# Max-Margin Methods for NLP: Estimation, Structure, and Applications



#### Dan Klein and Ben Taskar EECS Department UC Berkeley

# Introduction



- Much of NLP can be seen as making decisions
  - About structured analyses (sequences, trees, graphs)
  - On the basis of multiple information sources, or features (words, word classes, tree configurations, etc.)
- Widespread adoption of discriminative methods
  - Use of arbitrary features
  - Various formulations: maxent, SVM, perceptron
  - Common use: local discriminative decisions, possibly chained
  - Relatively new: global methods which exploit model structure (CRFs, max-margin networks)
- This tutorial will cover:
  - Part I: Flat max-margin methods (SVMs)
  - Part II: Structured max-margin methods (sequences, trees, matchings)

# **Outline**



- Part I: Flat Classification
  - Linear classifiers and loss functions
  - Primal and dual SVM formulations
  - Training SVMs
- Part II: Structured Classification
  - Structured linear classifiers
  - Factored learning formulations
  - Experimental results

# **Example: Text Classification**



We want to classify documents into categories

| DOCUMENT         | CATEGORY |
|------------------|----------|
| win the election | POLITICS |
| win the game     | SPORTS   |
| see a movie      | OTHER    |

- Classically, do this on the basis of words in the document, but other information sources are potentially relevant:
  - Document length
  - Average word length
  - Document's source
  - Burstiness of new words in document

# Some Definitions



INPUTS  $\mathbf{x}^i$  ... win the election ...

TRUE  $\mathbf{y}^i$  POLITICS

OUTPUT SPACE  ${\cal Y}$  SPORTS, POLITICS, OTHER

ANY OUTPUTS **Y** SPORTS, POLITICS, OTHER

# **Binary Linear Models**



- Two Classes POLITICS = +, SPORTS = -
- Features f(...win the election...) = [1 0 1 0]
- Weights



["win" "game" "election" "movie"]

Prediction rule

$$\begin{aligned} & \text{prediction}(\mathbf{x}, \mathbf{w}) = \\ & \begin{cases} + & \text{if } \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}) \geq 0 \\ - & \text{if } \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}) < 0 \end{cases} \end{aligned}$$



# **Multiclass Linear Models**



Multiple Classes SPORTS, POLITICS, OTHER



["win"\SPORTS "game"\SPORTS "election"\SPORTS "movie"\SPORTS]

# **Multiclass Linear Models**



$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} 0 & 0 & \cdots & \mathbf{f}(\mathbf{x}) & \cdots & 0 \\ \mathbf{w} & = \begin{bmatrix} \mathbf{w}_0 & \mathbf{w}_1 & \cdots & \mathbf{w}_y & \cdots & \mathbf{w}_k \end{bmatrix}$$

Scores and Predictions

$$score(\mathbf{x}^i, \mathbf{y}, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) = \mathbf{w}_{\mathbf{y}}^{\top} \mathbf{f}(x^i)$$

$$prediction(\mathbf{x}^i, \mathbf{w}) = \underset{\mathbf{y} \in \mathcal{Y}}{\arg\max} \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})$$



# Separability



 A data set is (linearly) separable in a feature space if some linear classifier classifies all points correctly.

Separable



Non-Separable



 If a data set is separable, there are usually multiple separating hypotheses.

# Caution about Diagrams



- A diagram you'll often see:
  - Two-class classification
  - Fractional feature values
  - Mixed regions → non-separable
  - Sample complexity



- Common NLP case:
  - Multi-class classification
    - Each input corresponds to |Y| points f<sub>i</sub>(y) (one per class)
  - (Mostly) 0/1 features
    - Data on the "corners"
  - Everything's separable
  - Coupon collection



# Linear Models: Naïve-Bayes



• (Multinomial) Naïve-Bayes:  $\mathbf{x}^i = d_1, d_2, \cdots d_n$ 

$$\begin{aligned} \mathsf{score}(\mathbf{x}_i, \mathbf{y}, \mathbf{w}) &= \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) \\ &= \log \mathsf{P}(\mathbf{y}) + \sum_k \# v_k \log \mathsf{P}(v_k | \mathbf{y}) \\ &= \log \left( \mathsf{P}(\mathbf{y}) \prod_k \mathsf{P}(v_k | \mathbf{y})^{\# v_k} \right) \\ &= \log \left( \mathsf{P}(\mathbf{y}) \prod_{d \in \mathbf{x}^i} \mathsf{P}(d | \mathbf{y}) \right) \\ &= \log \mathsf{P}(\mathbf{x}^i, \mathbf{y}) \end{aligned}$$

# **Bad Model Assumptions**



#### Reality











$$P(+,+,r) = 3/8 P(-,-,r) = 1/8$$

Raining

$$P(+,+,s) = 1/8 \quad P(-,-,s) = 3/8$$

#### **NB Model**



#### NB FACTORS:

• 
$$P(s) = 1/2$$

• 
$$P(+|s) = 1/4$$

• 
$$P(+|r) = 3/4$$

#### PREDICTIONS:

$$P(r,+,+) = (\frac{1}{2})(\frac{3}{4})(\frac{3}{4})$$

$$P(s,+,+) = (\frac{1}{2})(\frac{1}{4})(\frac{1}{4})$$

$$P(r|+,+) = 9/10$$

$$P(s|+,+) = 1/10$$

# Worse Model Assumptions





Lights Working







$$P(g,r,w) = 3/7$$

$$P(r,g,w) = 3/7$$

$$P(r,r,b) = 1/7$$

#### **NB Model**



#### NB FACTORS:

- P(w) = 6/7
- P(b) = 1/7
- P(r|w) = 1/2 P(r|b) = 1
- P(g|w) = 1/2 P(g|b) = 0

= 6/28

# Details: Stoplights



- What does the model say when both lights are red?
  - P(b,r,r) = (1/7)(1)(1)
- = 1/7 = 4/28
- P(w,r,r) = (6/7)(1/2)(1/2)
- = 6/28
- P(w|r,r) = 6/10!
- Imagine if P(b) were boosted higher, to 1/2:

We'll guess that (r,r) indicates lights are working!

