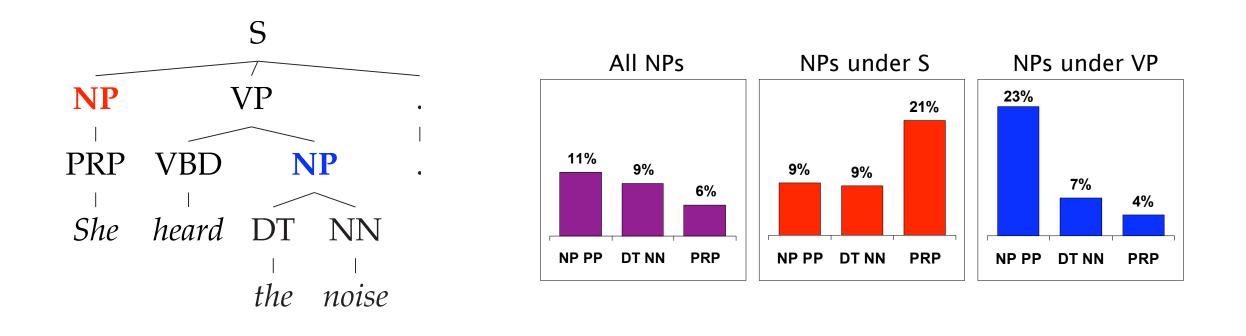


# Motivation

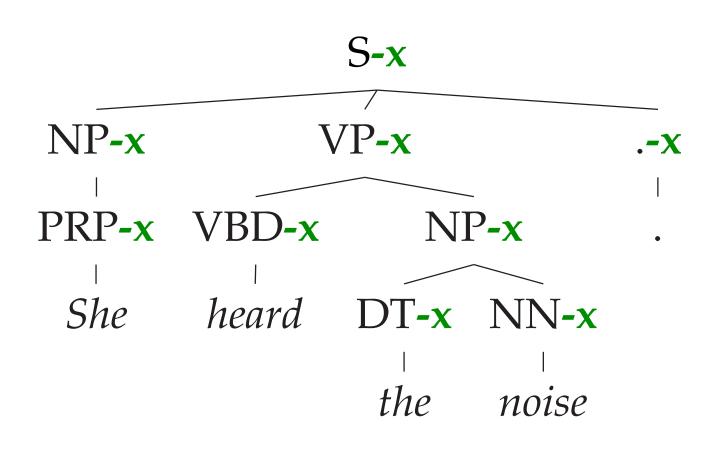
## Grammar Learning

The observed treebank categories are too coarse because the rewrite probabilities depend on context.



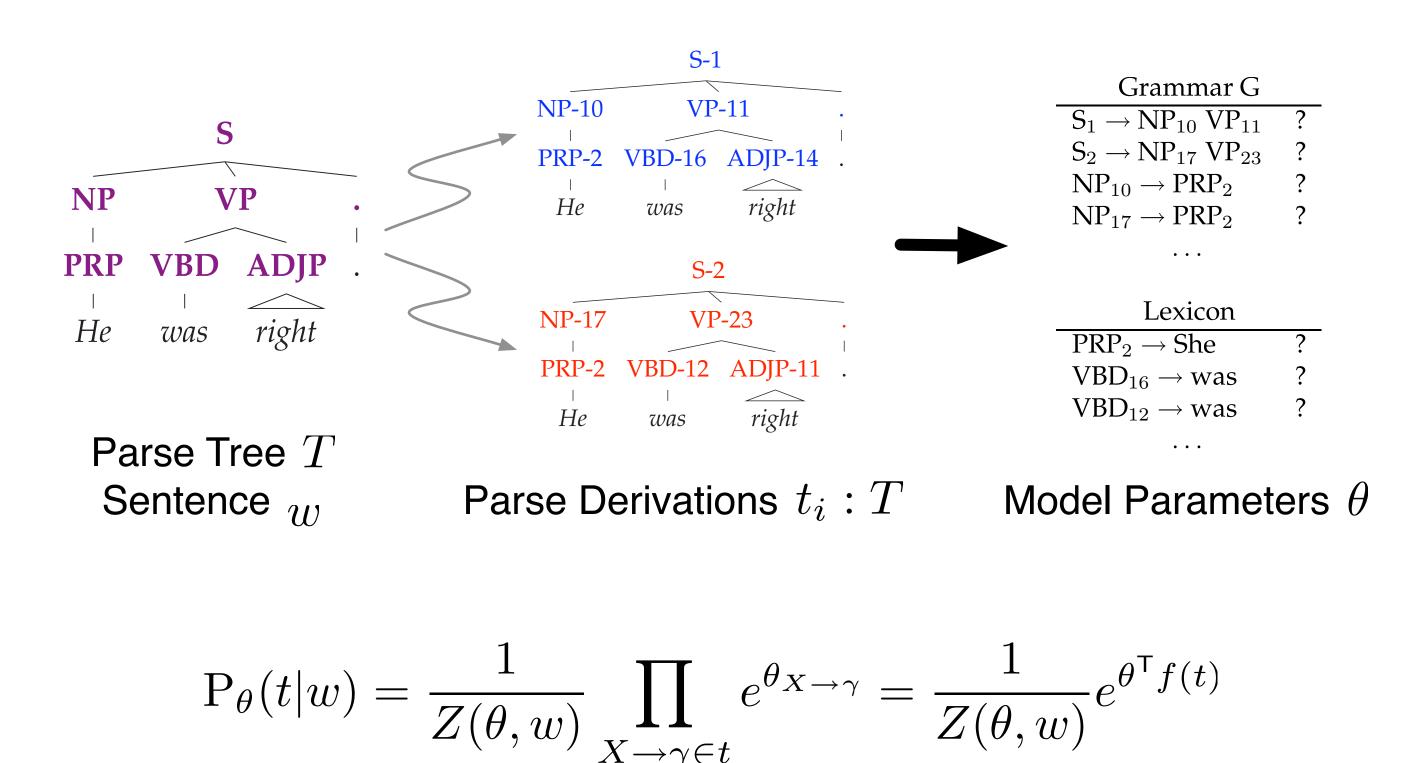
#### Grammars with Latent Variables

Given a treebank over a set of categories learn an optimally refined grammar for parsing.



