Discriminative Log-Linear Grammars
with Latent Variables

Slav Petrov and Dan Klein
Computer Science Department, EECS Division
University of California at Berkeley, Berkeley, CA, 94720
{petrov, klein}@s.berkeley.edu

Abstract

We demonstrate that log-linear grammars with latent véggban be practically
trained using discriminative methods. Central to efficigistriminative training

is a hierarchical pruning procedure which allows featungeexations to be effi-
ciently approximated in a gradient-based procedure. Wepeoenl; and L, reg-
ularization and show that;Lregularization is superior, requiring fewer iterations
to converge, and yielding sparser solutions. On full-st@ebank parsing exper-
iments, the discriminative latent models outperform bathd¢omparable genera-
tive latent models as well as the discriminative non-labagelines.

1 Introduction

In recent years, latent annotation of PCFG has been showartorm as well as or better than stan-
dard lexicalized methods for treebank parsing [1, 2]. Inl&tent annotation scenario, we imagine
that the observed treebank is a coarse trace of a finer, uveldlsgrammar. For example, the single
treebank category NP (noun phrase) may be better modelegl/byad finer categories representing
subject NPs, object NPs, and so on. At the same time, distatime methods have consistently
provided advantages over their generative counterpatijding less restriction on features and
greater accuracy [3, 4, 5]. In this work, we therefore ingede discriminative learning of latent
PCFGs, hoping to gain the best from both lines of work.

Discriminative methods for parsing are not new. Howeversintliscriminative methods, at least
those which globally trade off feature weights, requiresapd parsing of the training set, which is
generally impractical. Previous work on end-to-end dieamative parsing has therefore resorted to
“toy setups,” considering only sentences of length 15 [8] 6r extremely small corpora[9]. To get
the benefits of discriminative methods, it has thereforebeccommon practice to extract n-best
candidate lists from a generative parser and then use ardisative component to rerank this list.
In such an approach, repeated parsing of the training seéteanoided because the discriminative
component only needs to select the best tree from a fixed datedist. While most state-of-the-art
parsing systems apply this hybrid approach [10, 11, 12Jadtthe limitation that the candidate list
often does not contain the correct parse tree. For examptecfthe correct parses were not in the
candidate pool 0&30-best parses in [10].

In this paper we present a hierarchical pruning procedwatedkploits the structure of the model
and allows feature expectations to be efficiently approx@mamaking discriminative training of
full-scale grammars practical. We present a gradientébpsacedure for training a discriminative
grammar on the entire WSJ section of the Penn Treebank (lpd@000 sentences containing
1 million words). We then compare;land L, regularization and show that; Lregularization is
superior, requiring fewer iterations to converge and yigjdsparser solutions. Independent of the
regularization, discriminative grammars significantlymarform their generative counterparts in our
experiments.

FRAG ROOT ROOT
- N

RB NP . J’m\ /”*’5‘3“\
| — FRAG . FRAG« T
Not D‘T N‘N Rﬁ P ‘ R B‘T/jf’dr\ '
this year Not DT NN Not DT-z NN-z
(a) tHis yéar tﬁis yéar
(c)

Figure 1: (a) The original tree. (b) The (binarized) X-baetr (c) The annotated tree.
2 Grammars with latent annotations

Context-free grammars (CFGs) underlie most high-perfocegarsers in one way or another [13,
12, 14]. However, a CFG which simply takes the empirical picitbns and probabilities off of
a treebank does not perform well. This naive grammar is a pnerbecause its context-freedom
assumptions are too strong in some places and too weak irsoffteerefore, a variety of techniques
have been developed to both enrich and generalize the na@wengar. Recently an automatic state-
splitting approach was shown to produce state-of-the afbpaance [2, 14]. We extend this line of
work by investigating discriminative estimation techrégfor automatically refined grammars.

We consider grammars that are automatically derived fromvatreebank. Our experiments are
based on a completely unsplit X-bar grammar, obtained tjréom the Penn Treebank by the
binarization procedure shown in Figure 1. For each loca towted at an evaluation categaXy

we introduce a cascade of new nodes labefeso that each has two children in a right branching
fashion. Each node is then refined with a latent variablattisyg each observed category into
unobserved subcategories. We refer to trees over unsgdig@aes agarse trees and trees over
split categories aderivations.