- P(b,r,r) = (1/2)(1)(1)
- = 1/2 = 4/8
- P(w,r,r) = (1/2)(1/2)(1/2)
- = 1/8 = 1/8
- P(w|r,r) = 1/5!
- Changing the parameters bought accuracy at the expense of data likelihood
- Discriminative models can partially compensate for wrong models

# Generative vs Discriminative



#### Generative Models

- Joint density over P(X,Y)
- E.g. Naïve-Bayes, HMMs, PCFGs
- Model assumptions allow decomposition into small factors which can be estimated independently
- Do not set weights to account for feature interactions



#### Discriminative Models

- Predict Y given X, not always distributions
- E.g. maximum entropy, SVMs, perceptrons
- Set weights to account for feature interactions
- Require inference on training set to evaluate hypotheses



# Linear Models: Perceptron



Simple discriminative method for intuition

$$\mathbf{y}' = \underset{\mathbf{y}}{\operatorname{arg\,max}} \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})$$
 $\mathbf{w} \leftarrow \mathbf{w} + \underbrace{\eta \left( \mathbf{f}_i(\mathbf{y}^i) - \mathbf{f}_i(\mathbf{y}') \right)}_{\Delta_i(\mathbf{y}')}$ 



- This is a procedure, not an optimization problem!
  - May not converge if non-separable
  - Noisy







- Voted / averaged perceptron [Freund & Schapire 99, Collins 02]
  - Regularize / reduce variance by aggregating over iterations

# **Objective Functions**



- Reminder:  $score(\mathbf{x}^i, \mathbf{y}, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})$
- What do we want from weights?
  - Depends!
  - Minimize (training) errors?

$$\sum_{i} step\left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}^{i}) - \max_{\mathbf{y} \neq \mathbf{y}^{i}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})\right)$$



- Discontinuous, minimizing is NP-complete
- Not really what we want anyway
- Maxents and SVMs have losses related to the zero-one loss



$$\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y}^i) - \max_{\mathbf{y} 
eq \mathbf{y}^i} \mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y})$$

# Linear Models: Maximum Entropy



- Maximum entropy (logistic regression)
  - Use the activations as probabilities:

$$\mathsf{P}(y|x,w) = \frac{\exp(w^\top f(x,y))}{\sum_{y'} \exp(w^\top f(x,y'))} \xleftarrow{\hspace{1cm}\mathsf{Make positive}} \mathsf{Normalize}$$

Maximize the (log) conditional likelihood of training data

$$\begin{aligned} \max_{\mathbf{w}} & \log \prod_{i} \mathsf{P}(\mathbf{y}^{i} | \mathbf{x}^{i}, \mathbf{w}) = \sum_{i} \log \left( \frac{\mathsf{exp}(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}^{i}))}{\sum_{\mathbf{y}} \mathsf{exp}(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}))} \right) \\ & \max_{\mathbf{w}} & \sum_{i} \left( \underbrace{\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}^{i}) - \log \sum_{\mathbf{y}} \mathsf{exp}(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}))}_{\mathbf{y}} \right) \end{aligned}$$
 "soft margin"

# "Soft-Max"



$$\max(a, b) \approx \log(\exp(a) + \exp(b))$$

$$\max(a,b)$$

$$\log(\exp(a) + \exp(b))$$





# Maximum Entropy II



Also: regularization (smoothing)

$$\max_{\mathbf{w}} \sum_{i} \left( \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}^{i}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right) - k ||\mathbf{w}||^{2}$$

Maximize likelihood = Minimize "log-loss"

$$\min_{\mathbf{w}} \ \frac{\mathbf{k} ||\mathbf{w}||^2}{|\mathbf{f}_i(\mathbf{y}^i) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}))}$$

- Motivation
  - Connection to maximum entropy principle
  - Might want to do a good job of being uncertain on noisy cases...
  - ... in practice, though, posteriors are pretty peaked

# Log-Loss



If we view maxent as a minimization problem:

$$\min_{\mathbf{w}} \ k||w||^2 - \sum_i \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}^i) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}))\right)$$

This minimizes the "log-loss" on each example

$$-\left[\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}^{i}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}))\right]$$

$$-\log\left(\frac{\exp(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}^{i}))}{\sum_{\mathbf{y}}\exp(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}))}\right) = -\log\mathsf{P}(\mathbf{y}^{i}|\mathbf{x}^{i},\mathbf{w})$$

Log-loss bounds zero-one loss



$$\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y}^i) - \max_{\mathbf{y} 
eq \mathbf{y}^i} \mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y})$$

# **SVMs**



SVM Try 1: Separate the training data

$$orall i, orall \mathbf{y} 
eq \mathbf{y}^i \quad \mathbf{w}^ op \mathbf{f}_i(\mathbf{y}^i) \geq \mathbf{w}^ op \mathbf{f}_i(\mathbf{y})$$

 $\mathbf{w}^{\top}\mathbf{f}(...\mathbf{win} \text{ election}..., POLITICS) \ge \mathbf{w}^{\top}\mathbf{f}(...\mathbf{win} \text{ election}..., SPORTS)$  $\mathbf{w}^{\top}\mathbf{f}(...\mathbf{win} \text{ election}..., POLITICS) \ge \mathbf{w}^{\top}\mathbf{f}(...\mathbf{win} \text{ election}..., OTHER)$ 

1. This is an entire feasible space; need an objective function!



2. Training data may not even be separable



# Maximum Margin



SVM Try 2: find the maximum margin separator

```
 \begin{aligned} \max_{\substack{||\mathbf{w}|| \leq 1}} & \gamma \\ \text{s.t.} & \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \gamma \ell_i(\mathbf{y}) & \forall i, \forall \mathbf{y} \end{aligned}
```

```
\mathbf{w}^{\top}\mathbf{f}(\text{win election}, \underbrace{POLITICS}) \geq \mathbf{w}^{\top}\mathbf{f}(\text{win election}, \underbrace{SPORTS}) + \gamma
\mathbf{w}^{\top}\mathbf{f}(\text{win election}, \underbrace{POLITICS}) \geq \mathbf{w}^{\top}\mathbf{f}(\text{win election}, \underbrace{OTHER}) + \gamma
\mathbf{w}^{\top}\mathbf{f}(\text{win election}, \underbrace{POLITICS}) \geq \mathbf{w}^{\top}\mathbf{f}(\text{win election}, \underbrace{POLITICS})
```



# Why Max Margin?



- Why do this? Various arguments:
  - Decisions on training points are maximally robust to "feature jitter"
  - As we'll see, solution depends only on the boundary cases, or support vectors (but remember how this diagram is broken!)
  - Sparse solutions (features not in support vectors get zero weight)
  - Generalization bound arguments



# Max Margin / Small Norm



SVM Try 3: find the smallest w which separates data

• Instead of fixing the scale of w, we can fix  $\gamma = 1$ 

$$\begin{aligned} & \min_{\mathbf{w}} & & \frac{1}{2}||\mathbf{w}||^2 \\ & \text{s.t.} & & & \mathbf{w}^{\top}\mathbf{f}_i(\mathbf{y}^*) \geq \mathbf{w}^{\top}\mathbf{f}_i(\mathbf{y}) + 1\ell_i(\mathbf{y}) & \forall i, \mathbf{y} \end{aligned}$$

