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Abstract

We present a maximally streamlined approach to
learning HMM-based acoustic models for automatic
speech recognition. In our approach, an initial mono-
phone HMM is iteratively refined using a split-merge
EM procedure which makes no assumptions about
subphone structure or context-dependent structure,
and which uses only a single Gaussian per HMM
state. Despite the much simplified training process,
our acoustic model achieves state-of-the-art results
on phone classification (where it outperforms almost
all other methods) and competitive performance on
phone recognition (where it outperforms standard CD
triphone / subphone / GMM approaches). We also
present an analysis of what is and is not learned by
our system.

1 Introduction

Continuous density hidden Markov models (HMMs)
underlie most automatic speech recognition (ASR)
systems in some form. While the basic algorithms
for HMM learning and inference are quite general,
acoustic models of speech standardly employ rich
speech-specific structures to improve performance.
For example, it is well known that a monophone
HMM with one state per phone is too coarse an
approximation to the true articulatory and acoustic
process. The HMM state space is therefore refined
in several ways. To model phone-internal dynam-
ics, phones are split into beginning, middle, and end
subphones (Jelinek, 1976). To model cross-phone
coarticulation, the states of the HMM are refined
by splitting the phones into context-dependent tri-
phones. These states are then re-clustered (Odell,
1995) and the parameters of their observation dis-
tributions are tied back together (Young and Wood-
land, 1994). Finally, to model complex emission

densities, states emit mixtures of multivariate Gaus-
sians. This standard structure is shown schemati-
cally in Figure 1. While this rich structure is pho-
netically well-motivated and empirically success-
ful, so much structural bias may be unnecessary, or
even harmful. For example in the domain of syn-
tactic parsing with probabilistic context-free gram-
mars (PCFGs), a surprising recent result is that au-
tomatically induced grammar refinements can out-
perform sophisticated methods which exploit sub-
stantial manually articulated structure (Petrov et al.,
2006).

In this paper, we consider a much more automatic,
data-driven approach to learning HMM structure for
acoustic modeling, analagous to the approach taken
by Petrov et al. (2006) for learning PCFGs. We start
with a minimal monophone HMM in which there is
a single state for each (context-independent) phone.
Moreover, the emission model for each state is a sin-
gle multivariate Gaussian (over the standard MFCC
acoustic features). We then iteratively refine this
minimal HMM through state splitting, adding com-
plexity as needed. States in the refined HMMs are
always substates of the original HMM and are there-
fore each identified with a unique base phone. States
are split, estimated, and (perhaps) merged, based on
a likelihood criterion. Our model never allows ex-
plicit Gaussian mixtures, though substates may de-
velop similar distributions and thereby emulate such
mixtures.

In principle, discarding the traditional structure
can either help or hurt the model. Incorrect prior
splits can needlessly fragment training data and in-
correct prior tying can limit the model’s expressiv-
ity. On the other hand, correct assumptions can
increase the efficiency of the learner. Empirically,
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Figure 1: Comparison of the standard model to our model (here
shown with k = 4 subphones per phone) for the word dad.
The dependence of subphones across phones in our model is
not shown, while the context clustering in the standard model is
shown only schematically.

we show that our automatic approach outperforms
classic systems on the task of phone recognition on
the TIMIT data set. In particular, it outperforms
standard state-tied triphone models like Young and
Woodland (1994), achieving a phone error rate of
26.4% versus 27.7%. In addition, our approach
gives state-of-the-art performance on the task of
phone classification on the TIMIT data set, suggest-
ing that our learned structure is particularly effec-
tive at modeling phone-internal structure. Indeed,
our error rate of 21.4% is outperformed only by the
recent structured margin approach of Sha and Saul
(2006). It remains to be seen whether these posi-
tive results on acoustic modeling will facilitate better
word recognition rates in a large vocabulary speech
recognition system.

We also consider the structures learned by the
model. Subphone structure is learned, similar to,
but richer than, standard begin-middle-end struc-
tures. Cross-phone coarticulation is also learned,
with classic phonological classes often emerging
naturally.

