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Introduction &

= Much of NLP can be seen as making decisions
= About structured analyses (sequences, trees, graphs)

= On the basis of multiple information sources, or features (words,
word classes, tree configurations, etc.)

= Widespread adoption of discriminative methods
= Use of arbitrary features
= Various formulations: maxent, SVM, perceptron
= Common use: local discriminative decisions, possibly chained

Relatively new: global methods which exploit model structure
(CRFs, max-margin networks)

= This tutorial will cover:
= Part I: Flat max-margin methods (SVMs)

= Part Il: Structured max-margin methods (sequences, trees,
matchings)
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Outline &

= Part I: Flat Classification
= Linear classifiers and loss functions
= Primal and dual SVM formulations
* Training SVMs

= Part II: Structured Classification
» Structured linear classifiers
» Factored learning formulations
= Experimental results

i

Example: Text Classification

= We want to classify documents into categories

DOCUMENT CATEGORY
... win the election ... POLITICS
... win the game ... SPORTS
... see a movie ... OTHER

= Classically, do this on the basis of words in the document, but
other information sources are potentially relevant:

= Document length

= Average word length

= Document’s source

= Burstiness of new words in document




Some Definitions &

INPUTS ‘XZ ... win the election ...

TRUE y! POLITICS

OUTPUTS

OUTPUT

SPACE RY% SPORTS, POLITICS, OTHER

ANY

OUTPUTS y SPORTS, POLITICS, OTHER

. . dés,

Binary Linear Models &

= Two Classes POLITICS = +, SPORTS = -
= Features f(...win the election...)=[ 1 0 1 0]

= Weights w=[,0-1 1 0]
//H/v/

[“win” “game” “election” “movie’]
= Prediction rule wf
prediction(x,w) = _ + .|./
+ 4 +
4+ ifwlf(x)>0 _ - .
— ifwlf(x) <0 - w'f>0
wf=0




Multiclass Linear Models [ &*

= Multiple Classes SPORTS, POLITICS, OTHER

f;,(POLITICS)=[ 0 0 O 0 1 0 1 0 O 0 0 0]
f,(SPORTS)=[ 1 0 1 0 O O O O O O 0 0]
f,(OTHER)=[ 0 0 0 O 0 O 0 O 1 0 1 0

w=[1l 1-1-2 1-1 1-2-2-1-1 1]

N

[“win”ASPORTS ‘“game’ASPORTS “election”’ASPORTS “movie ASPORTS ]

f(x,y)
W

[ 0 0 - f(x) --- 0 ]
[ wo Wi -+ wy -+ wg ]
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Multiclass Linear Models &

f(x,y)
W

[ 0 0 - f(x) --- 0 ]
[ wo w1 -+ wy -+ wp

= Scores and Predictions
score(xt,y,w) =w f;(y) = wny(xi)

prediction(x', w) = argmaxw ' £;(y)
yeY




Separability

= A data set is (linearly) separable in a feature space if
some linear classifier classifies all points correctly.

Separable Non-Separable

= |f a data set is separable, there are usually multiple
separating hypotheses.
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" " [
Caution about Diagrams | &*
= A diagram you’ll often see: + 4
= Two-class classification - + 4 _
= Fractional feature values _ -
= Mixed regions — non-separable - +
= Sample complexity + -

= Common NLP case:
= Multi-class classification (0]

= Each input corresponds to |Y| points
f(y) (one per class)

= (Mostly) 0/1 features =
= Data on the “corners” /
= Everything’s separable

= Coupon collection




Linear Models: Naive-Bayes

» (Multinomial) Naive-Bayes: x! = di,do,---dn

f;,(y) = [ O 1, #v1, #vo, #opy| 0 1
w = [ - logP(y), logP(vily), logP(valy), --- logP(uvnly) --- ]
score(x;,y,w) = WTfi(y)
= logP(y) + > #uvlog P(vkly)
k
= log (P(y)HP(vkly)#“k)
k
= log (P(y) 11 P(dIy))
dex?
= log P(x',y)
: dst,
Bad Model Assumptions &
Reality
Raining Sunny
ole (9 9
T @@ e
P(+,+,r) = 3/8 P(-,-,r) =1/8 P(+,+,s) =1/8 P(-,-,s) =3/8

NB Model NB FACTORS: PREDICTIONS:
@ = P(s)=1/2 s P(r,+,+) = (V2)(34)(34)
= P(+Is)=1/4 o P(s,+,+) = (V2)(14) (V%)

@ @ n P(+|r)=3/4 - P(r|+’+) = 9/10
= P(s|+,+) =1/10




Worse Model Assumptions E’E

Reality
Lights Working Lights Broken

leide. o3de.  _e3Fe

P(g,r,w) = 3/7

P(r,g,w) = 3/7

P(r,r,b) = 1/7

NB Model NB FACTORS:
= P(w)=6/7 = P(b)=1/7
@ = P(rlw) =1/2 m P(r]b) =1
@ @ = P(gw)=1/2  u P(g|b)=0

Details: Stoplights

J

= What does the model say when both lights are red?

