂ'f(C” d) < 1 04

expz/lf(c d) 03 Af(c.d)
:(c,déD)gzepozf(c" 4 or

— Z ZP(C | d,A) f,(c',d) = predicted count(f, A)

(c,d)e(C,D) ¢

The Derivative |l

dlog P(C | D, A -
og éﬁl) _ actual count(.. C)— predicted count(£, 4)

= The optimum parameters are the ones for which
each feature’s predicted expectation equals its
empirical expectation. The optimum distribution is:
= Always unique (but parameters may not be unique)
= Always exists (if features counts are from actual data).

= Features can have high model expectations
(predicted counts) either because they have large
weights or because they occur with other features

which have large weights.

Summary so far

= We have a function to optimize:

exp) A f,(c.d)
log P(C|D,A) = Z log ;
(c.d)e(C,D) Z exp Z A f.(c,d)

= We know the function’s derivatives:
Olog P(C | D,A)/0A = actual count(f,,C)—predicted count(f,, 1)

= Perfect situation for general optimization (Part Il)

= But first ... what has all this got to do with
maximum entropy models?

Maximum Entropy Models

= An equivalent approach:
» Lots of distributions out there, most of them
very spiked, specific, overfit.
= We want a distribution which is uniform
except in specific ways we require.

« Uniformity means high entropy - we can
search for distributions which have properties
we desire, but also have high entropy.

(Maximum) Entropy

= Entropy: the uncertainty of a distribution.
= Quantifying uncertainty (“surprise”): .

= Event X
= Probability p, HO'S/—\
= “Surprise” log(1/p,) ;
0 0.5 1
= Entropy: expected surprise (over p): PHEADS
i 1 A coin-flip is
H(p)=FE | log— most uncertain
p_ D, | for a fair coin.

H(p) — _pr logpx

= What do we want from a distribution?
= Minimize commitment = maximize entropy.
= Resemble some reference distribution (data).

= Solution: maximize entropy H, subject to
feature-based constraints:

= Adding constraints (features):
= Lowers maximum entropy
» Raises maximum likelihood of data
» Brings the distribution further from uniform
= Brings the distribution closer to data

0.5

0 0.5 1

Unconstrained,
max at 0.5

0.5

0 0.5 1
Constraint that

Pugaps = 0.3

-

._-_ —

' %
F AR
' ' oy,
e i e

02 04 06 038 02 04 06 038

ey =

02 04 06 038

|-

Maxent Examples Il

= Lets say we have the following event space:

NN NNS [NNP |NNPS |VBZ |VBD

= ... and the following empirical data:
3 5 11 13 3]

» Maximize H:

1/e (1/e |1/e |1/e |1/e |1/e
= ... want probabilities: E[NN,NNS,NNP,NNPS,VBZ,VBD] = 1

1/6 |1/6 |1/6 |(1/6 |1/6 |1/6

(&) Maxent Examples IV

= oo uniform!

= N* are more common than V*, so we add the feature £ = {NN,
NNS, NNP, NNPS}, with E[f\] =32/36

NN |NNS |NNP |NNPS |VBZ |VBD
8/36 |8/36 |8/36 |8/36 |2/36 |2/36

= ... and proper nouns are more frequent than common nouns,
so we add f, = {NNP, NNPS}, with E[f;] =24/36

4/36 |4/36 |12/36|12/36|2/36 |2/36

= ... we could keep refining the models, e.g. by adding a feature
to distinguish singular vs. plural nouns, or verb types.

= Maxent models handle overlapping features well.

= Unlike a NB model, there is no double counting!

Empirical

A

a

2

1

2

1

A

a

A

a

A a

All =1 A=2/3 A=2/3
A a A a A a
1/411/4 1/311/6 1/311/6
1/411/4 1/311/6 1/311/6
A a A a A a
hoa AR
hoa AR

Example: NER Overlap

Grace is correlated Feature Weights

with PERSON, but \w;\ Feature | PERS| LOC

does not add much Previous wo at -0.73| 0.94

evidence on top of Current word m*om 0.00

already knowing Beginning bigram <G 45| -0.04

prefix features. Current POS tag NNP | 0.47| 0.45

Prev and cur tags IN NNP | -0.10| 0.14

Local Context Previous state Other -0.70| -0.92

Prev | Cur Next Current signature XX 0.80| 0.46

State | Other | 777 2722 Prev state, cur sig O-Xx 0.68| 0.37

Word | at Crace | Road Prev-cur-next sig X-Xx-Xx | -0.69| 0.37

Tag IN NNP | NNP P. state - p-cur sig O-x-Xx | -0.20| 0.82
Sig X XX XX

Total: -0.58 | 2.68

= Maxent models handle overlapping features well, but
do not automatically model feature interactions.

Empirical

A

a

1

1

1

0

A a A a A a
All =1 A=2/3 B=2/3
A a A a A a
1/4 | 1/4 1/311/6 4/9 1 2/9
1/4 | 1/4 1/311/6 2/9 [1/9
A a A a A

0) 0) I Aathg | Ag
0 0 N N

= |f you want interaction terms, you have to add them:

A a A a A a
Empirical b b b
A |a A=2/3 B=2/3 AB =1/3
]] A a A a A a
10 1/31/6 4/9 |2/9 1/31/3
1/3 1/6 2/911/9 1/3 |0

= A disjunctive feature would also have done it (alone):

A

a

A

a

1/3

1/3

1/3

0

Feature Interaction

= For loglinear/logistic regression models in
statistics, it is standard to do a greedy
stepwise search over the space of all
possible interaction terms.