#### Automatic Grammar Refinement

Refine the observed trees with latent variables and learn subcategories.



# **Discriminative Log-Linear Grammars with Latent Variables** Slav Petrov and Dan Klein University of California, Berkeley

#### Generative Training

Maximize the joint likelihood:

$$\mathcal{L}_{joint}(\theta) = \log \prod_{i} P_{\theta}(T_{i}, w_{i}) = \log \prod_{i} \sum_{t:T_{i}} P_{\theta}(t, w_{i})$$
$$\theta^{*} = \operatorname{argmax}_{\theta} \left( \log \prod_{i} \sum_{t:T_{i}} P_{\theta}(t, w_{i}) \right)$$

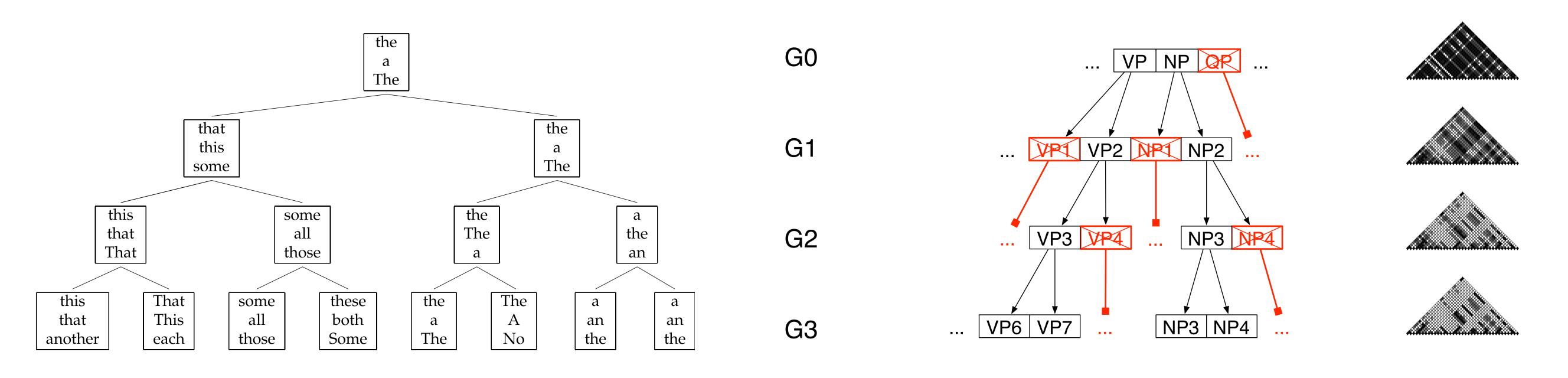
The parameters can be learned with an Expectation Maximization algorithm. The E-Step involves computing expectations over derivations corresponding to the observed trees. These expectations are normalized in the M-Step to update the rewrite probabilities:

$$\phi_{X \to \gamma} = \frac{\sum_{T} \mathbb{E}_{\theta}[f_{X \to \gamma}(t)|T]}{\sum_{\gamma'} \sum_{T} \mathbb{E}_{\theta}[f_{X \to \gamma'}(t)|T]}$$

Computing expectations over derivations corresponding to the observed trees can be done in linear time (in the number of words).

## **Hierarchical Splitting**

Repeatedly split each category in two and retrain the grammar, initializing with the previous grammar.



Linguistically interpretable subcategories emerge in the course of hierarchical refinement.

# Training

#### Discriminative Training

Maximize the conditional likelihood:

$$\mathcal{L}_{cond}(\theta) = \log \prod_{i} P_{\theta}(T_{i}|w_{i}) = \log \prod_{i} \sum_{t:T_{i}} P_{\theta}(t|w_{i})$$
$$\theta^{*} = \operatorname*{argmax}_{\theta} \left(\log \prod_{i} \sum_{t:T_{i}} P_{\theta}(t|w_{i})\right)$$

The parameters can be learned with a numerical gradient based method (e.g. L-BFGS). Computing the gradient involves calculating expectations over derivations corresponding to the observed trees, as well as over all possible trees:

$$\frac{\partial \mathcal{L}_{cond}(\theta)}{\partial \theta_{X \to \gamma}} = \sum_{i} \left( \mathbb{E}_{\theta} \left[ f_{X \to \gamma}(t) | T_{i} \right] - \mathbb{E}_{\theta} \left[ f_{X \to \gamma}(t) | w_{i} \right] \right)$$

Computing expectations over derivations corresponding to all possible trees involves parsing the training corpus, which requires cubic time (in the number of words).

## Efficient Estimation

### Feature Count Approximation

Use predictions from hierarchical coarse-to-fine parsing to prune unlikely chart items, setting their expectations to zero.

Coarse-to-fine pruning leads to few brackets with non-zero feature counts. In cached pruning only the finest level of the hierarchy is updated.

## Results

Grammars were trained on the Wall Street Journal section of the Penn Treebank using the standard splits. The training set contains roughly 1M words in 40K sentences.