= P(b,rr)y = (1/7)(1)(1) =1/7 = 4/28
= P(w,r,r) =(6/7)(1/2)(1/2) = 6/28 = 6/28
» P(w|r,r) =6/10!

= We'll guess that (r,r) indicates lights are working!

» Imagine if P(b) were boosted higher, to 1/2:

= P(b,r,r) =(1/2)(1)(1) =1/2 =4/8
= P(w,r,r) =(1/2)(1/2)(1/2) =1/8 =1/8
= P(wlr,r) =1/5!

= Changing the parameters bought accuracy at the expense of
data likelihood

= Discriminative models can partially compensate for wrong
models




Generative vs Discriminative

= Generative Models

= Joint density over P(X,Y) :
= E.g. Naive-Bayes, HMMs, PCFGs
= Model assumptions allow decomposition into
small factors which can be estimated
independently @ @ @

= Do not set weights to account for feature
interactions

= Discriminative Models 0
= Predict Y given X, not always distributions
= E.g. maximum entropy, SVMs, perceptrons
= Set weights to account for feature @ @ @
interactions

= Require inference on training set to evaluate
hypotheses

Linear Models: Perceptron :

= Simple discriminative method for intuition

y' = argmaxw ' f;(y)
y
w w41 (G - () -\

—
2q(y")
= This is a procedure, not an optimization problem!

= May not converge if non-separable
* Noisy -

= Voted / averaged perceptron [Freund & Schapire 99, Collins 02]
= Regularize / reduce variance by aggregating over iterations
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Objective Functions &

= Reminder: score(xi,y,w) = wai(y)

= What do we want from weights?
= Depends! "
= Minimize (training) errors? 3 1 ‘
> step (waxyi) — max wai(y)> 0
i yFY' 0
. . , ‘margin”
» This is the “zero-one loss g
= Discontinuous, minimizing is NP-complete - I
= Not really what we want anyway w £y — maxw ' f;(y)
y#Y!

Maxents and SVMs have losses
related to the zero-one loss

Linear Models: Maximum Entropy

= Maximum entropy (logistic regression)
= Use the activations as probabilities:

_ exp(wf(xy)) Make positive
Py, w) = Sy exp(wlf(x,y)) <+ Normalize

= Maximize the (log) conditional likelihood of training data

c exp(w ' f;(y"))
max log ]Z[ Py'IX,w) = XZ: 09 (Zy exD(wai(Y))>

max Z (wai(yi) —log Z eXD(WTfi(Y))>
i y

— _/

“soft margin”




“Soft-Max” &

max(a,b) =~ log (exp(a) + exp(b))

log (exp(a) + exp(b))

i

Maximum Entropy Il &

= Also: regularization (smoothing)

max > (wai(yi) - |OgZeXp(WTfi(Y))) —k|jwl[?
% y
= Maximize likelihood = Minimize “log-loss”

min k||w|[>=Y (wai(yi) —log ZGXD(WTfi(Y)))
y

i

= Motivation
= Connection to maximum entropy principle
= Might want to do a good job of being uncertain on noisy cases...
= ... in practice, though, posteriors are pretty peaked




Log-Loss &

= |f we view maxent as a minimization problem:

i

min kljw|[2~ " (waf(yi) —log " exn(waf,(y))>
y

= This minimizes the “log-loss” on each example

. {wai(yi) —log )" exp(wazt(y))J
y

exp(w ' f;(y")) ) i
= —logP ,
(zyexmwaz-(y)) 09 PR W)
* Log-loss bounds zero-one loss wf;(y") — m7+_ax_wai(y)
y7Fy*
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SVMs &

= SVM Try 1: Separate the training data
Vi,Vy =y wlf(y") > w fi(y)
w T f(...win election..., POLITICS) > w f(...win election..., SPORTS)
w T f(...win election..., POLITICS) > wf(...win election..., OTHER)

1. This is an entire feasible 2. Training data may not
space; need an objective even be separable
function!
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Maximum Margin &

= SVM Try 2: find the maximum margin separator
i hp={° Ty=v

maxXx
[lwl|<1 . — 1 ify#y
st. wifi(y) >wf;(y) +4(y) Vi, Vy

w ! f(win election, POLITICS) > w ' f(win election, SPORTS)+~ | 1
w ! f(win election, POLITICS) > w ' f(win election, OTHER)+~ |1
w £(win election, POLITICS) > w ' f(win election, POLITICS) | O
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Why Max Margin? &

= Why do this? Various arguments:
= Decisions on training points are maximally robust to “feature jitter”

= As we'll see, solution depends only on the boundary cases, or
support vectors (but remember how this diagram is broken!)