= This combinatorial space is exponential in
size, but that’s okay as most statistics
models only have 4-8 features.

= In NLP, our models commonly use hundreds
of thousands of features, so that’s not okay.

= Commonly, interaction terms are added by
hand based on linguistic intuitions.

Previous-state and current-
signature have interactions,
e.g. P=PERS-C=Xx indicates
C=PERS much more strongly
than C=Xx and P=PERS
independently.

This feature type allows the
model to capture this
interaction.

Local Context

Feature Weights

Prev | Cur Next
State | Other | 777 77
Word | at Grace | Road
Tag IN NNP | NNP
Sig X XX XX

Feature Type Feature | PERS LOC
Previous word at -0.73 | 0.94
\»\Current word Grace 0.03| 0.00
B@iqning bigram <G 0.45| -0.04
CurrendROS tag NNP | 0.47| 0.45
Prev and cingags | INNNP | -0.10| 0.14
state _{Other -0.70 | -0.92

Current sign XX 0.80| 0.46
Prev state, cur sig A O-Xx 0.68 0.37
Prev-cur-next sig X-Xx-Xx | -0.69| 0.37
P. state - p-cur sig O-x-Xx | -0.20| 0.82
Total: -0.58 | 2.68

Classification

= What do these joint models of P(X) have to do
with conditional models P(C|D)?
= Think of the space CxD as a complex X.
m Cis generally small (e.g., 2-100 topic classes)
= D is generally huge (e.g., number of documents)
= We can, in principle, build models over P(C,D).

= This will involve calculating expectations of
features (over CxD):

E(£)=Y e Pled) f(c.d) D

= Generally impractical: can’t enumerate d
efficiently.

Classification Il

s D may be huge or infinite, but only a few d
occur in our data.

= What if we add one feature for each ¢ and C

constrain its expectation to match our
empirical data?

V(d)e D P(d)=P(d)

= Now, most entries of P(c,d) will be zero.

= We can therefore use the much easier sum:

E(fl) - Z(C,d)E(C,D) P(C’ d)fl (Cﬂ d)
- Z(c,d)e(c,D)Aﬁ(d)>o P(c,d) f.(c,d)

Classification Il

= But if we’ve constrained the D marginals
V(d)e D P(d)=P(d)

then the only thing that can vary is the conditional
distributions:

P(c,d) = P(c|d)P(d)
= P(c|d)P(d)

= This is the connection between joint and conditional
maxent / exponential models:

= Conditional models can be thought of as joint models
with marginal constraints.

= Maximizing joint likelihood and conditional
likelihood of the data in this model are equivalent!

= Naive-Bayes is another tool for classification: e

= We have a bunch of random variables
(data features) which we would like to use

to predict another variable (the class): @ @

= The Naive-Bayes likelihood over classes is:

exp{log P(c)+ Zlog P9, | C):|

P(c)] | P9,]¢)
P(c|d,A)=
2P P4 1¢) =

Zexp{log P(c)+ Y logP(4, |)}

eXp{Z ﬂicfic(d,c)}
Naive-Bayes is just an ‘ l
exponential model. ZGXP{Z/EC'J%(Q',C')}

Comparison to Naive-Bayes

= The primary differences between Naive-
Bayes and maxent models are:

Naive-Bayes

Trained to maximize joint
likelihood of data and
classes.

Features assumed to

supply independent

evidence.
Feature weights can be set

independently.

Features must be of the
conjunctive ®(d) A ¢ = ¢,
form.

Maxent

Trained to maximize the
conditional likelihood of
classes.

Features weights take
feature dependence into

account.
Feature weights must be

mutually estimated.

Features need not be of the
conjunctive form (but
usually are).

Example: Sensors

Ralnlng

P(+,+,r) = 3/8 P(-,-r

Reality
Sunny

@@ :

=1/8 P(+,+,s)=1/8 P(-,-,s) = 3/8

NB Model NB

[|
(kaining?) | -
My () f

P(s)=1/2 = P(r,+,

P(+]s) = 1/4 = P

P(+|r) = 3/4 = P(r|+,+) = 9/10
(

FACTORS: PREDICTIONS:

+) = (12)(%)(%4)
s,+,+) = (2)(%4)(%)

s P(s|[+,+)=1/10

Example: Sensors

= Problem: NB multi-counts the evidence.
P(r|+.4+) P(r) P(+|r) P(+|r)
P(s|+.4) P(s) P(+]s) P(+]s)
= Maxent behavior:

« Take a model over (M,,...M_,R) with features:

s fit M=+, R=r weight: A;

s fi: M;=1, R=s weight: A;
= exp(A-Ag) is the factor analogous to P(+|r)/P(+]s)
= ... but instead of being 3, it will be 31/7

» ... because if it were 3, E[f.] would be far higher
than the target of 3/8!

Example: Stoplights

Reality

Lights Working

&5

P(g,r,w) = 3/7

[o5Te.

