Fully Distributed EM for Very Large Datasets

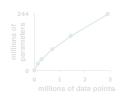
Jason Wolfe Aria Haghighi Dan Klein

Computer Science Division UC Berkeley

Overview

• Task: unsupervised learning via EM

 Focus: models w/ many local parameters (relevant to few datums)

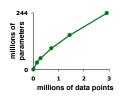


Approach: fully distributed, localized EM
 ★ parameter locality → less bandwidth

Overview

• Task: unsupervised learning via EM

• Focus: models w/ many local parameters (relevant to few datums)

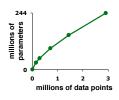


Approach: fully distributed, localized EM
 ★ parameter locality → less bandwidth

Overview

• Task: unsupervised learning via EM

 Focus: models w/ many local parameters (relevant to few datums)



Approach: fully distributed, localized EM
 ★ parameter locality → less bandwidth

Outline

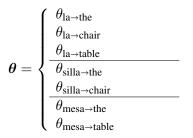
Running example: IBM Model 1 for word alignment

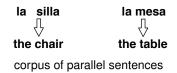
Naive distributed EM

Efficiently distributed EM

Word alignment for machine translation

- Goal: parallel sentences → word-level translation model
- Parameters θ_{s→t}:
 probability that Spanish word s
 translates to English word t





Word alignment for machine translation

- Goal: parallel sentences → word-level translation model
- Parameters θ_{s→t}:
 probability that Spanish word s
 translates to English word t

$$m{ heta} = egin{cases} heta_{ ext{la} o ext{the}} & heta_{ ext{la} o ext{chair}} & heta_{ ext{la} o ext{chair}} & heta_{ ext{la} o ext{chair}} & heta_{ ext{silla} o ext{the}} & heta_{ ext{silla} o ext{chair}} & heta_{ ext{mesa} o ext{the}} & heta_{ ext{mesa} o ext{table}} & heta_{ ext{mes$$

Word alignment for machine translation

- Goal: parallel sentences → word-level translation model
- Parameters θ_{s→t}:
 probability that Spanish word s
 translates to English word t

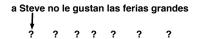
$$\theta = \begin{cases} \theta_{\text{la} \rightarrow \text{the}} &= 1.0\\ \theta_{\text{la} \rightarrow \text{chair}} &= 0.0\\ \theta_{\text{la} \rightarrow \text{table}} &= 0.0\\ \hline \theta_{\text{silla} \rightarrow \text{the}} &= 0.0\\ \hline \theta_{\text{silla} \rightarrow \text{chair}} &= 1.0\\ \hline \theta_{\text{mesa} \rightarrow \text{the}} &= 0.0\\ \theta_{\text{mesa} \rightarrow \text{table}} &= 1.0 \\ \end{cases}$$



a Steve no le gustan las ferias grandes

? ? ? ? ? ?

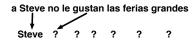
- IBM Model 1: a simple generative model
 - For each target position i, independently
 - choose a source index a_i u.a.r.
 - choose a target word $T_i \sim heta_{\mathrm{S}_{\mathrm{a_i}} o \cdot}$



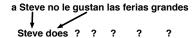
- IBM Model 1: a simple generative model
 - For each target position i, independently
 - choose a source index a_i u.a.r.
 - choose a target word $T_i \sim heta_{\mathrm{S}_{\mathrm{a_i}} o \cdot}$

a Steve no le gustan las ferias grandes

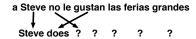
- IBM Model 1: a simple generative model
 - For each target position i, independently
 - choose a source index a_i u.a.r.
 - choose a target word $T_i \sim heta_{\mathrm{S}_{\mathrm{a_i}} o \cdot}$



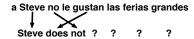
- IBM Model 1: a simple generative model
 - For each target position i, independently
 - choose a source index a_i u.a.r.
 - choose a target word $T_i \sim heta_{\mathrm{S}_{\mathrm{a_i}} o \cdot}$



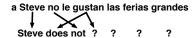
- IBM Model 1: a simple generative model
 - For each target position i, independently
 - choose a source index a_i u.a.r.
 - choose a target word $T_i \sim heta_{\mathrm{S}_{\mathrm{a_i}} o \cdot}$