= Sparse solutions (features not in support vectors get zero weight)
= Generalization bound arguments

Support vectors
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Max Margin / Small Norm  [&*

= SVM Try 3: find the smallest w which separates data

Remember this '7

maXx
condition? > [Iwll<1

st wf(y) >w fi(y) +4(y) Vi,V
» Instead of fixing the scale of w, we can fix y = 1

1
min  =||w]|?
w 2

st. wifi(y") >w fi(y) + 14(y) Vi,y
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Max Gamma to Min W &

wi< min_ lul?
st , Il >1
st. w ;") >w fi(y) +14>y) Viy st w6 > W f(y) + L(y)  Vi,y
w="yu
min- ful?
_ st uw i (y) > u fi(y) + 4(y) Vi,
v =1/llull
1
min  =[|ul|?
1/[ul|? o2
e, Ll st uTf(y) > uTH) +4(y) Viny

st qul fiy") > yufi(y) +44(y)  Viy
min 2wl
2 .
max_ 1/[|ul]? st wii(y) > wifi(y) +4(y) Viy
Ipafl<1 |
st w'f;(y") > u' i)+ L(y) Viy




Maximum Margin &

= SVM Try 4: allow for non-separability

= Add slack to the constraints _ * &
= Make objective pay (linearly) for slack: - +
. 1 = +
min 5||w||2+c§jgi -
i
st. wifGy)+&>w ) +4G)  Viy
= Cis called the capacity of the SVM — the
smoothing knob (more on this later) + .
. S
= Learning:
= Can stick this into Matlab if you want +
= Constrained optimization is hard; better methods!
[ L] ".‘41'
Min-Max Formulation &

= We have a constrained minimization
min WP+ CY g
st wifiy) + &Z >w fi(y) + 4(y) Viy
= ...but we can solve for &,
Viy, &>w fi(y)+L(y) — w f(y")
Vi, &= max |w f;(y) + ()] —wi(y")
= Giving

w

min 5wl = 0% (W) - mpx (w6 +6))
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Max vs “Soft-Max” Margin [ &*

= SVMs:
min &||w|[2~3" (wai(yi) —max (w'f;(y) + fqz(y)))

7

Hard (Penalized) Margin
= Maxent:

min  kfw]|*=" (wa,(yf) —log > exp (wa,(y)))
y

%

Soft Margin

= Very similar! Both try to make the true score
better than a function of the other scores.
= The SVM tries to beat the augmented runner-up
= The maxent classifier tries to beat the “soft-max”

&;:

Hinge Loss

= Consider the per-instance SVM objective:
min kliwl2=3 (w " £i(y") — max [w E:(y) + 4(»)])

i

» This is called the “hinge loss”
= Upper bounds zero-one loss

= Unlike maxent / log loss, you
stop gaining objective once the
true label wins by enough

= You can start from here and
derive the SVM objective w £ (y") — maxw ! £;(y)
y#Ey!




Loss Functions: |

= Zero-One Loss

Z step (WTfi(yi) -

7

= Hinge
; (wai(yi) — max

* Log

7

mawafxy))
YEY'

> (wai(yi) —log}" exp <WTfi(Y)))
y

W) + 6w )

YFY

wi(y") — m#a>§ w i (y)

Loss

Functions: Il

RS

e
sISSSoS AT

A
S S/ AS

S




Loss Functions: Il

Outline &

= Part |: Flat Classification
= Linear classifiers and loss functions
» Primal and dual SVM formulations
* Training SVMs

= Part Il: Structured Classification
= Structured linear classifiers
= Factored learning formulations
» Experimental results
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Dual Formulation &

= We want to optimize:

N
min - SlwliF+C> 4

Viy w (v +& > w () + 4y
= This is hard because of the constraints.