P(r,g,w) = 3/7

Lights Broken

&5

P(r,r,0) = 1/7

NB Model

(Borking?
s Cews

NB FACTORS:

P(W) = 6/7
P(rlw) = 1/2

P(glw) = 1/2

Example: Stoplights

= What does the model say when both lights are red?
« P(b,r,r) = (1/7)(1)(1) =1/7 =4/28
= P(w,r,r)=(6/7)(1/2)(1/2) =6/28 =6/28
= P(w|r,r) =6/10!

s We'll guess that (r,r) indicates lights are working!

= Imagine if P(b) were boosted higher, to 1/2:
« P(b,r,r) = (1/2)(1)(1) =1/2 =4/8
« P(w,r,r)=(1/2)(1/2)(1/2) =1/8 =1/8
= P(w|r,r) = 1/5!
= Changing the parameters, bought conditional
accuracy at the expense of data likelihood!

Smoothing: Issues of Scale

= Lots of features:
= NLP maxent models can have over 1M features.

= Even storing a single array of parameter values can
have a substantial memory cost.

= Lots of sparsity:
= Overfitting very easy - need smoothing!

= Many features seen in training will never occur again at
test time.

= Optimization problems:

= Feature weights can be infinite, and iterative solvers
can take a long time to get to those infinities.

Smoothing: Issues

= Assume the following empirical distribution:

Heads Tails
h t

= Features: {Heads}, {Tails}

= We'll have thelfollowing modelgistribution:
e e

Pueaps = Prans =
e +e’ e +e

= Really, only one degree of freedom (A = A,-A7)

Mg = 0
eHeﬂT el e

PruEADs = 4. = = 1 o0 Prans T 7
eMe™ fefe™ ot hp e’ +e °°

Smoothing: Issues

s The data likelihood in this model is:

log P(h,t
log P(h,t

0 L~

0
_ P _
log P 4 log P 4 log P -
_ 6 _
_ ~ -8 ~8

A)=hlog pypans T 1108 Prans
A)=hA—(t+h)log(1+e”)

-~

o AN O

_bCD
pe]
o
he]
N

=4 -2 0 2 4 -
A A
Heads | Tails Heads | Tails
3 1 4 0

= In the 4/0 case, there were two problems:

= The optimal value of 4 was «, which is a
long trip for an optimization procedure.

= The learned distribution is just as spiked
as the empirical one - no smoothing.

= One way to solve both issues is to just
stop the optimization early, after a few
iterations.
= The value of A4 will be finite (but
presumably big).

= The optimization won’t take forever
(clearly).

= Commonly used in early maxent work.

Heads | Tails

Input

Heads | Tails

Output

Smoothing: Priors (MAP)

What if we had a prior expectation that parameter values
wouldn’t be very large?

We could then balance evidence suggesting large
parameters (or infinite) against our prior.

The evidence would never totally defeat the prior, and
parameters would be smoothed (and kept finite!).

We can do this explicitly by changing the optimization
objective to maximum posterior likelihood:

log P(C,A|D)=1logP(A)+1log P(C|D,A)

Posterior Prior Evidence

262 =

= Gaussian, or quadratic, priors:
= Intuition: parameters shouldn’t be large. -2

= Formalization: prior expectation that each _4
parameter will be distributed according to
a gaussian with mean p and variance 2.

They don’t even
capitalize my
name anymore!

P(ﬂﬁ):

1 ()z’i - ;ui)z
o2 p(207]

= Penalizes parameters for drifting to far
from their mean prior value (usually u=0).

s 202=1 works surprisingly well.

) Smoothing: Priors

= |f we use gaussian priors:
» Trade off some expectation-matching for smaller parameters.

= When multiple features can be recruited to explain a data
point, the more common ones generally receive more weight.

= Accuracy generally goes up!
= Change the objective:

log P(C, 1| D) =1log P(C| D, 1) —log P(1) .

log P(C,A|D)=) P(c|d.,A) —Z(}“"_”")z T

2
(¢.d)e(C.D) i 20, -8
= Change the derivative:

dlog P(C,A| D)/ 04 = actual(f;, C)—predicted f;, 1) — (A — 1)/ &

Example: NER Smoothing

Feature Weights

Because of smoothing, Feature Type Feature | PERS| LOC

the more common prefi
and single-tag features \ Previous word at -0.73 | 0.94

have larger weights even t word Grace 0.03| 0.00

though entire-word and ~—_| Beginning <G 0.45| -0.04

tag-pair features are
gp Curre tag NNP 0.47| 0.45

more specific.
Prev and cur tags IN NNP | -0.10| 0.14

Local Context Previous state Other -0.70| -0.92

Prev | Cur Next Current signature XX 0.80| 0.46

State | Other | 72?2 277 Prev state, cur sig O-Xx 0.68| 0.37

Word | at Grace | Road Prev-cur-next sig X-Xx-Xx | -0.69| 0.37

Tag IN NNP | NNP P. state - p-cur sig O-x-Xx | -0.20| 0.82
Sig X XX XX

Total: -0.58 | 2.68

= From (Toutanova et al., 2003): 2;
97,1 4
Overall Unknown 97 (/ . :o Sm;othing -
Accurac 96,9 n —— Smoothing |-
. Y | Word Acc oo [~
Without | 96.54 | 85.20 S e | .
Smoothing %66 / \\
With 97.10 | 88.20 oo |-
Smoothing 9,4 3
. e 0 1(I)0 2(I)O 3(;0 4(;0
- SmOOthlng hEIpS Training lterations

= Softens distributions.