Many aspects of this work are intended to sim-
plify rather than further articulate the acoustic pro-
cess. It should therefore be clear that the basic tech-
niques of splitting, merging, and learning using EM
are not in themselves new for ASR. Nor is the basic
latent induction method new (Matsuzaki et al., 2005;
Petrov et al., 2006). What is novel in this paper is (1)
the construction of an automatic system for acous-
tic modeling, with substantially streamlined struc-
ture, (2) the investigation of variational inference for
such a task, (3) the analysis of the kinds of struc-
tures learned by such a system, and (4) the empirical

demonstration that such a system is not only com-
petitive with the traditional approach, but can indeed
outperform even very recent work on some prelimi-
nary measures.

2 Learning

In the following, we propose a greatly simplified
model that does not impose any manually specified
structural constraints. Instead of specifying struc-
ture a priori, we use the Expectation-Maximization
(EM) algorithm for HMMs (Baum-Welch) to auto-
matically induce the structure in a way that maxi-
mizes data likelihood.

In general, our training data consists of sets
of acoustic observation sequences and phone level
transcriptions r which specify a sequence of phones
from a set of phones Y , but does not label each
time frame with a phone. We refer to an observa-
tion sequence as x = x1, . . . , xT where xi ∈ R39

are standard MFCC features (Davis and Mermel-
stein, 1980). We wish to induce an HMM over a
set of states S for which we also have a function
π : S → Y that maps every state in S to a phone
in Y . Note that in the usual formulation of the EM
algorithm for HMMs, one is interested in learning
HMM parameters θ that maximize the likelihood of
the observations P(x|θ); in contrast, we aim to max-
imize the joint probability of our observations and
phone transcriptions P(x, r|θ) or observations and
phone sequences P(x,y|θ) (see below). We now de-
scribe this relatively straightforward modification of
the EM algorithm.

2.1 The Hand-Aligned Case

For clarity of exposition we first consider a simpli-
fied scenario in which we are given hand-aligned
phone labels y = y1, . . . , yT for each time t, as is
the case for the TIMIT dataset. Our procedure does
not require such extensive annotation of the training
data and in fact gives better performance when the
exact transition point between phones are not pre-
specified but learned.

We define forward and backward probabilities
(Rabiner, 1989) in the following way: the forward
probability is the probability of observing the se-
quence x1, . . . , xt with transcription y1, . . . , yt and
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Figure 2: Iterative refinement of the /ih/ phone with 1, 2, 4, 8 substates.

ending in state s at time t:

αt(s) = P(x1, . . . , xt, y1, . . . yt, st = s|λ),

and the backward probability is the probability of
observing the sequence xt+1, . . . , xT with transcrip-
tion yt+1, . . . , yT , given that we start in state s at
time t:

βt(s) = P(xt+1, . . . , xT , yt+1, . . . , yT |st = s, λ),

where λ are the model parameters. As usual, we
parameterize our HMMs with ass′ , the probability
of transitioning from state s to s′, and bs(x) ∼
N (µs,Σs), the probability emitting the observation
x when in state s.

These probabilities can be computed using the
standard forward and backward recursions (Rabiner,
1989), except that at each time t, we only con-
sider states st for which π(st) = yt, because we
have hand-aligned labels for the observations. These
quantities also allow us to compute the posterior
counts necessary for the E-step of the EM algorithm.

2.2 Splitting
One way of inducing arbitrary structural annota-
tions would be to split each HMM state in into
m substates, and re-estimate the parameters for the
split HMM using EM. This approach has two ma-
jor drawbacks: for larger m it is likely to converge
to poor local optima, and it allocates substates uni-
formly across all states, regardless of how much an-
notation is required for good performance.

To avoid these problems, we apply a hierarchical
parameter estimation strategy similar in spirit to the
work of Sankar (1998) and Ueda et al. (2000), but
here applied to HMMs rather than to GMMs. Be-
ginning with the baseline model, where each state
corresponds to one phone, we repeatedly split and
re-train the HMM. This strategy ensures that each
split HMM is initialized “close” to some reasonable
maximum.