= Solution: method of Lagrange multipliers

444

Lagrange Duality &

= We start out with a constrained optimization problem:
f(w*) = min f(w)
g(w) >0
= We form the Lagrangian:
Nw,a) = f(w) — ag(w)

= This is useful because the constrained solution is a
saddle point of A (we’ll show this):

o _ .
fw*) = min rané'%(/\(w,a) = rgggmln A(w, )

Primal problem in w Dual problem in o




Primal Game

= Original: f(w*) = min f(w) s.t. glw) >0

= Lagrangian: A(w,a) = f(w) — ag(w)
[ AGW) = max [(w) — ag(w)]

= Claim: primal game solves the original constrained problem:
. o _ .
min r;ﬂzagA(w,a) = min Aw) = f(w")
= Proof: consider the value of
g(w) =0= f(w)
A(w) = max [f(w) —ag(w)] || g(w)>0= f(w)
B g(w) <0 = o0

Aw) 1@ oo | 2 minAtn = min row) = 7o)

&;:

Dual Game

= Original: f(w*) = min f(w) s.t. glw) >0
= Lagrangian: A(w,a) = f(w) — ag(w)
| A@) = min [f(w) — ag(w)]

= Claim: dual game also solves the original problem:

max min A(w, a) = maxA = *
maxmin A(w,a) = maxA(a) = f(w")

" Proof: Case |: Constraint Inactive Case lI: Constraint Active




Dual Game lla

= Lagrangian:

= Claim:

A(a) = min [f(w) — ag(w)]

max min A(w, a) = maxA = *
maxmin A(w,a) = maxA(a) = f(w")

Case |: Constraint Inactive

At w*, g >0, so ifa> 0,
fOW") —ag(w") < f(w),
N(er) < f(w™)

But A(0) = f(w™")

So r(;wzag/\(a) = f(w")

4

Dual Game llb &

= Lagrangian:

= Claim:

A(a) = min [f(w) — ag(w)]

max min A(w, a) = maxA = *
maxmin A(w,a) = maxA(a) = f(w")

Case lI: Constraint Active

Atw* g=0, so Va,
ANWw*, a) = f(W") —ag(w") = f(w"),
so Va, A(a) < f(w™)
At w*, Vf # 0, but
Ja* s.t. V(W) = a*Vg(w™)
At o, VA(a*,w*) =Vf—-a*Vg=0
~ so A(a®) = f(wh)




Lagrangian for SVMs &

» Primal constrained problem:
1,5 ,
min - SIwIE+C> ¢

Viiy wifi(y) +& > w ti(y) + 4(y")
= Lagrangian:

1 .
mip max SIMIP+HCR 6 - % ai(y) (W) = wi(y) — ti(y) + &)
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Dual Formulation |l {°

= Duality tells us that

1 .
mip max SIMIP O3 6 - 2 ai) (WG - wi) - 4 + &)

has the same value as

1 A
max min - S{|wl|2 + 0306 - 2 ai) (WG - wi) - 4 + &)

(2

= This is useful because if we think of the o’s as constants, we have an
unconstrained min in w and & that we can solve analytically.

= Then we end up with an optimization over o instead of w (easier).




g,

Dual Formulation Il &

= Minimize the Lagrangian for fixed o’s:
Aw.60) = SIWIRP+0Y 6 - Y a) (W) - wTEG) ~ 66) +&)
[ 1,y

LD — o ¥ ai) (6 - )
| 2D, o) w=§y;ai(y)(fi<yi)—fi<y>)
[ oA(w,&a) 4

o€ = C_%O‘z()’)

IN(W, €, 0) _ ) =

U =5 7=0 & Sy =0
: "y

Dual Formulation IV &

= \We now know that for fixed a, the minimum of
Aw,E ) = %ku2 +OY &~ Y aily) (W) - wi(y) - ti(y) + &)
7 1,y
obeys Y ai(y) =C and w=3 a;(y) (f(y") — fi(y))
by i,y
= Plugging these back into A:

2
+ Z a;(y)4(y)
iy

minAw.&0) = 5 ¥ a) () - )
) /L’y




Dual Formulation V

= This doesn’t reference the primal weights w at all, so

we can now worry about the outer max problem:
2

+ Z a;(y)4:(y)
L,y

max N =
ma )]

_% > i) () — £G))
v,y

s.t. Zai(y) =C Vi
y
» And this solves the original constrained primal:

rggg/\(a) =r§§g)<qlv!g/\(w,£,a) = f(w")

w = a;(y) (6" - ()

1,y

4

What are the Alphas? &

= Each example (and label) gave to a primal
constraint

R
= CcY g -
min - SIWIE+C2 &

st. wifiy) +&>wfiy) +4(y) Viy

* In the solution, an ay) will be: Support vectors
= Zero if that constraint is inactive
= Positive if that constrain is active
= j.e. positive on the support vectors

= Support vectors form the weights:

w =Y ai(y) (B — )
224




Outline &

= Part I: Flat Classification
= Linear classifiers and loss functions
= Primal and dual SVM formulations
* Training SVMs

= Part II: Structured Classification
» Structured linear classifiers
» Factored learning formulations
= Experimental results
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Back to Learning SVMs | &

= \We want to find oo which maximize
2

- Z i (¥)4:(y)
iy

1
max A(a) = —=
a>0 2

> ai(y) (fiy) — i)
Y

st. D aly)=C Vi
y

» This is a quadratic program:
= Can be solved with general QP or convex optimizers
= But they don’t scale well to large problems
= Cf. maxent models work fine with general optimizers
(e.g. CG, L-BFGS)

= How would a special purpose optimizer work?