= Pushes weight onto more explanatory features.

= Allows many features to be dumped safely into the mix.
» Speeds up convergence (if both are allowed to converge)!

= Another option: smooth the data, not the parameters.

= Example: © 0
-2 -2
4 4
-6 -6
i/ — 0 2 4 i/ — 0 2 4
Heads | Tails - Heads | Tails
4 0 5 1

» Equivalent to adding two extra data points.
« Similar to add-one smoothing for generative models.
= Hard to know what artificial data to create!

Smoothing: Count Cutoffs

= In NLP, features with low empirical counts were
usually dropped.

Very weak and indirect smoothing method.
Equivalent to locking their weight to be zero.

Equivalent to assigning them gaussian priors with
mean zero and variance zero.

Dropping low counts does remove the features
which were most in need of smoothing...

... and speeds up the estimation by reducing model
size ...

... but count cutoffs generally hurt accuracy in the
presence of proper smoothing.

s We recommend: don’t use count cutoffs unless
absolutely necessary.

Part Il: Optimization

a. Unconstrained optimization methods
b. Constrained optimization methods

c. Duality of maximum entropy and
exponential models

Function Optimization

To estimate the parameters of a maximum likelihood
model, we must find the A which maximizes:

expz/ll.fi(c, d)
log P(C|D,A) = log J '
<c,dgz?,z>> D exp Y A fi(c'.d)

We’ll approach this as a general function
optimization problem, though special-purpose
methods exist.

An advantage of the general-purpose approach is

that no modification needs to be made to the
algorithm to support smoothing by priors.

Notation

Assume we have a
function f(x) from
R” to R.

The gradient Vf(x)

is the nx1 vector
of partial

derivatives 0f/0x;.

The Hessian V?fis

the nxn matrix of
second derivatives

0/ 0x 0x;.

Of / Ox, |

Of /0x,

02 f] ox,0x,

_82f / Ox 0Ox,

0 f / ox,0x,

0’ f/ox,0x,

= Constant (zeroth-order):
fo ()= f(x))

= Linear (first-orden):

o ()= f0x0) +Vf (x) (x = ;)
= Quadratic (second-order):
o ()= f(xy) +Vf(x0) (x =) sl T

o) VS xy) 8

Unconstrained Optimization

= Problem: x" =argmax f(x)

X

= Questions:
» Is there a unique maximum?
« How do we find it efficiently?

« Does f have a special form?

= Our situation:
m /is convex.
s /s first derivative vector Vfis known.
s /'s second derivative matrix V2fis not available.

Convexity

f(zwixi) > Zwif(xi) Zwi =1

Convex Non-Convex

Convexity guarantees a single, global maximum
because any higher points are greedily reachable.

Convexity I

s Constrained H(p)=—- 2 xlogxis s
convex: I
= — X log x IS convex 05
= — > xlogx is convex (sum of - 1 >

convex functions is convex).

= The feasible region of
constrained H is a linear
subspace (which is convex)

= The constrained entropy
surface is therefore convex.

= The maximum likelihood
exponential model (dual)
formulation is also convex.

Optimization Methods

= Iterative Methods:
» Start at some x..

= Repeatedly find a new x;,, such that f(x,) = f(x)).

s lterative Line Search Methods:

= Improve x; by choosing a search direction s; and

setting
X, =argmax f(x; +1s,)

X;+1s;

= Gradient Methods:
= 5;is a function of the gradient V/ at x;.

Choose a start point x, and a
search direction s..

Search along s. to find the line
maximizer: x, =argmax f(x, +1s,)

X; +is;

When are we done?

Line Search I

= One dimensional line search is much simpler than
multidimensional search.

= Several ways to find the line maximizer:
= Divisive search: narrowing a window containing the max.

1
3

= Repeated approximation:

Gradient Ascent |

s (Gradient Ascent:
= Until convergence:

1. Find the derivative VA(x).
2. Line search along V/(x).

= Each iteration improves the value of fx).

= Guaranteed to find a local optimum (in theory
could find a saddle point).

= Why would you ever want anything else?
s Other methods chose better search directions.

« E.g., VA(x) may be maximally “uphill”, but you’d
rather be pointed straight at the solution!

==

= The gradient is always perpendicular to
the level curves.

= Along a line, the maximum occurs when
the gradient has no component in the line.

= At that point, the gradient is orthogonal
to the search line, so the next direction
will be orthogonal to the last.

What Goes Wrong?

= Graphically:

= Each new gradient is orthogonal to the previous line search, so we'll
keep making right-angle turns. It's like being on a city street grid,
trying to go along a diagonal - you’ll make a lot of turns.

= Mathematically:
= We've just searched along the old gradient direction s, , = VAx,,) .
= The new gradient is Vf(x;) and we know s, ,*-Vf(x,) = Vf(x,)!-VAx, = 0.
= As we move along s, = VAx,), the gradient becomes VAx,+ts,) = VAx))
+1Vefix) s; = VAx,) + tVAx)VAx).
= What about that old direction s, ,?
s 5T (VAx,) T tVfix,)VAX)) =
= VAx,_)TVAX) + tVAx,_)TVAx)VAx,) =

s 0+ tVfx,)TV2f(x)VAx)
= ... SO the gradient is regrowing a component in the last direction!