# Max Gamma to Min W



$$\begin{aligned} & \underset{\|\mathbf{w}\| \leq 1}{\max} \quad \gamma \\ & \text{s.t.} \quad \mathbf{w}^{\mathsf{T}} \mathbf{f}_i(\mathbf{y}^i) \geq \mathbf{w}^{\mathsf{T}} \mathbf{f}_i(\mathbf{y}) + \gamma \ell_i(\mathbf{y}) \quad \forall i, \mathbf{y} \end{aligned} \qquad \begin{aligned} & \underset{\|\gamma u\| \geq 1}{\min} \quad \|u\|^2 \\ & \mathbf{x} = \gamma u \end{aligned} \\ & \mathbf{x} = \frac{1}{\|\mathbf{u}\|} \end{aligned} \qquad \begin{aligned} & \underset{\|\gamma u\| \leq 1}{\max} \quad \mathbf{1}/\|\mathbf{u}\|^2 \\ & \text{s.t.} \quad \gamma u^{\mathsf{T}} \mathbf{f}_i(\mathbf{y}^i) \geq \gamma u^{\mathsf{T}} \mathbf{f}_i(\mathbf{y}) + \gamma \ell_i(\mathbf{y}) \quad \forall i, \mathbf{y} \end{aligned} \qquad \begin{aligned} & \underset{\|\gamma u\| \leq 1}{\min} \quad \|u\|^2 \\ & \text{s.t.} \quad u^{\mathsf{T}} \mathbf{f}_i(\mathbf{y}^i) \geq u^{\mathsf{T}} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \quad \forall i, \mathbf{y} \end{aligned} \\ & \underset{\|\gamma u\| \leq 1}{\min} \quad \frac{1}{2} \|u\|^2 \\ & \text{s.t.} \quad u^{\mathsf{T}} \mathbf{f}_i(\mathbf{y}^i) \geq u^{\mathsf{T}} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \quad \forall i, \mathbf{y} \end{aligned}$$

$$& \underset{\|\gamma u\| \leq 1}{\min} \quad \frac{1}{2} \|\mathbf{w}\|^2 \\ & \text{s.t.} \quad u^{\mathsf{T}} \mathbf{f}_i(\mathbf{y}^i) \geq u^{\mathsf{T}} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \quad \forall i, \mathbf{y} \end{aligned}$$

# Maximum Margin



- SVM Try 4: allow for non-separability
  - Add slack to the constraints
  - Make objective pay (linearly) for slack:

$$\begin{aligned} & \min_{\mathbf{w}} & & \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i \\ & \text{s.t.} & & & & & & & & \\ & \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}^i) + \xi_i \geq \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) & \forall i, \mathbf{y} \end{aligned}$$





- Learning:
  - Can stick this into Matlab if you want
  - Constrained optimization is hard; better methods!

### Min-Max Formulation



We have a constrained minimization

$$\begin{aligned} & \min_{\mathbf{w}} & & \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i \\ & \text{s.t.} & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

• ...but we can solve for  $\xi_i$ 

$$\forall i, \mathbf{y}, \quad \xi_i \ge \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i)$$
$$\forall i, \quad \xi_i = \max_{\mathbf{y}} \left[ \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right] - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i)$$

Giving

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 - C \sum_{i} \left( \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) - \max_{\mathbf{y}} \left[ \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right] \right)$$

# Max vs "Soft-Max" Margin



SVMs:

$$\min_{\mathbf{w}} k ||\mathbf{w}||^2 - \sum_{i} \left( \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) - \max_{\mathbf{y}} \left( \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) \right)$$

Hard (Penalized) Margin

Maxent:

$$\min_{\mathbf{w}} \ k||w||^2 - \sum_i \left( \underbrace{\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) - \log \sum_{\mathbf{y}} \exp \left( \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) \right)}_{\text{Soft Margin}} \right)$$

- Very similar! Both try to make the true score better than a function of the other scores.
  - The SVM tries to beat the augmented runner-up
  - The maxent classifier tries to beat the "soft-max"

# **Hinge Loss**



Consider the per-instance SVM objective:

$$\min_{\mathbf{w}} k ||\mathbf{w}||^2 - \sum_{i} \left( \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) - \max_{\mathbf{y}} \left[ \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(y) \right] \right)$$

- This is called the "hinge loss"
  - Upper bounds zero-one loss
  - Unlike maxent / log loss, you stop gaining objective once the true label wins by enough
  - You can start from here and derive the SVM objective



# Loss Functions: I



Zero-One Loss

$$\sum_{i} step\left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}^{i}) - \max_{\mathbf{y} \neq \mathbf{y}^{i}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})\right)$$

Hinge

$$\sum_i \left( \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}^i) - \max_{\mathbf{y}} \left[ \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \ell_i(y) \right] \right)$$

Log

$$\sum_i \left( \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) - \log \sum_{\mathbf{y}} \exp \left( \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) \right) \right)$$







# Outline



- Part I: Flat Classification
  - Linear classifiers and loss functions
  - Primal and dual SVM formulations
  - Training SVMs
- Part II: Structured Classification
  - Structured linear classifiers
  - Factored learning formulations
  - Experimental results

# **Dual Formulation**



We want to optimize:

$$\min_{\mathbf{w}, \xi} \quad \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i$$
$$\forall i, y \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) + \xi_i \ge \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}^i)$$

- This is hard because of the constraints.
- Solution: method of Lagrange multipliers

# Lagrange Duality



We start out with a constrained optimization problem:

$$f(\mathbf{w}^*) = \min_{\mathbf{w}} f(\mathbf{w})$$
  
 $g(\mathbf{w}) \ge 0$ 

• We form the *Lagrangian*:

$$\Lambda(\mathbf{w}, \alpha) = f(\mathbf{w}) - \alpha g(\mathbf{w})$$



This is useful because the constrained solution is a saddle point of \(\Lambda\) (we'll show this):

$$f(\mathbf{w}^*) = \min_{\mathbf{w}} \max_{\alpha \ge 0} \Lambda(\mathbf{w}, \alpha) = \max_{\alpha \ge 0} \min_{\mathbf{w}} \Lambda(\mathbf{w}, \alpha)$$
Primal problem in  $\mathbf{w}$ 
Dual problem in  $\alpha$ 

# **Primal Game**



- $f(\mathbf{w}^*) = \min_{\mathbf{w}} f(\mathbf{w}) \quad s.t. \ g(\mathbf{w}) \ge 0$ Original:
- Lagrangian:  $\Lambda(\mathbf{w}, \boldsymbol{\alpha}) = f(\mathbf{w}) \boldsymbol{\alpha} g(\mathbf{w})$



Claim: primal game solves the original constrained problem:

$$\min_{\mathbf{w}} \max_{\alpha \geq 0} \Lambda(\mathbf{w}, \alpha) = \min_{\mathbf{w}} \Lambda(\mathbf{w}) = f(\mathbf{w}^*)$$