Coordinate Ascent | &

= Consider the separable (soft-margin) SVM problem:

2
1 i
maxZ(a) = max —7 %ai(w (66D - () +§y:ai(y)ei(y>

= |n coordinate ascent, we maximize one variable at a time
* Despite all the mess, Z is just a quadratic in each o.(y)

Z(i(y)) ‘ Z(i(y))

0 0
= |f the unconstrained argmin on a coordinate is at a

negative a, just clip to zero!

444

&

Coordinate Ascent I ¥

» Ordinarily, treating coordinates independently is a bad
idea, but here the update is very fast and simple

46 — (Siy o) (66 - )" (B - fi<y>))

a;(y) <« max | 0,a;(y) +
Y ( Y 1(EGH - 50|

= So we visit each axis many times, but each visit is quick

= This approach works fine for the separable case




Bi-Coordinate Descent | &

* In the non-separable case, it's (a little) harder:

2
Y aiy) (6D — W) + X )
1,y LY

1
max A(a) = —=
a>0 2

y

= Here, we can’t update just a single alpha, because of the
sum-to-C constraints

» Instead, we can optimize two at once, shifting “mass”
from one y to another:

Y1 Y1
Yo = Y3

Qi Yo 4——D aj Y2
Y3 Y3
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&

Bi-Coordinate Descent Il ¢

= Choose an example i, and two labels y, and y,:

e (Li(y1) — ti(y2)) — (Siy () (Fi(y") — fi(Y)»T (fi(y2) — fi(y1))
1E:(y2) — iyl

y1 — min(y1 +t,y1 +y2)
y2 — max(yp —t,0)

= This is a sequential minimal optimization update, but it's
not the same one as in [Platt 98]




SMO
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* Naive SMO: w=>a;(y) () - £¥))
Vi ai(yz) =C .,y
while (not converged) { : gf)
visit each example i { == K } &
for each pair of labels (y,, y,) { = | 1 E] 3
bi-coordinate-update(i, y,, y,) 2 . a
) ¥ E
} LI I e -
} « .
. . . 2 — Ii&]
= Time per iteration: O(|z||V|%) P

= Smarter SMO:

= Can speed this up by being clever about skipping examples and
label pairs which will make little or no difference

DOCUMENT FEATURES FEATURE DELTAS

ALPHAS

S-win, S-game ’ -0-- ‘

win game  P-win, P-game ’ PW=1, SW=-1, PG=1,... ‘
O-win, O-game ’ OW=1, SW=-1, OG=1,... ‘

S-win, S-vote | SW=1, PW=-1, SV=1,... |

win vote P-win, P-vote ’ -0-- ‘

O-win, O-vote | OW=1, PW=-1, OV=1,... |

S-movie ’ SM=1, OM=-1 ‘
movie P-movie | PM=1,0M=1 |
O-movie ’ -0 - ‘

WEIGHTS @

w = ai(y) (") ~ £i(y))
1,y
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hitp:/M'www.cartoonbani.com

“Don’t worry, Howard. The big questions are multiple choice.”




Handwriting Recognition [

X Yy

i = brace

Sequential structure

. ey
CFG Parsing &
X Y
S
/\
NP VP
T —
DT NN VBD NP
The screen was ) O
The screen was NP PP
a sea of red e e

DT NN IN NP
| | | |
a sea of NN

|
red

Recursive structure




Bilingual Word Alignment | &¢

X vertu
de
les
What
. . . nouvelles
What is the ar!t|C|pated is propositions
cost of collecting fees the
under the new proposal? anticipated quel
cost
) : est
llecting le
En vertu des nouvelles e coiit
propositions, quel est le under 5:3"“
cotit prevu de perception the perception
des droits? new de
proposal les
\drmts

Combinatorial structure
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Structured Models "

prediction(x,w) = arg max score(X,y, w)
yeY(x)