Concretely, each state s in the HMM is split in
two new states s1, s2 with π(s1) = π(s2) = π(s).
We initialize EM with the parameters of the previ-
ous HMM, splitting every previous state s in two
and adding a small amount of randomness ε ≤ 1%
to its transition and emission probabilities to break
symmetry:

as1s′ ∝ ass′ + ε,

bs1(o) ∼ N (µs + ε,Σs),

and similarly for s2. The incoming transitions are
split evenly.

We then apply the EM algorithm described above
to re-estimate these parameters before performing
subsequent split operations.

2.3 Merging

Since adding substates divides HMM statistics into
many bins, the HMM parameters are effectively es-
timated from less data, which can lead to overfitting.
Therefore, it would be to our advantage to split sub-
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states only where needed, rather than splitting them
all.

We realize this goal by merging back those splits
s → s1s2 for which, if the split were reversed, the
loss in data likelihood would be smallest. We ap-
proximate the loss in data likelihood for a merge
s1s2 → s with the following likelihood ratio (Petrov
et al., 2006):

∆(s1 s2 → s) =
∏

sequences

∏
t

Pt(x,y)
P(x,y)

.

Here P(x,y) is the joint likelihood of an emission
sequence x and associated state sequence y. This
quantity can be recovered from the forward and
backward probabilities using

P(x,y) =
∑

s:π(s)=yt

αt(s) · βt(s).

Pt(x,y) is an approximation to the same joint like-
lihood where states s1 and s2 are merged. We ap-
proximate the true loss by only considering merging
states s1 and s2 at time t, a value which can be ef-
ficiently computed from the forward and backward
probabilities. The forward score for the merged state
s at time t is just the sum of the two split scores:

α̂t(s) = αt(s1) + αt(s2),

while the backward score is a weighted sum of the
split scores:

β̂t(s) = p1βt(s1) + p2βt(s2),

where p1 and p2 are the relative (posterior) frequen-
cies of the states s1 and s2.

Thus, the likelihood after merging s1 and s2 at
time t can be computed from these merged forward
and backward scores as:

P t(x,y) = α̂t(s) · β̂t(s) +
∑
s′

αt(s′) · βt(s′)

where the second sum is over the other substates of
xt, i.e. {s′ : π(s′) = xt, s

′ /∈ {s1, s2}}. This
expression is an approximation because it neglects
interactions between instances of the same states at
multiple places in the same sequence. In particular,

since phones frequently occur with multiple consec-
utive repetitions, this criterion may vastly overesti-
mate the actual likelihood loss. As such, we also im-
plemented the exact criterion, that is, for each split,
we formed a new HMM with s1 and s2 merged and
calculated the total data likelihood. This method
is much more computationally expensive, requiring
a full forward-backward pass through the data for
each potential merge, and was not found to produce
noticeably better performance. Therefore, all exper-
iments use the approximate criterion.

2.4 The Automatically-Aligned Case

It is straightforward to generalize the hand-aligned
case to the case where the phone transcription is
known, but no frame level labeling is available. The
main difference is that the phone boundaries are not
known in advance, which means that there is now
additional uncertainty over the phone states. The
forward and backward recursions must thus be ex-
panded to consider all state sequences that yield the
given phone transcription. We can accomplish this
with standard Baum-Welch training.

3 Inference

An HMM over refined subphone states s ∈ S nat-
urally gives posterior distributions P(s|x) over se-
quences of states s. We would ideally like to ex-
tract the transcription r of underlying phones which
is most probable according to this posterior1. The
transcription is two stages removed from s. First,
it collapses the distinctions between states s which
correspond to the same phone y = π(s). Second,
it collapses the distinctions between where phone
transitions exactly occur. Viterbi state sequences can
easily be extracted using the basic Viterbi algorithm.
On the other hand, finding the best phone sequence
or transcription is intractable.