Proof: consider the value of

$$\Lambda(\mathbf{w}) = \max_{\alpha > 0} \left[ f(\mathbf{w}) - \alpha g(\mathbf{w}) \right]$$

or: consider the value of 
$$\Lambda(\mathbf{w}) = \max_{\alpha \ge 0} \left[ f(\mathbf{w}) - \alpha g(\mathbf{w}) \right] \qquad \left[ \begin{array}{l} g(\mathbf{w}) = 0 \Rightarrow f(\mathbf{w}) \\ g(\mathbf{w}) > 0 \Rightarrow f(\mathbf{w}) \\ g(\mathbf{w}) < 0 \Rightarrow \infty \end{array} \right]$$

$$\Lambda(\mathbf{w})$$





# 

# **Dual Game**



- $f(\mathbf{w}^*) = \min_{\mathbf{w}} f(\mathbf{w}) \quad s.t. \ g(\mathbf{w}) \ge 0$ Original:
- Lagrangian:  $\Lambda(\mathbf{w}, \boldsymbol{\alpha}) = f(\mathbf{w}) \boldsymbol{\alpha} g(\mathbf{w})$

Claim: dual game also solves the original problem:

$$\max_{\alpha \geq 0} \min_{\mathbf{w}} \Lambda(\mathbf{w}, \alpha) = \max_{\alpha \geq 0} \Lambda(\alpha) \ = \ f(\mathbf{w}^*)$$

Proof: Case I: Constraint Inactive





# **Dual Game Ila**



- Lagrangian: Λ(α
- $\Lambda(\alpha) = \min_{\mathbf{w}} [f(\mathbf{w}) \alpha g(\mathbf{w})]$
- Claim:

$$\max_{\alpha \geq 0} \min_{\mathbf{w}} \Lambda(\mathbf{w}, \alpha) = \max_{\alpha \geq 0} \Lambda(\alpha) = f(\mathbf{w}^*)$$

Case I: Constraint Inactive



At  $\mathbf{w}^*$ , g > 0, so if  $\alpha > 0$ ,

$$f(\mathbf{w}^*) - \alpha g(\mathbf{w}^*) < f(\mathbf{w}^*),$$

$$\Lambda(\alpha) < f(\mathbf{w}^*)$$

But 
$$\Lambda(0) = f(\mathbf{w}^*)$$

So 
$$\max_{\alpha \geq 0} \Lambda(\alpha) = f(\mathbf{w}^*)$$

# **Dual Game IIb**



- Lagrangian:
- $\Lambda(\alpha) = \min_{\mathbf{w}} [f(\mathbf{w}) \alpha g(\mathbf{w})]$
- Claim:
- $\max_{\alpha \geq 0} \min_{\mathbf{w}} \Lambda(\mathbf{w}, \alpha) = \max_{\alpha \geq 0} \Lambda(\alpha) = f(\mathbf{w}^*)$



Case II: Constraint Active



At  $\mathbf{w}^*$ , g = 0, so  $\forall \alpha$ ,

$$\Lambda(\mathbf{w}^*, \alpha) = f(\mathbf{w}^*) - \alpha g(\mathbf{w}^*) = f(\mathbf{w}^*),$$

so 
$$\forall \alpha, \ \Lambda(\alpha) < f(\mathbf{w}^*)$$

At  $\mathbf{w}^*$ ,  $\nabla f \neq 0$ , but

$$\exists \alpha^* \text{ s.t. } \nabla f(\mathbf{w}^*) = \alpha^* \nabla g(\mathbf{w}^*)$$

At 
$$\alpha^*$$
,  $\nabla \Lambda(\alpha^*, \mathbf{w}^*) = \nabla f - \alpha^* \nabla g = 0$ 

so 
$$\Lambda(\alpha^*) = f(\mathbf{w}^*)$$

# Lagrangian for SVMs



Primal constrained problem:

$$\begin{aligned} & \min_{\mathbf{w}, \xi} & & \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i \\ & \forall i, y & & \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}^i) + \xi_i \geq \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}^i) \end{aligned}$$

Lagrangian:

$$\min_{\mathbf{w}, \xi} \max_{\alpha \geq 0} \quad \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i - \sum_{i, y} \alpha_i(y) \left( \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}^i) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) - \ell_i(\mathbf{y}) + \xi_i \right)$$

### **Dual Formulation II**



Duality tells us that

$$\min_{\mathbf{w}, \xi} \max_{\alpha \ge 0} \quad \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i - \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) \left( \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}^i) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) - \ell_i(\mathbf{y}) + \xi_i \right)$$

has the same value as

$$\max_{\alpha \geq 0} \min_{\mathbf{w}, \xi} \quad \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i - \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) \left( \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}^i) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) - \ell_i(\mathbf{y}) + \xi_i \right)$$

- This is useful because if we think of the  $\alpha$ 's as constants, we have an unconstrained min in w and  $\xi$  that we can solve analytically.
- Then we end up with an optimization over  $\alpha$  instead of w (easier).

# **Dual Formulation III**



Minimize the Lagrangian for fixed α's:

$$\Lambda(\mathbf{w}, \xi, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i - \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) \left( \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}^i) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) - \ell_i(\mathbf{y}) + \xi_i \right)$$

$$\frac{\partial \Lambda(\mathbf{w}, \xi, \alpha)}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) \left( \mathbf{f}_i(\mathbf{y}^i) - \mathbf{f}_i(\mathbf{y}) \right)$$

$$\frac{\partial \Lambda(\mathbf{w}, \xi, \alpha)}{\partial \mathbf{w}} = 0 \quad \Longrightarrow \quad \mathbf{w} = \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) \left( \mathbf{f}_i(\mathbf{y}^i) - \mathbf{f}_i(\mathbf{y}) \right)$$

$$\frac{\partial \Lambda(\mathbf{w}, \xi, \alpha)}{\partial \xi_i} = C - \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y})$$

$$\frac{\partial \Lambda(\mathbf{w}, \xi, \alpha)}{\partial \xi_i} = 0 \quad \Longrightarrow \quad \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) = C$$

# **Dual Formulation IV**



• We now know that for fixed  $\alpha$ , the minimum of

$$\Lambda(\mathbf{w}, \xi, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i - \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) \left( \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) - \ell_i(\mathbf{y}) + \xi_i \right)$$

obeys 
$$\sum_{i,y} \alpha_i(y) = C$$
 and  $w = \sum_{i,y} \alpha_i(y) \left( f_i(y^i) - f_i(y) \right)$ 

Plugging these back into Λ:

$$\min_{\mathbf{w},\xi} \Lambda(\mathbf{w},\xi,\alpha) = -\frac{1}{2} \left\| \sum_{i,\mathbf{y}} \alpha_i(\mathbf{y}) \left( \mathbf{f}_i(\mathbf{y}^i) - \mathbf{f}_i(\mathbf{y}) \right) \right\|^2 + \sum_{i,\mathbf{y}} \alpha_i(\mathbf{y}) \ell_i(\mathbf{y})$$