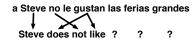
- IBM Model 1: a simple generative model
 - For each target position i, independently
 - choose a source index a_i u.a.r.
 - choose a target word $T_i \sim heta_{\mathrm{S}_{\mathrm{a_i}} o \cdot}$



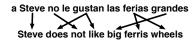
- IBM Model 1: a simple generative model
 - For each target position i, independently
 - choose a source index a_i u.a.r.
 - choose a target word $T_i \sim heta_{\mathrm{S}_{\mathrm{a_i}} o \cdot}$



- IBM Model 1: a simple generative model
 - For each target position i, independently
 - choose a source index a_i u.a.r.
 - choose a target word $T_i \sim heta_{\mathrm{S}_{\mathrm{a_i}} o \cdot}$



- IBM Model 1: a simple generative model
 - For each target position i, independently
 - choose a source index a_i u.a.r.
 - choose a target word $T_i \sim heta_{\mathrm{S}_{\mathrm{a_i}} o \cdot}$



- IBM Model 1: a simple generative model
 - For each target position i, independently
 - choose a source index a_i u.a.r.
 - choose a target word $T_i \sim heta_{\mathrm{S}_{\mathrm{a_i}} o \cdot}$

$$\theta_{la \rightarrow the}$$
=.33, $\theta_{la \rightarrow chair}$ =.33, $\theta_{la \rightarrow table}$ =.33, $\theta_{silla \rightarrow the}$ =.5,...

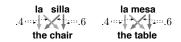
$$\theta_{la \rightarrow the}$$
=.33, $\theta_{la \rightarrow chair}$ =.33, $\theta_{la \rightarrow table}$ =.5,...

- Iterate:
 - **E-step:** estimate alignment counts η compute posteriors $p(a_i|\theta)$
- $\frac{.33}{.33+.5} = .4 \rightarrow \frac{.5}{.33+.5}$

- Iterate:
 - **1** E-step: estimate alignment counts η
 - **1** compute posteriors $p(a_i|\theta)$

$$\theta_{la \rightarrow the}$$
=.33, $\theta_{la \rightarrow chair}$ =.33, $\theta_{la \rightarrow table}$ =.33, $\theta_{silla \rightarrow the}$ =.5,...

$$\begin{array}{c} \text{la silla} \\ \frac{.33}{.33+.5} = .4 \\ \text{the chair} \end{array}$$



- Iterate:
 - **1** E-step: estimate alignment counts η
 - **1** compute posteriors $p(a_i|\theta)$
 - 2 aggregate into expected counts $\eta_{s \to t}$ (expected # times $s \to t$ under θ)

$$\eta_{s \to t} \leftarrow \sum_{\mathcal{C}} \frac{\theta_{s \to t}}{\sum_{i'} \theta_{S_{i'} \to t}}$$

$$\theta_{la \rightarrow the}$$
=.33, $\theta_{la \rightarrow chair}$ =.33, $\theta_{la \rightarrow table}$ =.33, $\theta_{silla \rightarrow the}$ =.5,...

la silla
$$\frac{.33}{.33+.5} = .4 \xrightarrow{\bullet \bullet} \sqrt{\bullet \cdots .6} = \frac{.5}{.33+.5}$$
 the chair

$$\eta_{\text{la}\rightarrow\text{the}}=.8, \, \eta_{\text{la}\rightarrow\text{chair}}=.4, \\
\eta_{\text{la}\rightarrow\text{table}}=.4, \, \eta_{\text{silla}\rightarrow\text{the}}=.6,...$$

ullet $\theta \leftarrow$ some initial guess

- **1** E-step: estimate alignment counts η
 - **1** compute posteriors $p(a_i|\theta)$
 - 2 aggregate into expected counts $\eta_{s \to t}$ (expected # times $s \to t$ under θ)

$$\eta_{s \to t} \leftarrow \sum_{\mathcal{C}} \frac{\theta_{s \to t}}{\sum_{i'} \theta_{S_{i'} \to t}}$$