U
space of feasible outputs

Assumption:
score(X,y,w) = WTf(X, y) = ZWTf(Xp7YP>
p

Score = sum of local “part” scores
Parts = nodes, edges, productions




Chain Markov Net (aka CRF*)

P(y | %) oc IT; o(xj, y) 5 9 Oks w55 yi)

¢(xj,y;) = exp {W—||\|—fN(Xjayj)} N = Node

¢(Xjks Yjs Yk) = EXP {WEfE(Xjk,yj,yk;)} E = Edge

E(X]‘/ﬂnyj-,y/g)
~Iy; =2y, ="a") -]

~I(x(3,4] =1,y; ="2") -]

*Lafferty et al. 01

Chain Markov Net (aka CRF*) | &

Py [ x) oc [T 005, y) [ (%5, v, yi) = €xp {WTf(XQ’)

[1; #(x;,y;) = exp {Zj wi i (x5, yj)} = exp {Wﬂfl\l (X,Y)}
1Lk ¢(Xjks Y5, Y) = €xp {ij wfe (X, ), yk)} = exp {W;;rfE(& Y)}

Z N (x5, 95)

*Lafferty et al. 01




CFG Parsing &

P(y | x) o H (A — )

A—ac(x,y)
s #(NP — DT NN)
/\
NP VP
D'mN \/'BD/\NP f:XAxY— §Rd

| | | T
The screen was NP PP - # ( PP —> IN N P)
N PR

DT NN IN NP
| | | |
a sea of NN

|
red

#(NN — ‘sea’)

L [ exp {wa(A — oz)} = exp{w 'f(x,y)}

—ac(x,y)
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Bilingual Word Alignment | &*

LZ WTf(Xjk) = w'f(x,y)

ikEY
En
vertu
de
Wha?t les
is nouvelles X
anticipa::S propositions 'f( ]k)
co;: g:tel = association
collecting I iti
fﬁes le = position
under prévu = orthography
new

perception
de
le

droits
?

proposal
?




Probabilistic Alignment? &

eXD{WTf(X, v)}

P(y | x) =
| Zy/ eXp{WTf(Xa y')}— #P-Complete
En Need to sum over
vertu all possible matchings
What ::Iees
is nouvelles
the propositions
anticipated ,
cost quel
of est
collecting le

fees
under
the

new
proposal
?
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OCR Example &

= \We want;

\arg maxy WTf(,y) = “brace”

= Equivalently:
w | f(H&I , “brace”) > w ! f(HZ, “aaaaa”) )

w ' f(H&HE , “brace”) > w ' f (& ,“aaaab”)
>a lot!

w | (&I, “brace”) > w (ORI, “zz277"




Parsing Example &

= \We want:

arg maxy WTf(‘Itwasred' ,y) = Ai&

cDb

= Equivalently:

‘WTf(‘It was red; “i&b ) > WTf(‘It was red’, ‘iﬁF ) )

2 2
‘WTf(‘It wasred, 2% ) > w ! f(Itwas red, AE) , a lot!

2
‘WTf(‘It wasred, 2% ) > w ! f(Itwas red, GiiF ) )

Y p)

Alignment Example &

= \We want:
arg max Tf( ‘What is the’ ) J— leel
9 y W ‘Quel estle’ Y/ — :";

= Equivalently:

T £/ *What is the’ 1®®1 T ¢('What is the’ 1%*1 N
‘W f(‘Quel estle’’ ;zg ) > W f(‘Quel estle’’ §x§ )
T £ 'What is the’ 1®°1 T £ What is the’ 18¢1
‘W f(‘Quel estle’’ ;zg ) > W f(‘Quel estle’’ §§§ >a |°t|

T £ (*What is the’ 1®*1 T ¢ ("What is the’ 1X1
%Y \%Y 2002
‘ f(‘Quel estle’’ ;zg ) > f(‘Quel estle’’ 3 3) J




Structured Loss &

b & a x el2
b r @ ¥ e|2
b r & ¢ e]l1
b r a ¢ elo
HEECHEB
[0 1 2 3] [0 1 2 2]

v i /7 leel leel 1q el l1eqpel
‘It was red’ Aig Aii gio §§E ‘What IS th? 2002 2 2 ZXZ 2x2
p c*» a'c A%c Quel estle’ zee3 3ee3 3483  3ee3

Max Margin Estimation | &*

= Given training example x¢ yt we want:

w f(y") > w f(y) Vi,y #y’

w ! f(y") > w f(y) +v4(y) i,y

= Maximize loss weighted margin:  h4;(y)