### **Dual Formulation V**



This doesn't reference the primal weights w at all, so we can now worry about the outer max problem:

$$\max_{\alpha \ge 0} \quad \Lambda(\alpha) = -\frac{1}{2} \left\| \sum_{i,y} \alpha_i(y) \left( \mathbf{f}_i(y^*) - \mathbf{f}_i(y) \right) \right\|^2 + \sum_{i,y} \alpha_i(y) \ell_i(y)$$
s.t. 
$$\sum_{\mathbf{y}} \alpha_i(\mathbf{y}) = C \quad \forall i$$

And this solves the original constrained primal:

$$\max_{\alpha \ge 0} \Lambda(\alpha) = \max_{\alpha \ge 0} \min_{\mathbf{w}, \xi} \Lambda(\mathbf{w}, \xi, \alpha) = f(\mathbf{w}^*)$$
$$\mathbf{w} = \sum_{i, \mathbf{v}} \alpha_i(\mathbf{y}) \left( \mathbf{f}_i(\mathbf{y}^i) - \mathbf{f}_i(\mathbf{y}) \right)$$

# What are the Alphas?



Each example (and label) gave to a primal constraint

$$\min_{\mathbf{w},\xi} \quad \frac{1}{2}||\mathbf{w}||^2 + C\sum_i \xi_i$$

s.t. 
$$\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y}^i) + \xi_i \geq \mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \quad \forall i, \mathbf{y}$$



- In the solution, an  $\alpha_i(y)$  will be:
  - Zero if that constraint is inactive
  - Positive if that constrain is active
  - i.e. positive on the support vectors
- Support vectors form the weights:

$$\mathbf{w} = \sum_{i,\mathbf{y}} \alpha_i(\mathbf{y}) \left( \mathbf{f}_i(\mathbf{y}^i) - \mathbf{f}_i(\mathbf{y}) \right)$$

Support vectors



# **Outline**



- Part I: Flat Classification
  - Linear classifiers and loss functions
  - Primal and dual SVM formulations
  - Training SVMs
- Part II: Structured Classification
  - Structured linear classifiers
  - Factored learning formulations
  - Experimental results

# Back to Learning SVMs



We want to find α which maximize

$$\begin{aligned} & \max_{\alpha \geq 0} \quad \Lambda(\alpha) = -\frac{1}{2} \left\| \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) \left( \mathbf{f}_i(\mathbf{y}^i) - \mathbf{f}_i(\mathbf{y}) \right) \right\|^2 + \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) \ell_i(\mathbf{y}) \\ & \text{s.t.} \quad \sum_{\mathbf{y}} \alpha_i(\mathbf{y}) = C \quad \forall i \end{aligned}$$

- This is a quadratic program:
  - Can be solved with general QP or convex optimizers
  - But they don't scale well to large problems
  - Cf. maxent models work fine with general optimizers (e.g. CG, L-BFGS)
- How would a special purpose optimizer work?

# Coordinate Ascent I



Consider the separable (soft-margin) SVM problem:

$$\max_{\alpha \ge 0} Z(\alpha) = \max_{\alpha \ge 0} \left| -\frac{1}{2} \left\| \sum_{i,\mathbf{y}} \alpha_i(\mathbf{y}) \left( \mathbf{f}_i(\mathbf{y}^i) - \mathbf{f}_i(\mathbf{y}) \right) \right\|^2 + \sum_{i,\mathbf{y}} \alpha_i(\mathbf{y}) \ell_i(\mathbf{y}) \right|$$

- In coordinate ascent, we maximize one variable at a time
- Despite all the mess, Z is just a quadratic in each  $\alpha_i(y)$



• If the unconstrained argmin on a coordinate is at a negative α, just clip to zero!

# Coordinate Ascent II



 Ordinarily, treating coordinates independently is a bad idea, but here the update is very fast and simple

$$\alpha_i(\mathbf{y}) \leftarrow \max \left( 0, \alpha_i(\mathbf{y}) + \frac{\ell_i(\mathbf{y}) - \left( \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) \left( \mathbf{f}_i(\mathbf{y}^i) - \mathbf{f}_i(\mathbf{y}) \right) \right)^\top \left( \mathbf{f}_i(\mathbf{y}^i) - \mathbf{f}_i(\mathbf{y}) \right)}{\left\| \left( \mathbf{f}_i(\mathbf{y}^i) - \mathbf{f}_i(\mathbf{y}) \right) \right\|^2} \right)$$

- So we visit each axis many times, but each visit is quick
- This approach works fine for the separable case

### Bi-Coordinate Descent I



In the non-separable case, it's (a little) harder:

$$\max_{\alpha \ge 0} \quad \Lambda(\alpha) = -\frac{1}{2} \left\| \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) \left( \mathbf{f}_i(\mathbf{y}^i) - \mathbf{f}_i(\mathbf{y}) \right) \right\|^2 + \sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) \ell_i(\mathbf{y})$$
s.t. 
$$\sum_{\mathbf{y}} \alpha_i(\mathbf{y}) = C \quad \forall i$$

- Here, we can't update just a single alpha, because of the sum-to-C constraints
- Instead, we can optimize two at once, shifting "mass" from one y to another:



# Bi-Coordinate Descent II



■ Choose an example *i*, and two labels y<sub>1</sub> and y<sub>2</sub>:

$$t = \frac{(\ell_i(\mathbf{y}_1) - \ell_i(\mathbf{y}_2)) - (\sum_{i, \mathbf{y}} \alpha_i(\mathbf{y}) (\mathbf{f}_i(\mathbf{y}^i) - \mathbf{f}_i(\mathbf{y})))^\top (\mathbf{f}_i(\mathbf{y}_2) - \mathbf{f}_i(\mathbf{y}_1))}{||\mathbf{f}_i(\mathbf{y}_2) - \mathbf{f}_i(\mathbf{y}_1)||^2}$$

$$egin{aligned} \mathbf{y}_1 &
ightarrow \mathsf{min}(\mathbf{y}_1+t,\mathbf{y}_1+\mathbf{y}_2) \ \mathbf{y}_2 &
ightarrow \mathsf{max}(\mathbf{y}_2-t,\mathbf{0}) \end{aligned}$$



 This is a sequential minimal optimization update, but it's not the same one as in [Platt 98]

# **SMO**



■ Naïve SMO:  $\forall i \quad \alpha_i(\mathbf{y}^i) = C \\ \text{while (not converged) } \{ \\ \text{visit each example } i \{ \\ \text{for each pair of labels } (\mathbf{y}_1, \mathbf{y}_2) \{ \\ \text{bi-coordinate-update}(i, \mathbf{y}_1, \mathbf{y}_2) \} \} \\ \} \\ \} \\ \} \\ \text{Time per iteration: } O(|x||\mathcal{Y}|^2)$ 

Can speed this up by being clever about skipping examples and

label pairs which will make little or no difference

Smarter SMO:



# Outline



- Part I: Flat Classification
  - Linear classifiers and loss functions
  - Primal and dual SVM formulations
  - Training SVMs
- Part II: Structured Classification
  - Structured linear classifiers
  - Factored learning formulations
  - Experimental results







# Bilingual Word Alignment



En

X

What is the anticipated cost of collecting fees under the new proposal?