Conjugacy |

= Problem: with gradient ascent,
search along s, ruined optimization
in previous directions.

= |dea: choose s, to keep the gradient
in the previous direction(s) zero.

= If we choose a direction s, we want:
= Vf(x+1s) to stay orthogonal to previous §
. Si-lT) [Vf(xi—i_tsi)] =0
. Si-lT) [Vf(xi) T tvzf(xi)si] =0
. Si-lT | Vf(xi) T Si—lT | tVZf(xl.) S = 0
n 0+7 [Si-lT) sz(xi) Si]: 0

» If V2f(x) is constant, then we want: s_,'V2f(x)s, =0

Conjugacy Il

= The condition s, 'V2f(x)s,= 0
almost says that the new
direction and the last should be
orthogonal - it says that they
must be V2f(x;)-orthogonal, or
conjugate.

= Various ways to operationalize
this condition.

= Basic problems:

= We generally don’t know V?f(x)).
= It wouldn’t fit in memory anyway.

Orthogonal

Conjugate

Conjugate Gradient Methods

= The general CG method:
= Until convergence:
1. Find the derivative V/(x,).
2. Remove components of Vf(xl-) not conjugate to previous
directions.
3. Line search along the remaining, conjugate projection of Vf(xl-).

= The variations are in step 2.

= If we know V2f(x,) and track all previous search directions, we can
implement this directly.
= If we do not know V2f(x,) —we don’t for maxent modeling - and it
isn’t constant (it's not), there are other (better) ways.
= Sufficient to ensure conjugacy to the single previous direction.
= Can do this with the following recurrences [Fletcher-Reeves]:
T
S ZVf(x)+ fs _ V@)V ()
: : Tl VIi(x_) VI(x.)

Constrained Optimization

= Goal: X = argmax f(x)

X

subject to the constraints:
Vi:g(x)=0
= Problems:

» Have to ensure we satisfy the constraints.

= No guarantee that v/(x") =0, so how to
recognize the max?

= Solution: the method of Lagrange Multipliers

At a global max, VAx") = 0.

Inside a constraint region,
VAix") can be non-zero, but
its projection inside the
constraint must be zero.

In two dimensions, this

| love
this part.

means that the gradient O
must be a multiple of the O

O

constraint normal:

Vi(x) = AVg(x)

Lagrange Multipliers Il

= |n multiple dimensions, with multiple constraints, the
gradient must be in the span of the surface normals:

Vi(x) =2, A4 Vg,(x)
= Also, we still have constraints on :
Vi:g(x)=0

= We can capture both requirements by looking for critical
points of the Lagrangian:

Ax,A) = f(x) = A.g,(x)

OA/Ox = 0 recovers the OA/OA,= 0 recovers
gradient-in-span property. constraint .

The Lagrangian as an Encoding

= The Lagrangian:

VA(x, A
AGA) = f(x) = Y A8, () e t)
= Zeroing the x; derivative recovers the jth
component of the gradient span condition: 8:A

J J

0 =Vf(x) -) A4V (x)

= Zeroing the A, derivative recovers the ith constraint:

-

OA(x,1) 0f (x) 0g,(x) P
= — >y 1= |
Ox Ox Z - 0x, - G:xJ

oA

OA(x, /) el
- oA,

0 o gi(x)
04,
0= g,(x)

A Duality Theorem

= Constrained maxima x~ occur at critical points (x*, 1) of A where:

1. x"is alocal maximum of A(, A1)

2. A7is alocal minimum of A(x", A) A

A

= Proof bits:

. . %k
At a constrained maximum X :
= All constraints ; must be satisfied at x".

X

= The gradient span condition holds at x” for some A.

[Local max in x] If we change x*, slightly, while staying in the
constraint region, f(x) must drop. However, each g.(x) will stay
zero, so A(x, A) will drop.

[Local min in A] If we change A7, slightly, then find the x which
maximizes A, the max A can only be greater than the old one,
because at X A’s value is independent of A, so we can still get it.

Direct Constrained Optimization

= Many methods for constrained optimization are
outgrowths of Lagrange multiplier ideas.

= lterative Penalty Methods

» Can add an increasing penalty to the objective for violating
constraints:

S penarizen (X, k) = f(x) - Zkgi(x)z /2

= This works by itself (though not well) as you increase %.

« For any 4, an unconstrained optimization will balances the
penalty against gains in function value

= & may have to be huge to get constraint violations small.

Direct Constrained Optimization

= Better method: shift the force exerted by the penalty onto
Lagrange multipliers:

A pevarzp (6, A K) = [(0) = 2 A48,(x) = D kg, (x)"/2

= Fix A=0 and k=k,. Max over the penalized surface.
» Each round: /

= X = arg max A(x,)t*,k) Penalty cost grows each round.
| k — OKk

Lagrange multipliers take over the
. /”tl. = /”tl. + kgl.(x) «— force that the penalty function
exerted in the current round.

= This finds both the optimum x“and A" at the same time!

Maximum Entropy

= We can build its Lagrangian:

A(p,A)= =) p.logp, —Z&-{Cf, —prf,-(X)}

X I

= We could optimize this directly to get our maxent model.