As a compromise, we extract the phone sequence
(not transcription) which has highest probability in
a variational approximation to the true distribution
(Jordan et al., 1999). Let the true posterior distri-
bution over phone sequences be P(y|x). We form
an approximation Q(y) ≈ P(y|x), where Q is an
approximation specific to the sequence x and factor-

1Remember that by “transcription” we mean a sequence of
phones with duplicates removed.
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izes as:
Q(y) =

∏
t

q(t, xt, yt+1).

We would like to fit the values q, one for each time
step and state-state pair, so as to make Q as close to
P as possible:

min
q

KL(P(y|x)||Q(y)).

The solution can be found analytically using La-
grange multipliers:

q(t, y, y′) =
P(Yt = y, Yt+1 = y′|x)

P(Yt = y|x)
.

where we have made the position-specific random
variables Yt explicit for clarity. This approximation
depends only on our ability to calculate posteriors
over phones or phone-phone pairs at individual po-
sitions t, which is easy to obtain from the state pos-
teriors, for example:

P(Yt = y,Yt+1 = y′|x) =∑
s:π(s)=y

∑
s′:π(s′)=y′

αt(s)ass′bs′(xt)βt+1(s′)

P(x)

Finding the Viterbi phone sequence in the approxi-
mate distribution Q, can be done with the Forward-
Backward algorithm over the lattice of q values.

4 Experiments

We tested our model on the TIMIT database, using
the standard setups for phone recognition and phone
classification. We partitioned the TIMIT data into
training, development, and (core) test sets according
to standard practice (Lee and Hon, 1989; Gunawar-
dana et al., 2005; Sha and Saul, 2006). In particu-
lar, we excluded all sa sentences and mapped the 61
phonetic labels in TIMIT down to 48 classes before
training our HMMs. At evaluation, these 48 classes
were further mapped down to 39 classes, again in
the standard way.

MFCC coefficients were extracted from the
TIMIT source as in Sha and Saul (2006), includ-
ing delta and delta-delta components. For all experi-
ments, our system and all baselines we implemented
used full covariance when parameterizing emission
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Figure 3: Phone recognition error for models of increasing size

models.2 All Gaussians were endowed with weak
inverse Wishart priors with zero mean and identity
covariance.3

4.1 Phone Recognition

In the task of phone recognition, we fit an HMM
whose output, with subsequent states collapsed, cor-
responds to the training transcriptions. In the TIMIT
data set, each frame is manually phone-annotated, so
the only uncertainty in the basic setup is the identity
of the (sub)states at each frame.

We therefore began with a single state for each
phone, in a fully connected HMM (except for spe-
cial treatment of dedicated start and end states). We
incrementally trained our model as described in Sec-
tion 2, with up to 6 split-merge rounds. We found
that reversing 25% of the splits yielded good overall
performance while maintaining compactness of the
model.

We decoded using the variational decoder de-
scribed in Section 3. The output was then scored
against the reference phone transcription using the
standard string edit distance.

During both training and decoding, we used “flat-
tened” emission probabilities by exponentiating to
some 0 < γ < 1. We found the best setting for γ
to be 0.2, as determined by tuning on the develop-
ment set. This flattening compensates for the non-

2Most of our findings also hold for diagonal covariance
Gaussians, albeit the final error rates are 2-3% higher.

3Following previous work with PCFGs (Petrov et al., 2006),
we experimented with smoothing the substates towards each
other to prevent overfitting, but we were unable to achieve any
performance gains.
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Method Error Rate
State-Tied Triphone HMM

27.7%1

(Young and Woodland, 1994)
Gender Dependent Triphone HMM

27.1%1

(Lamel and Gauvain, 1993)
This Paper 26.4%
Bayesian Triphone HMM

25.6%
(Ming and Smith, 1998)

Heterogeneous classifiers
24.4%

(Halberstadt and Glass, 1998)

Table 1: Phone recognition error rates on the TIMIT core test
from Glass (2003).
1These results are on a slightly easier test set.

independence of the frames, partially due to over-
lapping source samples and partially due to other
unmodeled correlations.