En vertu des nouvelles propositions, quel est le coût prévu de perception des droits?



Combinatorial structure

### Structured Models



$$prediction(\mathbf{x}, \mathbf{w}) = \arg\max_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} score(\mathbf{x}, \mathbf{y}, \mathbf{w})$$

space of feasible outputs

#### **Assumption:**

$$score(\mathbf{x}, \mathbf{y}, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{p} \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{p}, \mathbf{y}_{p})$$

Score = sum of local "part" scores

Parts = nodes, edges, productions

# Chain Markov Net (aka CRF\*)



$$P(\mathbf{y} \mid \mathbf{x}) \propto \prod_{j} \phi(\mathbf{x}_{j}, y_{j}) \prod_{jk} \phi(\mathbf{x}_{jk}, y_{j}, y_{k})$$

$$\phi(\mathbf{x}_{j}, y_{j}) = \exp\left\{\mathbf{w}_{N}^{\top} \mathbf{f}_{N}(\mathbf{x}_{j}, y_{j})\right\} \qquad N = \text{Node}$$

$$\phi(\mathbf{x}_{jk}, y_{j}, y_{k}) = \exp\left\{\mathbf{w}_{E}^{\top} \mathbf{f}_{E}(\mathbf{x}_{jk}, y_{j}, y_{k})\right\} \qquad E = \text{Edge}$$

$$\mathbf{y} \qquad \mathbf{a} - \mathbf{z} + \mathbf{a$$

# Chain Markov Net (aka CRF\*)



P(y | x) 
$$\propto \prod_{j} \phi(\mathbf{x}_{j}, y_{j}) \prod_{jk} \phi(\mathbf{x}_{jk}, y_{j}, y_{k}) = \exp\left\{\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}, \mathbf{y})\right\}$$

$$\prod_{j} \phi(\mathbf{x}_{j}, y_{j}) = \exp\left\{\sum_{j} \mathbf{w}^{\top}\mathbf{f}_{\mathsf{N}}(\mathbf{x}_{j}, y_{j})\right\} = \exp\left\{\mathbf{w}^{\top}\mathbf{f}_{\mathsf{N}}(\mathbf{x}, \mathbf{y})\right\}$$

$$\prod_{jk} \phi(\mathbf{x}_{jk}, y_{j}, y_{k}) = \exp\left\{\sum_{jk} \mathbf{w}^{\top}\mathbf{f}_{\mathsf{E}}(\mathbf{x}_{jk}, y_{j}, y_{k})\right\} = \exp\left\{\mathbf{w}^{\top}\mathbf{f}_{\mathsf{E}}(\mathbf{x}, \mathbf{y})\right\}$$

$$\mathbf{f}_{\mathsf{N}}(\mathbf{x}, \mathbf{y}) \equiv \sum_{j} \mathbf{f}_{\mathsf{N}}(\mathbf{x}_{j}, y_{j})$$

$$\mathbf{f}_{\mathsf{E}}(\mathbf{x}, \mathbf{y}) \equiv \sum_{jk} \mathbf{f}_{\mathsf{E}}(\mathbf{x}_{jk}, y_{j}, y_{k})$$

$$\mathbf{f}_{\mathsf{E}}(\mathbf{x}, \mathbf{y}) \equiv \left(\mathbf{f}^{\mathsf{N}}(\mathbf{x}, \mathbf{y})\right) \quad \mathbf{w} \equiv \left(\mathbf{w}^{\mathsf{N}}\mathbf{g}\right)$$
\*Lafferty et al. 01





# **Probabilistic Alignment?**



$$P(\mathbf{y} \mid \mathbf{x}) = \frac{\exp\{\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}, \mathbf{y})\}}{\sum_{\mathbf{y}'} \exp\{\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}, \mathbf{y}')\}} \underbrace{\begin{array}{c} \text{\#P-Complete} \\ \text{Need to sum over} \\ \text{all possible matchings} \\ \text{de} \\ \text{les} \\ \text{nouvelles} \\ \text{the} \\ \text{anticipated} \\ \text{cost} \\ \text{of} \\ \text{collecting} \\ \text{fees} \\ \text{under} \\ \text{the} \\ \text{new} \\ \text{proposal} \\ \text{priovu} \\ \text{de} \\ \text{perception} \\ \text{de} \\ \text{le} \\ \text{droits} \\ \end{array}}$$

# **OCR** Example



We want:

$$\text{arg max}_y \ \mathbf{w}^\top \mathbf{f}(\mathbf{y}, \mathbf{y}) \ = \ \text{``brace''}$$

Equivalently:

# Parsing Example



#### We want:

arg max
$$_y \ w^{ op}f(\ \text{`It was red'}\ ,y) \ = \ {}^{\$}_{c^{\$}_{c}}$$

### Equivalently:

$$\begin{array}{c} w^\top f(\text{'It was red'}, \ \stackrel{\S}{\wedge_{C'D}}) \ > \ w^\top f(\text{'It was red'}, \ \stackrel{\S}{\wedge_{D}}) \\ w^\top f(\text{'It was red'}, \ \stackrel{\S}{\wedge_{C'D}}) \ > \ w^\top f(\text{'It was red'}, \ \stackrel{\S}{\wedge_{D}}) \\ \dots \\ w^\top f(\text{'It was red'}, \ \stackrel{\S}{\wedge_{C'D}}) \ > \ w^\top f(\text{'It was red'}, \ \stackrel{\S}{\wedge_{D}}) \end{array} \right) \text{ a lot!}$$