2 M-step: normalize η to get new ML θ

$$\theta_{s \rightarrow t} \leftarrow \frac{\eta_{s \rightarrow t}}{\sum_{t'} \eta_{s \rightarrow t'}}$$

$$\theta_{la \rightarrow the}$$
=.33, $\theta_{la \rightarrow chair}$ =.33, $\theta_{la \rightarrow table}$ =.33, $\theta_{silla \rightarrow the}$ =.5,...

$$\begin{array}{c} \text{la silla} \\ \frac{.33}{.33+.5} = .4 \\ & \begin{array}{c} & \\ \end{array} \\ \text{the chair} \end{array}$$

$$\begin{split} &\eta_{la\rightarrow the} \text{=.8, } \eta_{la\rightarrow chair} \text{=.4,} \\ &\eta_{la\rightarrow table} \text{=.4, } \eta_{silla\rightarrow the} \text{=.6,...} \end{split}$$

$$\begin{aligned} \theta_{la\rightarrow the} &= .5, \ \theta_{la\rightarrow chair} &= .25, \\ \theta_{la\rightarrow table} &= .25, \ \theta_{silla\rightarrow the} &= .5, \dots \end{aligned}$$

E-Step 1

E-Step 2

E-Step 3

E-Step 4

E-Step 5

UN Arabic English TIDES v2 corpus

- 2.9 million sentence pairs from UN proceedings
- 243 million unique word pairs (translations possible in some sentence pair)
 - 243 M parameters in θ
 - 243 M counts in η
- Even fitting all (indexed) parameters in 32-bit memory can be challenging

Outline

• Running example: IBM Model 1 for word alignment

Naive distributed EM

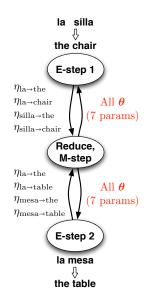
Efficiently distributed EM

- E-step computations distribute easily
 - partition data over k nodes
 - ullet alignments independent given heta
- Nodes communicate partial counts to central Reduce node
- Reduce node does global M-step
- Reduce sends new parameters back
- Remaining problems:
 - Memory at Reduce node
 - C-step (communication) bandwidth5.5 B numbers per iteration
 - (on full dataset with 20 nodes)

- E-step computations distribute easily
 - partition data over *k* nodes
 - ullet alignments independent given heta
- Nodes communicate partial counts to central Reduce node
- Reduce node does global M-step
- Reduce sends new parameters back
- Remaining problems
 - Memory at Reduce node
 - C-step (communication) bandwidth
 5.5 B numbers per iteration
 - (on full dataset with 20 nodes)

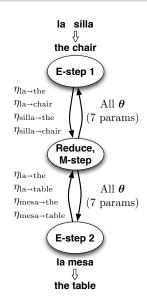
- E-step computations distribute easily
 - partition data over k nodes
 - ullet alignments independent given heta
- Nodes communicate partial counts to central Reduce node
- Reduce node does global M-step
- Reduce sends new parameters back
- Remaining problems:
 - Memory at Reduce node
 - C-step (communication) bandwidth:
 5.5 B numbers per iteration
 (on full dataset with 20 nodes)

- E-step computations distribute easily
 - partition data over k nodes
 - ullet alignments independent given heta
- Nodes communicate partial counts to central Reduce node
- Reduce node does global M-step
- Reduce sends new parameters back
 - Remaining problems:
 - Memory at Reduce node
 - C-step (communication) bandwidth:
 5.5 B numbers per iteration (on full dataset with 20 nodes)



- E-step computations distribute easily
 - partition data over k nodes
 - ullet alignments independent given heta
- Nodes communicate partial counts to central Reduce node
- Reduce node does global M-step
- Reduce sends new parameters back
 - Remaining problems:
 - Memory at Reduce node
 - C-step (communication) bandwidth:
 5.5 B numbers per iteration (on full dataset with 20 nodes)

Previous approach: distributing the E-step

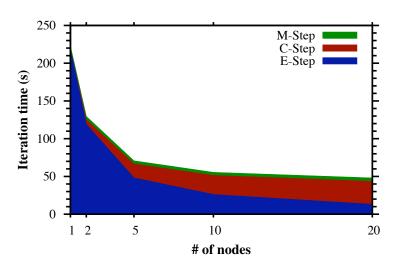


- E-step computations distribute easily
 - partition data over k nodes
 - ullet alignments independent given heta
- Nodes communicate partial counts to central Reduce node
- Reduce node does global M-step
- Reduce sends new parameters back
 - Remaining problems:
 - Memory at Reduce node
 - C-step (communication) bandwidth:
 5.5 B numbers per iteration (on full dataset with 20 nodes)

(Chu et al. 2006, Dyer et al. 2008, Newman et al. 2008, ...)