Our log-linear grammars are parametrized by a veg¢twwhich is indexed by production¥ — ~.
The conditional probability of a derivation trégiven a sentence can be written as:

__1 ox— _ L Tr)
P@(ﬂﬂ)) - Z(G,w) H € - Z(@,w)e (1)
X—vyet
whereZ (0, w) is the partition function and (¢) is a vector indicating how many times each pro-
duction occurs in the derivatioh The inside/outside algorithm [15] gives us an efficient wéy o
summing over an exponential number of derivations. Giverrgencew spanning the words
whw?, ..., w" = w'", the inside and outside scores of a (split) categérgpanning(i, j) are
computed by summing over all possible child@@randC spanning(i, k) and(k, j) respectively:

Sw(Aij) = Y. > éapcxSu(B,i k) x Sn(C,k,j)

A—BC i<k<j

Sour(4,4,5) = D> > épca xSour(B,k,§) x Su(C ki) +

B—CA1<k<i

> Y éBac x Sour(B,i, k) x Sn(C, 4. k), 2

B—AC j<k<n

where we us@_.gc = ¢’4~5¢. In the generative case these scores correspond to the s

outside probabilities $(A, i, 7) = P (A, 4,7) & P(wi’|A) and Sur(A,i,5) = Pour(4,i,5) &

P(w'* Aw’™) [15]. The scores lack this probabilistic interpretatiorthie discriminative case, but
they can nonetheless be normalized in the same way as plitibald produce the expected counts
of productions needed at training time. The posterior pbdibgof a productionA — BC spanning
(i, 7) with split pointk in a sentence is easily expressed as:

<A - Bcaia.jv k> X SOUT(Aaiaj) X ¢A—>BC X SN(Bvlvk) X SN(kaa.]) (3)

To obtain a grammar from the training trees, we want to leasataof grammar parametefison
latent annotations despite the fact that the original ti@esthe latent annotations. We will consider

Although we show only the binary component, of course botlatyi and unary productions are included.

generative grammars, where the parametaase set to maximize the joint likelihood of the train-
ing sentences and their parse trees, and discriminativergeais, where the parametérare set to
maximize the likelihood of the correct parse tree (vs. aligible trees) given a sentence. Previous
work on automatic grammar refinement has focused on diffesimation techniques for learning
generative grammars with latent labels (training with b&W [1], an EM-based split and merge
approach [2], a non-parametric variational approach [18]the following, we review how gener-
ative grammars are learned and present an algorithm fonatitig discriminative grammars with
latent variables.

2.1 Generative Grammars

Generative grammars with latent variables can be seenastitectured hidden Markov models. A
simple EM algorithm [1] allows us to learn parameters foreyative grammars which maximize
the log joint likelihood of the training sentencesand parse tre€s:

Ljoint(0) =log [[Po(wi, T) =log [[> Pa(ws, 1), @)
A i 6Ty
wheret are derivations (over split categories) correspondinpécobserved parse tree (over unsplit
categories). In the E-Step we compute inside/outside sower the set of derivations corresponding
to the observed gold tree by restricting the sums in Eqn. 2réayce only such derivations?
We then use Eqn. 3 to compute expectations which are noreadaiiz the M-Step to update the
production probabilitieg x ., = ex—~ to their maximum likelihood estimates:

’ Zw ZT Eo[fx—~ ()[T]
Here Ey [fx—~(t)|T] denotes the expected count of the production (or feafXire} -y with respect

to Py in the set of derivations t, which are consistent with theeobsd parse tre®. Similarly, we
will write Eg [fx - (t)|w] for the expectation over all derivations of the sentemce

Our generative grammars with latent variables are proistibilcontext-free grammars (CFGs),
where}_ , ¢x_., = 1andZ(#) = 1. Note, however, that this normalization constraint poses
no restriction on the model class, as probabilistic and kteig) CFGs are equivalent [18].