6(y) = I(ys #y;)  # of mistakes in'y

*Collins 02, Altun et al 03, Taskar 03




Large margin estimation &°

= Brute force enumeration
- 1
L&n WP+ Y
L W)+ &> wIEE) +4y), Viy

= Min-max formulation

min

[w]|* - ¢ (Z_ w ' fi(y") — max [wfi(y) + zxy)})

N+~

» Plug-in linear program for loss-augmented inference

max [w' £i(y) + ()]

Min-max formulation

max [w £ (y) + 4:(y)]

Assume linear loss (Hamming):  £,(y) =Y _4; »(yp)
p
DP Inference maxy [Zp w £ (xp, yp) + ei,p()’p)}

LP inference max qTZ
z>0;

Az<b;




y = z Map for Markov Nets

y = 'ababb’

11
z1(m)  ka(m)  z3(m)  ka(m)  25(m)

- oo |

N |
o]
o

z12(m,n) z03(m,n) 234(m,n) z45(m,n)

E 011].(/0]10({0].({0]]0(f1]|.(/0]|O|0O|.]|O
£ 0|0|.(O]l1({0].({0])0(0O]|.|O]|O|1|.]0
H T T Toll- T T Tol [T T-Tol-T.T-To
| Z ] o|jojofojjojojofoyjjofojofojjojofojo
alb|.|z|]la|b|.|z]||a|b|.|z]||la|b|.|z
&
Markov Net Inference LP | &
ax sz(m) [waN(xj,m)—}-Ej(m)] .
J,m q z
+ Z Z]k(man) [WTfE(x]k7mvn)+€]k(m7n)] q:FTW+£
jkmmn
1 (n)
o[ 1]0[0] zj(m) >0, kjp(m,n) > 0;
n 5ToTolo normalization ‘; zj(m) =
o] [o]o]o]o Az =D
ol1lolo| agreement szk(m,n)z j(m)
n
o] |o]o]o]o
ij:(m>n)

Has integral solutions z for chains, trees




CFG Chart &

NP, VP
L2027(S7 \7\/ )

S

/\
NP VP 0 |DT (@ 5)
S — 1 NN I~
DT NN VBD NP
2 VBD VP
\ [ [ — T~
The screen was NP PP 3 DT
SN PN 4 N
DT NN IN NP
\ \ [ \ 5) N PP
a sea of NN G LZ35 ( N P) .

|
red

01 2 3 45 6 7
= CNF tree = set of two types of parts:
» Constituents (A, s, e)
» CF-rules(A—>BC,s,m,e)
£(x,y) = Spey (%, )

4

CFG Inference LP &

T‘nzax > Zme(ABC) [wf(Xsme, ABC) +esme(ABC)}}ETZ
s<m<e — FTW + Z

A—B C
S.t. ‘Zse(A) Z 0 Zsme(ABC) Z 0] N\
root Y 20n(A)=1
A

inside zse(A) = Z zsme(A, B, C) >Az =b
sgnge

outside Tse(A) = Y zsme(B,A,C)+ > zsme(B,C,A)
e<m<n 0<m<s J
B,C B,C

Has integral solutions z




Matching Inference LP {°

mzax sz Zik [WTf(Xjk) + éjk} } qTZ
J

\ézrtu q= FTW + l
K les
What 11
" mootions 5.t 2 >0
the y
anticipate: quel
t t .
p: Zjk < 1
llecti at
S [ o degree |k Az<b
under ] k de
the perception z k < 1
new de J -
proposal le ]

? ] groits

Has integral solutions z

LP Duality Recap &

= Linear programming duality
» Variables = constraints
» Constraints = variables
= Optimal values are the same
» When both feasible regions are bounded

min b’

ax CTZ b

V4

St As<h <::> st ATAz e
z> 0. A> 0.




V)

Min-max formulation &
min Sl - ¢ (z wfi(y") — max |w f;(y) + @(y)})
max qiTzz- min biTAi
A;z;<b; AN >q;
220 <:> \i>0
LP duality

W,

o1 ;
min §||VV||2 -C (Z w ' f;(y%) — b;r&')
i

st. A/N>q; A>0

q =F w4+

444
[ ]

Min-max formulation summary

o1 ;
min §||VV||2 -C (Z w ' f;(y%) — b;r&')
i

W,

st. AN >F/w4e; X>0, Vi

= Formulation produces concise QP for
= | ow-treewidth Markov networks
= Context free grammars
» Bipartite matchings
= Many other problems with compact LP inference

*Taskar et al 04




Factored Primal/Dual &

o1 ;
min §||W||2 -C (Z w i (y") — szAi)
i

st. AN >F/w4e; X>0, Vi

By QP duality i]w =Y, Cfi(y") — Fiu;

2
1 .
max ool pi - 5‘ Y CEi(y") — Fip]
5 5

s.t. Ai,ui < Cbi; wi >0, Vi.