Speedup (on 200K total sentence pairs)

Iteration time vs. # of E-step nodes



Common practical solutions

- Memory and bandwidth are real problems in practice
- Workarounds
 - Use less data
 - Ignore rare words
 - Train on independent chunks
 - Swap to disk
 - Distribute over multiple machines

Outline

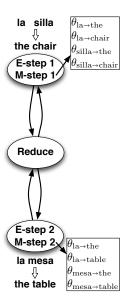
Running example: IBM Model 1 for word alignment

Naive distributed EM

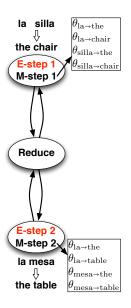
Efficiently distributed EM

Distribute M-step alongside E-step

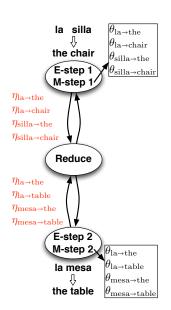
- Nodes store only needed params, compute them locally
- Reduce passes back counts
- Don't need to hear about irrelevant source words
- Don't need to tell (or hear) about purely local source words
- Need to hear everything about each source word: M-step denominator
 - $\theta_{s \to t} \leftarrow \frac{\eta_{s \to t}}{\sum_{t'} \eta_{s \to t'}}$
- Bandwidth savings: 30%



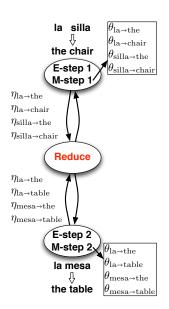
- Distribute M-step alongside E-step
 - Nodes store only needed params, compute them locally
 - Reduce passes back counts
 - Don't need to hear about
 - Don't need to tell (or hear) about
 - Need to hear everything about each
 - $\theta_{s \to t} \leftarrow \frac{\eta_{s \to t}}{\nabla \eta_{s \to t}}$
 - Bandwidth savings: 30%



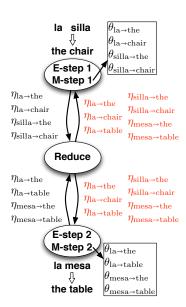
- Distribute M-step alongside E-step
 - Nodes store only needed params, compute them locally
 - Reduce passes back counts
 - Don't need to hear about irrelevant source words
 - Don't need to tell (or hear) about purely local source words
 - Need to hear everything about each source word: M-step denominator
 - $\theta_{s o t} \leftarrow \frac{\eta_{s o t'}}{\sum_{t'} \eta_{s o t'}}$
 - Bandwidth savings: 30%.



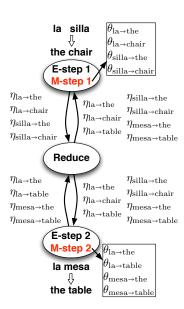
- Distribute M-step alongside E-step
 - Nodes store only needed params, compute them locally
 - Reduce passes back counts
 - Don't need to hear about irrelevant source words
 - Don't need to tell (or hear) about purely local source words
 - Need to hear everything about each source word: M-step denominator
 - $\theta_{s \to t} \leftarrow \frac{\eta s \to t}{\sum_{t'} \eta_{s \to t'}}$
 - Bandwidth savings: 30%



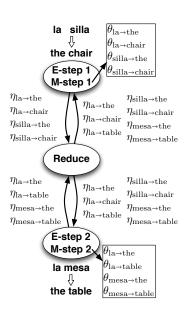
- Distribute M-step alongside E-step
 - Nodes store only needed params, compute them locally
 - Reduce passes back counts
 - Don't need to hear about irrelevant source words
 - Don't need to tell (or hear) about purely local source words
 - Need to hear everything about each source word: M-step denominator
 - $\theta_{s \to t} \leftarrow \frac{\eta s \, \eta}{\sum_{t'} \eta_{s \to t'}}$
 - Bandwidth savings: 30%