Lagrangian: Max-and-Min

= Can think of constrained optimization as:

max min A(x,4) = f(x) — Z/Iigi(x)

X A

= Penalty methods work somewhat in this way:

= Stay in the constrained region, or your function value
gets clobbered by penalties.

= Duality lets you reverse the ordering:
min max A(x,4) = f(x) - D A g(x)

= Dual methods work in this way:
= Solve the maximization for a given set of As.
» Of these solutions, minimize over the space of As.

The Dual Problem

s For fixed 1, we know that A has a maximum where:

oA(p,A) _ 2P Io8P: —@Zﬁ,{c,—gpr,(x)}

op, op, ’ op, -9
= ...and:
02.p,logp, >3 /L{C, —prf,(x)}
o, T ltler, B =2 AA)
= ... S0 we know:

I+logp, = Zﬂ’iﬁ(x)
px o« expzﬂ‘iﬁ(x)

The Dual Problem

= We know the maximum entropy distribution has the
exponential form:

p(A)eexpd 4,f,(x)

= By the duality theorem, we want to find the multipliers A that
minimize the Lagrangian:

A(p,A)= =) p.logp, —Z%{Cf, —prfi(X)}

= The Lagrangian is the negative data log-likelihood (next

slides), so this is the same as finding the 4 which maximize
the data likelihood - our original problem in part I.

) The Dual Problem

A(p,A) = Zp log p, Zﬂ{ prf,-(X)}

— {‘Z%Zﬂf(x)} {logZepoif(x)}
-Y A€, {przﬂif,-(ﬂ}

) The Dual Problem

A(p,A) = logzexpzﬂ“i]pi(x) _ZﬁﬁCfi C, :Zﬁxﬁ(x)

= |logX expY 2/, |- 3 pAS ()

= logZeXpZil.fi(x) —Zf?x logexpzﬂ’i]pi(x)

expy A f(x)
) _Zx:p’“log Sexp Y A fi(x) :_Zx:pxlogpx

Iterative Scaling Methods

= [terative Scaling methods are an alternative
optimization method. (Darroch and Ratcliff, 72)

= Specialized to the problem of finding maxent models.
= They are iterative lower bounding methods [so is EM]:
= Construct a lower bound to the function.
= Optimize the bound.

s Problem: lower bound can be loose!

= People have worked on many variants, but these
algorithms are neither simpler to understand, nor

empirically more efficient.

algorithms.

= Construct a quadratic approximation.
= Maximize the approximation.

Various ways of doing each approximation:

= The pure Newton method constructs the tangent
quadratic surface at x, using Vf(x) and V2f(x).

» This involves inverting the V2f(x), (slow). Quasi-
Newton methods use simpler approximations to V2f(x).
= |f the number of dimensions (number of features) is
large, V2f(x) is too large to store; limited-memory
quasi-Newton methods use the last few gradient values
to implicitly approximate V2f(x) (CG is a special case).
Limited-memory quasi-Newton methods like in
(Nocedal 1997) are possibly the most efficient way ©-°f;
to train maxent models (Malouf 2002).

| don’t really
remember this.

Part lll: NLP Issues

= Sequence Inference

= Model Structure and Independence
Assumptions

s Biases of Conditional Models

Inference in Systems

(

Sequence Level

Sequence
Data %

» Feature
Local Extraction
Data

5

Maximum
Entropy Models

—

| Label |
—»

Features

Classifier Type

/Optimization

Smoothing |

Conjugate
Gradient

/

Quadratic
Penalties

Sequence Model ||nference

’ SS5h
Local Level

NLP Issues

Beam Inference

Sequence Model Best Sequence

Inference

= Beam inference:

= At each position keep the top k£ complete sequences.
= Extend each sequence in each local way.

= The extensions compete for the £ slots at the next position.

= Advantages:

» Fast; and beam sizes of 3-5 are as good or almost as good
as exact inference in many cases.

= Easy to implement (no dynamic programming required).
= Disadvantage:
» Inexact: the globally best sequence can fall off the beam.

Viterbi Inference

Sequence Model Best Sequence

Inference

= Viterbi inference:
= Dynamic programming or memaoization.

= Requires small window of state influence (e.g., past two
states are relevant).

= Advantage:
= Exact: the global best sequence is returned.

= Disadvantage:

= Harder to implement long-distance state-state interactions
(but beam inference tends not to allow long-distance
resurrection of sequences anyway).

Independence Assumptions

= Graphical models describe the conditional
independence assumptions implicit in
models.

orer oo
OO O

HMM Naive-Bayes

s Effects

« Children (the w, here) are
effects in the model.

= When two arrows exit a node,
the children are (independent)
effects.

s Causes

» Parents (the w, here) are
causes in the model.

= When two arrows enter a node
(a v-structure), the parents are
in causal competition.

Explaining-Away

= When nodes are in causal
competition, a common interaction
is explaining-away.

= |n explaining-away, discovering
one cause leads to a lowered belief

in other causes. @

Example: | buy lottery tickets A and B. You assume
neither is a winner. | then do a crazy jig. You then
believe one of my two lottery tickets must be a winner,
50%-50%. If you then find that ticket A did indeed win,
you go back to believing that B is probably not a winner.