Dual inherits structure from problem-specific inference LP
Variables u correspond to a decomposition of ¢ variables of the flat case

444

Unfactored Primal/Dual "

15
_ C .
ngg 2||w|| + % &

T Wiy +&>w(y) +4(y), Viy

By QP duality | [w = iy as(WIEY) — £()]
2

Z (ML) — )]
) 234
st. Y o(y)=C; o >0, Vi

y

max Y Li(yaiy) ~ 5
iy

Exponentially many constraints/variables




The Connection &

2

1 .
max >t pi— 5 > Cfi(y") — Fip
i i
st. A;u;=Cb;; p; >0, Vi
1 .
max > 4 (y)a;(y) — > ST aNIE) — ()]
5y L

dDai(y) =C; a; >
Yy

2

EYe 55 o

b
b
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Structured SMO {°
max Z@TM - % ZC’fi(yi) — Fip;
s.t. A:;/,Li = Cb;; Z/J,i >0, Vi ,

1
max > £ (y)oi(y) — 5
i,y

2_i(y) [£:(v") — £i(y)]
iy

st. D> oly) =C; «a; >0, Vi
Yy

— Y e
select | | SMO | | project ==
& IIfty,, | update‘y,,
*Taskar 04 L




Outline &

= Part I: Flat Classification
= Linear classifiers and loss functions
= Primal and dual SVM formulations
* Training SVMs

= Part Il: Structured Classification
= Structured linear classifiers
= Factored learning formulations
= Experimental results

444

Handwriting Recognition  [&*

O raw W quadratic O cubic
30 pixels kernel kernel

257 . lbetter

207

Length: ~8 chars
Letter: 16x8 pixels
10-fold Train/Test
5000/50000 letters
600/6000 words
Models: 197

Multiclass-SVMs

CRFs

M3 nets

107

Test error (average per-character)

MC-SVMs  CRFs " MA3 nets

n (P n
 HGEHAEE

E=©
™y )
EX o
™ )

*Taskar et al 03




Experimental Setup

= Standard Penn treebank split (2-21/22/23)

= Generative baselines

» Klein & Manning 03 and Collins 99

Discriminative
» Basic = max-margin version of K&M 03

= Lexical & Lexical + Aux

ts-1 [ts 1:e] te+1
Xs-1 [Xs Xe] Xe+1
= Auxillary features

» Flat classifier using same features

» Prediction of K&M 03 on each span

Lexical features (on constituent parts only)
<« predicted tags

499

Results for sentences <40 words | €%
Model LP LR F,
Generative 86.37 85.27 85.82
Lexical+Aux*| 87.56 86.85 87.20
Collins 99* 85.33 85.94 85.73

*Trained only on sentences <20 words

*Taskar et al 04




Example {°

The Egyptian president said he would visit
Libya today to resume the talks.

Generative model: Libya today is base NP

Lexical model: today is a one word constituent

Word Alignment Results | &

= Hansards, 2M unlabeled, 100 labeled sentences

Model AER
Dice 36.0
IBM 4 9.7
MM-Dice 29.8
+Distance 17.2
+Shape/Freq 14.3
+Next/Common 9.6




Generative/Discriminative Trade-offs

» Inference on training:
= Discriminative methods require (repeated) inference on the
training set, over the domains where the parameters interact
= Generative models are primarily estimated from statistics of the
training set (counting)
= Inference can be much, much slower than counting

= Accounting for interactions:
= Discriminative estimates take into account feature interactions,
non-independence (note that conjunctive features are required to
actually model interactions)

= Bias / variance
= Discriminative methods tend to have higher variance, generative
ones tend to have higher bias — but in general the discriminative
techniques win on accuracy if properly regularized

444

Likelihood/Margin Trade-offs &

= Same as maxent vs. SVMs:
= Sparse solutions, robust to “feature jitter”

» Margin-based training often more accurate
when posteriors are not needed

= Plus: unnormalizable models

» For some models (e.g., matchings and a
subclass of Markov networks), margin is
tractable, likelihood is not!




Conclusions &

» Today’s tutorial:

» Flat SVMs from scratch
= Objective functions and properties
= Primal and dual formulations
= How to learn them
= Structured max-margin models
= Concise, factored form
= Efficient algorithms, strong empirical results
= Applications: sequences, trees, matchings

= Coming soon:
= Sequence modeling toolkit including M3Ns

http://www.cs.berkeley.edu/~klein
http://www.cs.berkeley.edu/~taskar

444
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