- Distribute M-step alongside E-step
 - Nodes store only needed params, compute them locally
 - Reduce passes back counts
 - Don't need to hear about irrelevant source words
 - Don't need to tell (or hear) about purely local source words
 - Need to hear everything about each source word: M-step denominator
 - $\theta_{s \to t} \leftarrow \frac{\eta_{s \to t}}{\sum_{t'} \eta_{s \to t'}}$
 - Bandwidth savings: 30%

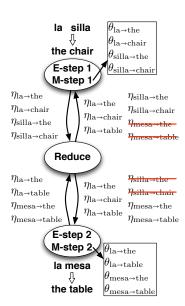


- Distribute M-step alongside E-step
 - Nodes store only needed params, compute them locally
 - Reduce passes back counts
 - Don't need to hear about irrelevant source words
 - Don't need to tell (or hear) about purely local source words
 - Need to hear everything about each source word: M-step denominator
 - $\theta_{s \to t} \leftarrow \frac{\eta_{s \to t}}{\sum_{t'} \eta_{s \to t'}}$
 - Bandwidth savings: 30%



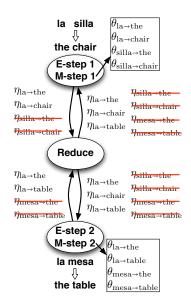
- Distribute M-step alongside E-step
 - Nodes store only needed params, compute them locally
 - Reduce passes back counts
 - Don't need to hear about irrelevant source words
 - Don't need to tell (or hear) about purely local source words
 - Need to hear everything about each source word: M-step denominator

$$\theta_{s \to t} \leftarrow \frac{\eta_{s \to t}}{\sum_{t'} \eta_{s \to t'}}$$



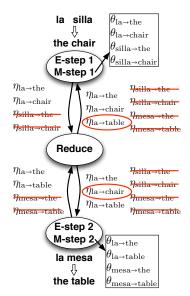
- Distribute M-step alongside E-step
 - Nodes store only needed params, compute them locally
 - Reduce passes back counts
 - Don't need to hear about irrelevant source words
 - Don't need to tell (or hear) about purely local source words
 - Need to hear everything about each source word: M-step denominator

$$\theta_{s \to t} \leftarrow \frac{\eta_{s \to t}}{\sum_{t'} \eta_{s \to t'}}$$



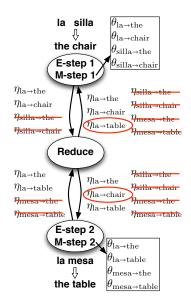
- Distribute M-step alongside E-step
 - Nodes store only needed params, compute them locally
 - Reduce passes back counts
 - Don't need to hear about irrelevant source words
 - Don't need to tell (or hear) about purely local source words
 - Need to hear everything about each source word: M-step denominator

$$\theta_{s \to t} \leftarrow \frac{\eta_{s \to t}}{\sum_{t'} \eta_{s \to t'}}$$



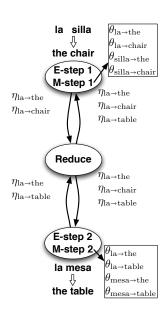
- Distribute M-step alongside E-step
 - Nodes store only needed params, compute them locally
 - Reduce passes back counts
 - Don't need to hear about irrelevant source words
 - Don't need to tell (or hear) about purely local source words
 - Need to hear everything about each source word: M-step denominator

$$\theta_{s \to t} \leftarrow \frac{\eta_{s \to t}}{\sum_{t'} \eta_{s \to t'}}$$



- Distribute M-step alongside E-step
 - Nodes store only needed params, compute them locally
 - Reduce passes back counts
 - Don't need to hear about irrelevant source words
 - Don't need to tell (or hear) about purely local source words
 - Need to hear everything about each source word: M-step denominator

$$\theta_{s \to t} \leftarrow \frac{\eta_{s \to t}}{\sum_{t'} \eta_{s \to t'}}$$



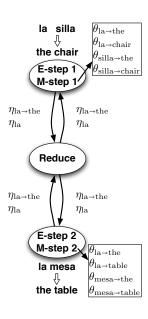
- Augment η with redundant $\eta_s = \sum_{t'} \eta_{s \to t'}$ in E-step
- M-step becomes $\theta_{s o t} \leftarrow \frac{\eta_{s o t}}{\eta_s}$
- Increases locality
- Total bandwidth savings: 84% (bigger if more nodes)
- Similar tricks for other models