Bis a
winner,

Data and Causal Competition

= Problem in NLP in general: e

= Some singleton words are noise.
= Others are your only only

glimpse of a good feature. @ @

= Maxent models have an interesting, potentially NLP-
friendly behavior.

Optimization goal: assign the correct class.

Process: assigns more weight (“blame”) to features which
are needed to get classifications right.

Maxent models effectively have the structure shown,
putting features into causal competition.

Example WSD Behavior |

= line, (a phone line)
A) “thanks anyway, the transatlantic line, died.”

B) “... phones with more than one line,, plush
robes, exotic flowers, and complimentary wine.’

)

= In A, “died” occurs with line, 2/3 times.
= In B, “phone(s)” occurs with line, 191/193 times.
= “transatlantic” and “flowers” are both singletons in data

= We'd like “transatlantic” to indicate line, more than
“flowers” does...

Example WSD Behavior |l

= Both models use “add one” pseudocount smoothing
= With Naive-Bayes:

Py (flowers|2)) Py (transatlantic|2)

2
P, (flowers|1) P, . (transatlantic | 1)
= With a word-featured maxent model:
P, (flowers|2) 5 05 P, (transatlantic | 2) 174

P . (flowers |1) P, . (transatlantic | 1)

= Of course, “thanks” is just like “transatlantic’!

Markov Models for POS Tagging

2

Joint HMM Conditional CMM
= Need P(c|c;), P(Owlc) w Need P(clw,c.,), P(w)
= Advantage: easy to = Advantage: easy to
train. include features.

= Could be used for _ _
language modeling. = Typically split P(clw,c_;)

WSJ Results

= Tagging WSJ sentences, using only previous-tag and
current-word features.

Penn Treebank WSJ, Test Set

HMM CMM
91.2 89.2

= Very similar experiment to (Lafferty et al. 2001)

= Details:
= Words occurring less than 5 times marked UNK
= No other smoothing.

Label Bias

= Why does the conditional CMM underperform the joint
model, given the same features?

= |dea: label bias (Bottou 1991)
= Classes with low exit entropy will be preferred.

= “Mass preservation” - if a class has only one exit, that exit

is taken with conditional probability 1, regardless of the
next observation.

= Example:

» If we tag a word as a pre-determiner (PDT), then the next
word will almost surely be a determiner (DT).

= Previous class determines current class regardless of word

States and Causal Competition

= In the conditional model shown, C, and W are

competing causes for C.

= Label bias is explaining-away.

» The C, explains C so well that W is ignored. é\D

= The reverse explaining-away effect:
= “Observation bias”
« The W explains C so well that C is ignored.

= We can check experimentally for these effects.

Example: Observation Bias

Log Probability

HMM CMM
Correct Tags | PDT |DT| NNS | VBD |. -0.0 -1.3
Incorrect Tags | DT | DT | NNS VBD | . -5.4 -0.3
Words All | the |indexes | dove

= “All” is usually a DT, not a PDT.
= “the” is virtually always a DT.

= The CMM is happy with the (rare) DT-DT
sequence, because having “the” explains the
second DT.

O HMM
X CMM

... if anything, low-entropy states are dispreferred by the
CMM.

= Label bias might well arise in models with more
features, or observation bias might not.

= Top-performing maxent taggers have next-word
features that can mitigate observation bias.

Another sequence model: Conditional Random Fields (CRFs)
of (Lafferty et al. 2001).

A whole-sequence conditional model rather than a chaining
of local models.

exp Y 4 fi(c,d)
Dexpd Af (¢ d)

P(c|d,)=

The space of ¢’s is now the space of sequences, and hence
must be summed over using dynamic programming.

Training is slow, but CRFs avoid causal-competition biases.

Model Biases

= Causal competition between hidden variables seems
to generally be harmful for NLP.

Classes vs. observations in tagging.
Empty input forcing reductions in shift-reduce parsing.

= Maxent models can and do have these issues, but...

The model with the better features usually wins.

Maxent models are easy to stuff huge numbers of non-
independent features into.

These effects seem to be less troublesome when you
include lots of conditioning context

Can avoid these biases with global models, but the
efficiency cost can be huge.

Part IV: Resources

s Our Software

= Other Software Resources

s References

Classifier Package

= Our Java software package:
= Classifier interface

» General linear classifiers

= Maxent classifier factory

= Naive-Bayes classifier factory
= Optimization

= Unconstrained CG Minimizer

=« Constrained Penalty Minimizer

= Available at:
= http://nlp.stanford.edu/downloads/classifier.shtml

T NB!

Other software sources

= http://maxent.sourceforge.net/

= Jason Baldridge et al. Java maxent model
library. GIS.

= http://www-rohan.sdsu.edu/~malouf/pubs.html

= Rob Malouf. Frontend maxent package that
uses PETSc library for optimization. GIS, IS,
gradient ascent, CG, limited memory variable
metric quasi-Newton technique.

= http://search.cpan.org/author/TERDOEST/
= Hugo WL ter Doest. Perl 5. GIS, lIS.

Other software non-sources

= http://www.cis.upenn.edu/~adwait/statnlp.html

» Adwait Ratnaparkhi. Java bytecode for maxent
POS tagger and sentence boundary finder. GIS.

