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Results

Hierarchical Splitting
     

Repeatedly split each category in two and retrain
the grammar, initializing with the previous grammar.

Parsing performance (F1-score)
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Feature Count Approximation
Use predictions from hierarchical coarse-to-fine parsing to 

prune unlikely chart items, setting their expectations to zero.

Generative Training
Maximize the joint likelihood: 

Discriminative Training
Maximize the conditional likelihood:

Motivation

Coarse-to-fine pruning leads to few brackets with non-zero feature counts. 
In cached pruning only the finest level of the hierarchy is updated.
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Discriminative training is superior to generative training
in terms of F1-score and exact match.

Coarse-to-Fine pruning gives a tremendous speed-up over 
exhaustive parsing, but only cached pruning makes large scale 

training of discriminative grammars practically feasible.

Training

Automatic Grammar Refinement
Refine the observed trees with latent variables 

and learn subcategories.
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Grammars with Latent Variables
Given a treebank over a set of categories

learn an optimally refined grammar for parsing.

The parameters can be learned with an Expectation Maximization 
algorithm. The E-Step involves computing expectations over derivations 

corresponding to the observed trees. These expectations are 
normalized in the M-Step to update the rewrite probabilities: 

Grammar Learning
The observed treebank categories are too coarse 

because the rewrite probabilities depend on context.
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The parameters can be learned with a numerical gradient based 
method (e.g. L-BFGS). Computing the gradient involves calculating 
expectations over derivations corresponding to the observed trees,

as well as over all possible trees: 

Linguistically interpretable subcategories emerge
in the course of hierarchical refinement.

Computing expectations over derivations corresponding to 
the observed trees can be done in linear time 

(in the number of words).

Computing expectations over derivations corresponding to all possible 
trees involves parsing the training corpus, which requires cubic time  

(in the number of words).

Grammars were trained on the Wall Street Journal section of the 
Penn Treebank using the standard splits. The training set contains 

roughly 1M words in 40K sentences.
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 Sentence w

Pθ(t|w) =
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Z(θ, w)

∏
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eθTf(t)

L1-regularization leads to extremely sparse grammars without 
decreasing the parsing performance.
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L2-regularization

L1-regularization
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Grammar G

S1 →NP10 VP11 ?

S2 →NP17 VP23 ?

NP10→ PRP2 ?

NP17→ PRP2 ?

. . .

Lexicon

PRP2 → She ?

VBD16→ was ?

VBD12→ was ?

. . .