- Augment η with redundant $\eta_s = \sum_{t'} \eta_{s \to t'}$ in E-step
- M-step becomes $\theta_{s o t} \leftarrow \frac{\eta_{s o t}}{\eta_s}$
- Increases locality
- Total bandwidth savings: 84% (bigger if more nodes)
- Similar tricks for other models

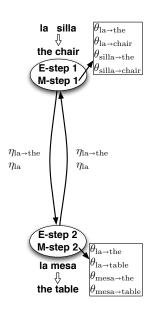


- Augment η with redundant $\eta_s = \sum_{t'} \eta_{s \to t'}$ in E-step
- M-step becomes $\theta_{s o t} \leftarrow \frac{\eta_{s o t}}{\eta_s}$
- Increases locality
- Total bandwidth savings: 84% (bigger if more nodes)
- Similar tricks for other models



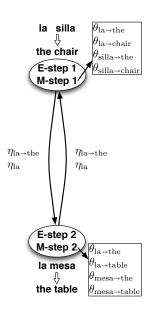
- Augment η with redundant $\eta_s = \sum_{t'} \eta_{s \to t'}$ in E-step
- M-step becomes $\theta_{s o t} \leftarrow \frac{\eta_{s o t}}{\eta_s}$
- Increases locality
- Total bandwidth savings: 84% (bigger if more nodes)
- Similar tricks for other models

Choice of C-step topology

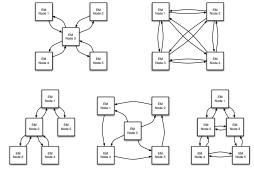


- No need for separate Reduce nodes
- By choosing connectivity, can trade off
 - bandwidth
 - latency
 - locality
 - ...

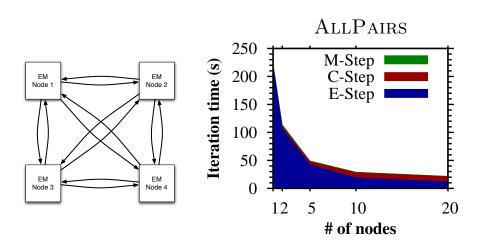
Choice of C-step topology



- No need for separate Reduce nodes
- By choosing connectivity, can trade off
 - bandwidth
 - latency
 - locality
 - ...

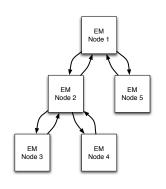


ALLPAIRS topology



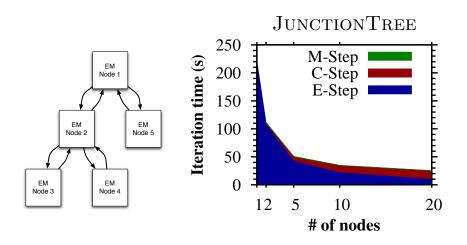
Total Bandwidth: 3.6 B counts per iteration

JUNCTIONTREE topology



- Nodes embedded in arbitrary tree structure
- Messages contain counts needed by nodes in both subtrees
- Tree can optimize for
 - bandwidth
 - locality
 - ...
- We use maximum spanning tree to heuristically minimize bandwidth
- Future work: multiple trees

JUNCTIONTREE topology



Total Bandwidth: 1.4 B counts per iteration

Locality in other models

- Ex: Latent Dirichlet Allocation (LDA) for topic modeling
 - Parameters: unigram distributions for each topic p(w|t)
 - Topic-word parameters local
 - Similar augmentation trick to Model 1
 - Details and results in paper
- Also applies to other EM models, beyond EM
 - Word locality is extremely common in NLP applications
 - Variational inference
 - Other computations that make sparse use of expectations

Conclusion

- A fully distributed, maximally localized EM algorithm
 - exploits parameter locality for significant speedup
 - is general; just define η for each datum
 - is flexible with respect to communication topology
- Many further improvements possible
 - intelligent partitioning of data
 - running E- and C-steps in parallel
 - better topologies (e.g., multiple trees)
 - exploiting approximate sparsity/locality
 - ...