Figure 3 shows the recognition error as the model
grows in size. In addition to the basic setup de-
scribed so far (split and merge), we also show a
model in which merging was not performed (split
only). As can be seen, the merging phase not only
decreases the number of HMM states at each round,
but also improves phone recognition error at each
round.

We also compared our hierarchical split only
model with a model where we directly split all states
into 2k substates, so that these models had the same
number of states as a a hierarchical model after k
split and merge cycles. While for small k, the dif-
ference was negligible, we found that the error in-
creased by 1% absolute for k = 5. This trend is to
be expected, as the possible interactions between the
substates grows with the number of substates.

Also shown in Figure 3, and perhaps unsurprising,
is that the error rate can be further reduced by allow-
ing the phone boundaries to drift from the manual
alignments provided in the TIMIT training data. The
split and merge, automatic alignment line shows the
result of allowing the EM fitting phase to reposition
each phone boundary, giving absolute improvements
of up to 0.6%.

We investigated how much improvement in accu-
racy one can gain by computing the variational ap-
proximation introduced in Section 3 versus extract-
ing the Viterbi state sequence and projecting that se-
quence to its phone transcription. The gap varies,

Method Error Rate
GMM Baseline (Sha and Saul, 2006) 26.0%
HMM Baseline (Gunawardana et al., 2005) 25.1%
SVM (Clarkson and Moreno, 1999) 22.4%
Hidden CRF (Gunawardana et al., 2005) 21.7%
This Paper 21.4%
Large Margin GMM (Sha and Saul, 2006) 21.1%

Table 2: Phone classification error rates on the TIMIT core test.

but on a model with roughly 1000 states (5 split-
merge rounds), the variational decoder decreases er-
ror from 26.5% to 25.6%. The gain in accuracy
comes at a cost in time: we must run a (possibly
pruned) Forward-Backward pass over the full state
space S, then another over the smaller phone space
Y . In our experiments, the cost of variational decod-
ing was a factor of about 3, which may or may not
justify a relative error reduction of around 4%.

The performance of our best model (split and
merge, automatic alignment, and variational decod-
ing) on the test set is 26.4%. A comparison of our
performance with other methods in the literature is
shown in Table 1. Despite our structural simplic-
ity, we outperform state-tied triphone systems like
Young and Woodland (1994), a standard baseline for
this task, by nearly 2% absolute. However, we fall
short of the best current systems.

4.2 Phone Classification

Phone classification is the fairly constrained task of
classifying in isolation a sequence of frames which
is known to span exactly one phone. In order to
quantify how much of our gains over the triphone
baseline stem from modeling context-dependencies
and how much from modeling the inner structure of
the phones, we fit separate HMM models for each
phone, using the same split and merge procedure as
above (though in this case only manual alignments
are reasonable because we test on manual segmen-
tations). For each test frame sequence, we com-
pute the likelihood of the sequence from the forward
probabilities of each individual phone HMM. The
phone giving highest likelihood to the input was se-
lected. The error rate is a simple fraction of test
phones classified correctly.

Table 2 shows a comparison of our performance
with that of some other methods in the literature.
A minimal comparison is to a GMM with the same
number of mixtures per phone as our model’s maxi-
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Figure 4: Phone confusion matrix. 76% of the substitutions fall
within the shown classes.

mum substates per phone. While these models have
the same number of total Gaussians, in our model
the Gaussians are correlated temporally, while in
the GMM they are independent. Enforcing begin-
middle-end HMM structure (see HMM Baseline) in-
creases accuracy somewhat, but our more general
model clearly makes better use of the available pa-
rameters than those baselines.

Indeed, our best model achieves a surpris-
ing performance of 21.4%, greatly outperform-
ing other generative methods and achieving perfor-
mance competitive with state-of-the-art discrimina-
tive methods. Only the recent structured margin ap-
proach of Sha and Saul (2006) gives a better perfor-
mance than our model. The strength of our system
on the classification task suggests that perhaps it is
modeling phone-internal structure more effectively
than cross-phone context.