= http://www.cs.princeton.edu/~ristad/

» Eric Ristad once upon a time distributed a maxent
toolkit to accompany his ACL/EACL 1997 tutorial,
but that was many moons ago. GIS.

= http://www.cs.umass.edu/~mccallum/mallet/

= Andrew McCallum announced a package at NIPS
2002 that includes a maxent classifier also using
a limited memory quasi-Newton optimization
technique. But delivery seems to have been
“delayed”.

References:
Optimization/Maxent

Adam Berger, Stephen Della Pietra, and Vincent Della Pietra. 1996.
“A maximum entropy approach to natural language processing.”
Computational Linguistics. 22.

J. Darroch and D. Ratcliff. 1972. “Generalized iterative scaling for
log-linear models.” Ann. Math. Statistics, 43:1470-1480.

John Lafferty, Fernando Pereira, and Andrew McCallum. 2001.
“Conditional random fields: Probabilistic models for segmenting
and labeling sequence data.” In Proceedings of the International
Conference on Machine Learning (ICML-2001).

Robert Malouf. 2002. "A comparison of algorithms for maximum
entropy parameter estimation."” In Proceedings of the Sixth
Conference on Natural Language Learning (CoNLL-2002). Pages
49-55.

Thomas P. Minka. 2001. Algorithms for maximum-likelihood
logistic regression. Statistics Tech Report 758, CMU.

Jorge Nocedal. 1997. “Large-scale unconstrained optimization.” In
A. Watson and |. Duff, eds., The State of the Art in Numerical
Analysis, pp 311-338. Oxford University Press.

References: Regularization

Stanley Chen and Ronald Rosenfeld. A Survey of Smoothing
Techniques for ME Models. [EEE Transactions on Speech and
Audio Processing, 8(1), pp. 37--50. January 2000.

M. Johnson, S. Geman, S. Canon, Z. Chi and S. Riezler. 1999.
Estimators for Stochastic “Unification-based” Grammars.
Proceedings of ACL 1999.

References: Named Entity
Recognition

Andrew Borthwick. 1999. A Maximum Entropy Approach to Named
Entity Recognition. Ph.D. Thesis. New York University.

Dan Klein, Joseph Smarr, Huy Nguyen, and Christopher D. Manning.
2003. Named Entity Recognition with Character-Level Models.
Proceedings the Seventh Conference on Natural Language
Learning (CoNLL 2003).

References: POS Tagging

James R. Curran and Stephen Clark (2003). Investigating GIS and
Smoothing for Maximum Entropy Taggers. Proceedings of the
1 1th Annual Meeting of the European Chapter of the Association

for Computational Linguistics (EACL'03), pp.91-98, Budapest,
Hungary

Adwait Ratnaparkhi. A Maximum Entropy Part-Of-Speech Tagger. In
Proceedings of the Empirical Methods in Natural Language

Processing Conference, May 17-18, 1996. University of
Pennsylvania

Kristina Toutanova and Christopher D. Manning. 2000. Enriching
the Knowledge Sources Used in a Maximum Entropy Part-of-
Speech Tagger. Proceedings of the jJoint SIGDAT Conference on
Empirical Methods in Natural Language Processing and Very
Large Corpora (EMNLP/VLC-2000), pp. 63-70. Hong Kong.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram

Singer. 2003. Feature-Rich Part-of-Speech Tagging with a Cyclic
Dependency Network. HLT-NAACL 2003.

References: Other
Applications

Tong Zhang and Frank J. Oles. 2001. Text Categorization Based on
Regularized Linear Classification Methods. Information Retrieval
4: 5-31.

Ronald Rosenfeld. A Maximum Entropy Approach to Adaptive
Statistical Language Modeling. Computer, Speech and Language
10, 187--228, 1996.

Adwait Ratnaparkhi. A Linear Observed Time Statistical Parser Based
on Maximum Entropy Models. In Proceedings of the Second
Conference on Empirical Methods in Natural Language
Processing. Aug. 1-2, 1997. Brown University, Providence, Rhode
Island.

Adwait Ratnaparkhi. Unsupervised Statistical Models for
Prepositional Phrase Attachment. In Proceedings of the
Seventeenth International Conference on Computational
Linguistics, Aug. 10-14, 1998. Montreal.

Andrei Mikheev. 2000. Tagging Sentence Boundaries. NAACL 2000,
pp. 264-271.

References: Linguistic Issues

Léon Bottou. 1991. Une approche theorique de I'apprentissage
connexioniste; applications a la reconnaissance de la parole.
Ph.D. thesis, Université de Paris XI.

Mark Johnson. 2001. Joint and conditional estimation of tagging
and parsing models. In ACL 39, pages 314-321.

Dan Klein and Christopher D. Manning. 2002. Conditional Structure
versus Conditional Estimation in NLP Models. 2002 Conference
on Empirical Methods in Natural Language Processing (EMNLP
2002), pp. 9-16.

Andrew McCallum, Dayne Freitag and Fernando Pereira. 2000.
Maximum Entropy Markov Models for Information Extraction and
Segmentation. ICML.

Riezler, S., T. King, R. Kaplan, R. Crouch, J. Maxwell and M. Johnson.
2002. Parsing the Wall Street Journal using a Lexical-Functional
Grammar and Discriminative Estimation Techniques. Proceedings
of the 40th Annual Meeting of the Association for Computational
Linguistics.