# Alignment Example



#### We want:

$$\arg\max_{y} w^{\top} f(\begin{tabular}{l} \begin{tabular}{l} \begin{tabular} \begin{tabular}{l} \begin{tabular}{l} \begin{tabular}{l}$$

$$\begin{array}{c} \blacksquare \text{ Equivalently:} \\ w^\top f( \overset{\text{What is the'}}{\overset{1}{\circ}}_{\text{Quel est le'}}^{1 \leftrightarrow 1}, \overset{1 \leftrightarrow 1}{\overset{2}{\circ}}_{\text{Quel est le'}}^{1 \leftrightarrow 2}) > w^\top f( \overset{\text{What is the'}}{\overset{2}{\circ}}_{\text{Quel est le'}}^{1 \leftrightarrow 1}, \overset{1 \leftrightarrow 1}{\overset{2}{\circ}}_{\text{Quel est le'}}^{1 \leftrightarrow 2}) \\ w^\top f( \overset{\text{What is the'}}{\overset{2}{\circ}}_{\text{Quel est le'}}^{1 \leftrightarrow 2}, \overset{1 \leftrightarrow 1}{\overset{2}{\circ}}_{\text{Quel est le'}}^{1 \leftrightarrow 2}) > w^\top f( \overset{\text{What is the'}}{\overset{2}{\circ}}_{\text{Quel est le'}}^{1 \leftrightarrow 2}, \overset{1 \leftrightarrow 1}{\overset{2}{\circ}}_{\text{Quel est le'}}^{1 \leftrightarrow 2}) \\ w^\top f( \overset{\text{What is the'}}{\overset{2}{\circ}}_{\text{Quel est le'}}^{1 \leftrightarrow 2}, \overset{1 \leftrightarrow 1}{\overset{2}{\circ}}_{\text{Quel est le'}}^{1 \leftrightarrow 2}, \overset{1 \leftrightarrow 1}{\overset{2}{\circ}}_{\text{Quel est le'}}^{1 \leftrightarrow 2}) \\ \end{array} \right)$$

# Structured Loss



| b           | × | a        | X                |          | 2 |
|-------------|---|----------|------------------|----------|---|
| b           | r | Ø        | X<br>X<br>C      | e        | 2 |
| b<br>b<br>b | r | Ø        | C                | e        | 1 |
|             | r | <u>a</u> | <u>C</u>         | <u>e</u> | 0 |
| h           |   | A        | $\boldsymbol{C}$ | Ø        |   |
|             |   |          | -2               |          |   |

'It was red' AB AF B AC AC What is the'

'It was red' AB AF AC AC 'Quel est le'

# Max Margin Estimation



• Given training example  $x^i, y^i$  we want:

$$\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) > \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) \quad \forall i, \mathbf{y} \neq \mathbf{y}^i$$

$$\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) \ge \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \gamma \ell_i(\mathbf{y}) \quad \forall i, \mathbf{y}$$

Maximize loss weighted margin:

$$\ell_i(\mathbf{y}) = \sum_j I(y^i_j \neq y_j)$$
 # of mistakes in **y**

\*Collins 02, Altun et al 03, Taskar 03

# Large margin estimation



Brute force enumeration

$$\begin{aligned} & \min_{\mathbf{w}} & & \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i \\ & \text{s.t.} & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Min-max formulation

$$\min_{\mathbf{w}} \ \frac{1}{2} ||\mathbf{w}||^2 - C \left( \sum_i \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) - \max_{\mathbf{y}} \left[ \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right] \right)$$

Plug-in linear program for loss-augmented inference

$$\max_{\mathbf{y}} \left[ \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right]$$

# Min-max formulation



$$\max_{\mathbf{y}} \left[ \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right]$$

Assume linear loss (Hamming):  $\ell_i(\mathbf{y}) = \sum_p \ell_{i,p}(\mathbf{y}_p)$ 

DP Inference  $\max_{\mathbf{y}} \left[ \sum_{p} \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{p}, \mathbf{y}_{p}) + \ell_{i,p}(\mathbf{y}_{p}) \right]$ 

 $\begin{array}{ll} \text{LP inference} & \underset{\mathbf{z} \geq 0;}{\text{max }} \mathbf{q}^{\top} \mathbf{z} \\ & \underset{\mathbf{z} \leq \mathbf{b};}{\text{Az} \leq \mathbf{b};} \end{array}$ 

# $y \Rightarrow z$ Map for Markov Nets





# Markov Net Inference LP



$$\max_{\mathbf{z}} \sum_{j,m} z_{j}(m) \left[ \mathbf{w}^{\top} \mathbf{f}_{\mathsf{N}}(\mathbf{x}_{j}, m) + \ell_{j}(m) \right] \\ + \sum_{jk,m,n} z_{jk}(m,n) \left[ \mathbf{w}^{\top} \mathbf{f}_{\mathsf{E}}(\mathbf{x}_{jk}, m,n) + \ell_{jk}(m,n) \right] \right\} \mathbf{q}^{\top} \mathbf{z} \\ \mathbf{q} = \mathbf{F}^{\top} \mathbf{w} + \ell \\ z_{k}(n) \\ z_{j}(m) \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\$$

Has integral solutions **z** for chains, trees

# **CFG Chart**







- CNF tree = set of two types of parts:
  - Constituents (A, s, e)
  - CF-rules (A  $\rightarrow$  B C, s, m, e)

$$f(x,y) = \sum_{p \in y} f(x,p)$$

# **CFG Inference LP**



$$\max_{\mathbf{z}} \sum_{\substack{s < m < e \\ A \to B \ C}} z_{sme}(ABC) \left[ \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{sme}, ABC) + \ell_{sme}(ABC) \right] \right\}_{\mathbf{q}^{\top} \mathbf{z}} \mathbf{q} = \mathbf{F}^{\top} \mathbf{w} + \ell$$
s.t.  $z_{se}(A) \ge 0$   $z_{sme}(ABC) \ge 0$ 

$$\max_{\mathbf{z}} \sum_{s < m < e \\ B, C} z_{sme}(ABC) \ge 0$$
root  $\sum_{\mathbf{z}} z_{0,n}(A) = 1$ 
inside  $z_{se}(A) = \sum_{\substack{s < m < e \\ B, C}} z_{sme}(A, B, C)$ 
outside  $z_{se}(A) = \sum_{\substack{e < m < n \\ B, C}} z_{sme}(B, A, C) + \sum_{\substack{0 \le m < s \\ B, C}} z_{sme}(B, C, A)$ 

Has integral solutions z

# Matching Inference LP





Has integral solutions z

# LP Duality Recap



- Linear programming duality
  - Variables ⇒ constraints
  - Constraints ⇒ variables
- Optimal values are the same
  - When both feasible regions are bounded

$$\label{eq:constraints} \begin{aligned} \max_{\mathbf{z}} \quad & \mathbf{c}^{\top}\mathbf{z} \\ \text{s.t.} \quad & \mathbf{A}\mathbf{z} \leq \mathbf{b}; \\ & \mathbf{z} \geq \mathbf{0}. \end{aligned}$$



$$egin{array}{ll} \min_{\lambda} & \mathbf{b}^{ op} \lambda \\ ext{s.t.} & \mathbf{A}^{ op} \lambda \geq \mathbf{c}; \\ & \lambda \geq 0. \end{array}$$