5 Analysis

While the overall phone recognition and classifi-
cation numbers suggest that our system is broadly
comparable to and perhaps in certain ways superior
to classical approaches, it is illuminating to investi-
gate what is and is not learned by the model.

Figure 4 gives a confusion matrix over the substi-
tution errors made by our model. The majority of the

next

previous

eh

ow

ao

aa

ey

iy

ix

v

f

k

m

ow

ao

aa

ey

iy

ih

ae

ix

z

f

s

1

4

3
5

62

0

p

Figure 5: Phone contexts and subphone structure. The /l/ phone
after 3 split-merge iterations is shown.

confusions are within natural classes. Some partic-
ularly frequent and reasonable confusions arise be-
tween the consonantal /r/ and the vocalic /er/ (the
same confusion arises between /l/ and /el/, but the
standard evaluation already collapses this distinc-
tion), the reduced vowels /ax/ and /ix/, the voiced
and voiceless alveolar sibilants /z/ and /s/, and the
voiced and voiceless stop pairs. Other vocalic con-
fusions are generally between vowels and their cor-
responding reduced forms. Overall, 76% of the sub-
stitutions are within the broad classes shown in the
figure.

We can also examine the substructure learned for
the various phones. Figure 2 shows the evolution
of the phone /ih/ from a single state to 8 substates
during split/merge (no merges were chosen for this
phone), using hand-alignment of phones to frames.
These figures were simplified from the complete
state transition matrices as follows: (1) adjacent
phones’ substates are collapsed, (2) adjacent phones
are selected based on frequency and inbound prob-
ability (and forced to be the same across figures),
(3) infrequent arcs are suppressed. In the first split,
(b), a sonorant / non-sonorant distinction is learned
over adjacent phones, along with a state chain which
captures basic duration (a self-looping state gives
an exponential model of duration; the sum of two
such states is more expressive). Note that the nat-
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ural classes interact with the chain in a way which
allows duration to depend on context. In further re-
finements, more structure is added, including a two-
track path in (d) where one track captures the distinct
effects on higher formants of r-coloring and nasal-
ization. Figure 5 shows the corresponding diagram
for /l/, where some merging has also occurred. Dif-
ferent natural classes emerge in this case, with, for
example, preceding states partitioned into front/high
vowels vs. rounded vowels vs. other vowels vs. con-
sonants. Following states show a front/back dis-
tinction and a consonant distinction, and the phone
/m/ is treated specially, largely because the /lm/ se-
quence tends to shorten the /l/ substantially. Note
again how context, internal structure, and duration
are simultaneously modeled. Of course, it should
be emphasized that post hoc analysis of such struc-
ture is a simplification and prone to seeing what one
expects; we present these examples to illustrate the
broad kinds of patterns which are detected.

As a final illustration of the nature of the learned
models, Table 3 shows the number of substates allo-
cated to each phone by the split/merge process (the
maximum is 32 for this stage) for the case of hand-
aligned (left) as well as automatically-aligned (right)
phone boundaries. Interestingly, in the hand-aligned
case, the vowels absorb most of the complexity since
many consonantal cues are heavily evidenced on
adjacent vowels. However, in the automatically-
aligned case, many vowel frames with substantial
consontant coloring are re-allocated to those adja-
cent consonants, giving more complex consonants,
but comparatively less complex vowels.

6 Conclusions

We have presented a minimalist, automatic approach
for building an accurate acoustic model for phonetic
classification and recognition. Our model does not
require any a priori phonetic bias or manual spec-
ification of structure, but rather induces the struc-
ture in an automatic and streamlined fashion. Start-
ing from a minimal monophone HMM, we auto-
matically learn models that achieve highly compet-
itive performance. On the TIMIT phone recogni-
tion task our model clearly outperforms standard
state-tied triphone models like Young and Wood-
land (1994). For phone classification, our model

Vowels
aa 31 32
ae 32 17
ah 31 8
ao 32 23
aw 18 6
ax 18 3
ay 32 28
eh 32 16
el 6 4
en 4 3
er 32 31
ey 32 30
ih 32 11
ix 31 16
iy 31 32
ow 26 10

oy 4 4
uh 5 2
uw 21 8

Consonants
b 2 32
ch 13 30
d 2 14
dh 6 31
dx 2 3
f 32 32
g 2 15
hh 3 5
jh 3 16
k 30 32
l 25 32
m 25 25
n 29 32

ng 3 4
p 5 24
r 32 32
s 32 32
sh 30 32
t 24 32
th 8 11
v 23 11
w 10 21
y 3 7
z 31 32
zh 2 2

Other
epi 2 4
sil 32 32
vcl 29 30
cl 31 32

Table 3: Number of substates allocated per phone. The left
column gives the number of substates allocated when training
on manually aligned training sequences, while the right column
gives the number allocated when we automatically determine
phone boundaries.

achieves performance competitive with the state-of-
the-art discriminative methods (Sha and Saul, 2006),
despite being generative in nature. This result to-
gether with our analysis of the context-dependencies
and substructures that are being learned, suggests
that our model is particularly well suited for mod-
eling phone-internal structure. It does, of course
remain to be seen if and how these benefits can be
scaled to larger systems.

References
P. Clarkson and P. Moreno. 1999. On the use of Sup-

port Vector Machines for phonetic classification. In
ICASSP ’99.

S. B. Davis and P. Mermelstein. 1980. Comparison
of parametric representation for monosyllabic word
recognition in continuously spoken sentences. IEEE
Transactions on Acoustics, Speech, and Signal Pro-
cessing, 28(4).

J. Glass. 2003. A probabilistic framework for segment-
based speech recognition. Computer Speech and Lan-
guage, 17(2).

A. Gunawardana, M. Mahajan, A. Acero, and J. Platt.
2005. Hidden Conditional Random Fields for phone
recognition. In Eurospeech ’05.

A. K. Halberstadt and J. R. Glass. 1998. Hetero-
geneous measurements and multiple classifiers for
speech recognition. In ICSLP ’98.

F. Jelinek. 1976. Continuous speech recognition by sta-
tistical methods. Proceedings of the IEEE.

904



M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K.
Saul. 1999. An introduction to variational methods
for graphical models. Learning in Graphical Models.

L. Lamel and J. Gauvain. 1993. Cross-lingual experi-
ments with phone recognition. In ICASSP ’93.

K. F. Lee and H. W. Hon. 1989. Speaker-independent
phone recognition using Hidden Markov Models.
IEEE Transactions on Acoustics, Speech, and Signal
Processing, 37(11).

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Probabilis-
tic CFG with latent annotations. In ACL ’05.

J. Ming and F.J. Smith. 1998. Improved phone recogni-
tion using Bayesian triphone models. In ICASSP ’98.

J. J. Odell. 1995. The Use of Context in Large Vocab-
ulary Speech Recognition. Ph.D. thesis, University of
Cambridge.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006.
Learning accurate, compact, and interpretable tree an-
notation. In COLING-ACL ’06.

L. Rabiner. 1989. A Tutorial on hidden Markov mod-
els and selected applications in speech recognition. In
IEEE.

A. Sankar. 1998. Experiments with a Gaussian merging-
splitting algorithm for HMM training for speech
recognition. In DARPA Speech Recognition Workshop
’98.

F. Sha and L. K. Saul. 2006. Large margin Gaussian mix-
ture modeling for phonetic classification and recogni-
tion. In ICASSP ’06.

N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton.
2000. Split and Merge EM algorithm for mixture mod-
els. Neural Computation, 12(9).

S. J. Young and P. C. Woodland. 1994. State clustering
in HMM-based continuous speech recognition. Com-
puter Speech and Language, 8(4).

905