#### Min-max formulation



$$\min_{\mathbf{w}, \lambda} \frac{1}{2} ||\mathbf{w}||^2 - C \left( \sum_{i} \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) - \mathbf{b}_i^{\top} \lambda_i \right)$$
  
s.t.  $\mathbf{A}_i^{\top} \lambda_i \ge \mathbf{q}_i$ ;  $\lambda_i \ge 0$ 

$$\mathbf{q}_i = \mathbf{F}_i^{\top} \mathbf{w} + \ell_i$$

# Min-max formulation summary



$$\min_{\mathbf{w}, \lambda} \frac{1}{2} ||\mathbf{w}||^2 - C \left( \sum_{i} \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) - \mathbf{b}_i^{\top} \lambda_i \right)$$
  
s.t.  $\mathbf{A}_i^{\top} \lambda_i \ge \mathbf{F}_i^{\top} \mathbf{w} + \ell_i; \quad \lambda_i \ge 0, \ \forall i.$ 

- Formulation produces concise QP for
  - Low-treewidth Markov networks
  - Context free grammars
  - Bipartite matchings
  - Many other problems with compact LP inference

\*Taskar et al 04

#### Factored Primal/Dual



$$\min_{\mathbf{w}, \lambda} \frac{1}{2} ||\mathbf{w}||^2 - C \left( \sum_{i} \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) - \mathbf{b}_i^{\top} \lambda_i \right)$$
  
s.t.  $\mathbf{A}_i^{\top} \lambda_i \ge \mathbf{F}_i^{\top} \mathbf{w} + \ell_i; \quad \lambda_i \ge 0, \quad \forall i.$ 

By QP duality 
$$\mathbf{\widehat{y}} \mathbf{w} = \sum_i C \mathbf{f}_i(\mathbf{y}^i) - \mathbf{F}_i \mu_i$$

$$\left\| \begin{aligned} \max_{\mu} & \sum_{i} \ell_{i}^{\top} \mu_{i} - \frac{1}{2} \left\| \sum_{i} C\mathbf{f}_{i}(\mathbf{y}^{i}) - \mathbf{F}_{i} \mu_{i} \right] \right\|^{2} \\ \text{s.t.} & \mathbf{A}_{i} \mu_{i} \leq C\mathbf{b}_{i}; \quad \mu_{i} \geq 0, \quad \forall i. \end{aligned}$$

Dual inherits structure from problem-specific inference LP Variables  $\mu$  correspond to a decomposition of  $\alpha$  variables of the flat case

# **Unfactored Primal/Dual**



$$\begin{aligned} & \min_{\mathbf{w}, \xi} & & \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i \\ & \text{s.t.} & & & & & & & & \\ & \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}^i) + \xi_i \geq \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}), & \forall i, \mathbf{y} \end{aligned}$$

By QP duality 
$$\mathbf{\widehat{y}} \mathbf{w} = \sum_{i,\mathbf{y}} lpha_i(\mathbf{y}) [\mathbf{f}_i(\mathbf{y}^i) - \mathbf{f}_i(\mathbf{y})]$$

$$\max_{\alpha} \sum_{i,y} \ell_i(y) \alpha_i(y) - \frac{1}{2} \left\| \sum_{i,y} \alpha_i(y) [\mathbf{f}_i(y^i) - \mathbf{f}_i(y)] \right\|^2$$
s.t. 
$$\sum_{\mathbf{y}} \alpha_i(\mathbf{y}) = C; \quad \alpha_i \ge 0, \quad \forall i.$$

Exponentially many constraints/variables





# Outline



- Part I: Flat Classification
  - Linear classifiers and loss functions
  - Primal and dual SVM formulations
  - Training SVMs
- Part II: Structured Classification
  - Structured linear classifiers
  - Factored learning formulations
  - Experimental results



# **Experimental Setup**



- Standard Penn treebank split (2-21/22/23)
- Generative baselines
  - Klein & Manning 03 and Collins 99
- Discriminative
  - Basic = max-margin version of K&M 03
  - Lexical & Lexical + Aux
- Lexical features (on constituent parts only)



← predicted tags

- Auxillary features
  - Flat classifier using same features
  - Prediction of K&M 03 on each span

# Results for sentences ≤40 words



| Model        | LP    | LR    | F <sub>1</sub> |
|--------------|-------|-------|----------------|
| Generative   | 86.37 | 85.27 | 85.82          |
| Lexical+Aux* | 87.56 | 86.85 | 87.20          |
| Collins 99*  | 85.33 | 85.94 | 85.73          |

\*Trained only on sentences ≤20 words

\*Taskar et al 04

# Example



The Egyptian president said he would visit Libya today to resume the talks.

Generative model: Libya today is base NP

Lexical model: today is a one word constituent

# Word Alignment Results



Hansards, 2M unlabeled, 100 labeled sentences

| Model        | AER  |
|--------------|------|
| Dice         | 36.0 |
| IBM 4        | 9.7  |
| MM-Dice      | 29.8 |
| +Distance    | 17.2 |
| +Shape/Freq  | 14.3 |
| +Next/Common | 9.6  |



#### Generative/Discriminative Trade-offs



- Inference on training:
  - Discriminative methods require (repeated) inference on the training set, over the domains where the parameters interact
  - Generative models are primarily estimated from statistics of the training set (counting)
  - Inference can be much, much slower than counting
- Accounting for interactions:
  - Discriminative estimates take into account feature interactions, non-independence (note that conjunctive features are required to actually model interactions)
- Bias / variance
  - Discriminative methods tend to have higher variance, generative ones tend to have higher bias – but in general the discriminative techniques win on accuracy if properly regularized

#### Likelihood/Margin Trade-offs



- Same as maxent vs. SVMs:
  - Sparse solutions, robust to "feature jitter"
  - Margin-based training often more accurate when posteriors are not needed
- Plus: unnormalizable models
  - For some models (e.g., matchings and a subclass of Markov networks), margin is tractable, likelihood is not!

### **Conclusions**



- Today's tutorial:
  - Flat SVMs from scratch
    - Objective functions and properties
    - Primal and dual formulations
    - How to learn them
  - Structured max-margin models
    - Concise, factored form
    - Efficient algorithms, strong empirical results
    - Applications: sequences, trees, matchings
- Coming soon:
  - Sequence modeling toolkit including M3Ns

http://www.cs.berkeley.edu/~klein http://www.cs.berkeley.edu/~taskar

### References



- Y. Altun, I. Tsochantaridis, and T. Hofmann. *Hidden Markov support vector machines*. ICML03.
- M. Collins. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. EMNLP02
- K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. JMLR01
- J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML04
- B. Taskar, C. Guestrin, D. Koller. *Maximum margin Markov Networks*. NIPS03
- B. Taskar, D. Klein, M. Collins, D. Koller, C. Manning. *Maximum margin Parsing*. EMNLP04
- B. Taskar. Learning structured prediction models: a large margin approach. Stanford Univ. Thesis, 2004