2.2 Discriminative Grammars

Discriminative grammars with latent variables can be seenamditional random fields [4] over
trees. For discriminative grammars, we maximize the logldamnal likelihood:

e F ()

Leona(0) =log [[Po(Tifw) = log [[>_ 7= (6)
i i Ty >

We directly optimize this non-convex objective functionngsa numerical gradient based method
(LBFGS [19] in our implementatior.Fitting the log-linear model involves the following deriva
tives:

%ni(j) - Z (E" [Fx—a (OITi] = Eo [fxﬂ(t)lwi]),)

where the first term is the expected count of a production iivatons corresponding to the correct
parse tree and the second term is the expected count of thegtian in all parses.

The challenge in estimating discriminative grammars id¢ tha computation of some quantities
requires repeatedly taking expectations over all parsedl sEntences in the training set. We will
discuss ways to make their computation on large data setqakin the next section.

2Since the tree structure is observed this can be done irrliimea[17].

3Alternatively, maximum conditional likelihood estimati@an also be seen as a special case of maximum
likelihood estimation, where (Rv) is assumed to be the empirical one and not learned. The cumalitike-
lihood optimization can therefore be addressed by an EMrighgo which is similar to the generative case.
However, while the E-Step remains the same, the M-Step\egdiitting a log-linear model, which requires
optimization, unlike the joint case, which can be done aiily using relative frequency estimators. This EM
algorithm typically converges to a comparable local maximas direct optimization of the objective function
but requires 3-4 times more iterations.

3 Efficient Discriminative Estimation

Computing the partition function in Eqn. 6 requires parsifithe entire training corpus. Even with
recent advances in parsing efficiency and fast CPUs, patisengntire corpus repeatedly remains
prohibitive. Fast parsers like [12, 14] can parse severaksees per second, but parsing the 40,000
training sentences still requires more than 5 hours on arfashine. Even in a parallel implemen-
tation, parsing the training corpus several hundred timmes)ecessary for discriminative training,
would and, in fact, did in the case of maximum margin trair{Blgrequire weeks. Generally speak-
ing, there are two ways of speeding up the training procestuaing the total number of training
iterations and reducing the time required per iteration.

3.1 Hierarchical Estimation

The number of training iterations can be reduced by traininglels of increasing complexity in a
hierarchical fashion. For example in mixture modeling [@08 machine translation [21], a sequence
of increasingly more complex models is constructed and eamtel is initialized with its (simpler)
predecessor. In our case, we begin with the unsplit X-Bangrar and iteratively split each category
in two and re-train the grammar. In each iteration, we ifit&awith the results of the smaller
grammar, splitting each annotation category in two andragldi small amount of randomness to
break symmetry. In addition to reducing the number of tragriterations, hierarchical training has
been shown to lead to better parameter estimates [2]. Howeven with hierarchical training,
large-scale discriminative training will remain impraet, unless we can reduce the time required
to parse the training corpus.

3.2 Feature-Count Approximation

High-performance parsers have employed coarse-to-finemgschemes, where the sentence is
rapidly pre-parsed with increasingly more complex grammja®, 14]. Any constituent with suf-
ficiently low posterior probability triggers the pruning ité refined variants in subsequent passes.
While this method has no theoretical guarantees, it has &mgirically shown to lead to a 100-fold
speed-up without producing search errors [14].

Instead of parsing each sentence exhaustively with the oomsplex grammar in each iteration,
we can approximate the expected feature counts by parsimigrarchical coarse-to-fine scheme.
We start by parsing exhaustively with the X-Bar grammar drghtprune constituents with low
posterior probability €10 in our experiments). We then continue to parse with the next more
refined grammar, skipping over constituents whose lessa@dfinedecessor has been pruned. After
parsing with the most refined grammar, we extract expectedtsdrom the final (sparse) chart.
The expected counts will be approximations because manly souwts have been set to zero by the
pruning procedure.

Even though this procedure speeds-up each training er&&mendously, training remains pro-
hibitively slow. We can make repeated parsing of the samteseas significantly more efficient
by caching the pruning history from one training iteration to the neltstead of computing each
stage in the coarse-to-fine scheme for every pass, we canuteiibpnce when we start training a
grammar and update only the final, most refined scores in éexation. Cached pruning has the
positive side effect of constraining subcategories to edtireir predecessors, so that we do not need
to worry about issues like subcategory drift and projectifia].

As only extremely unlikely items are removed from the chpryyning has virtually no effect on
the conditional likelihood. Pruning more aggressivelyde#o a training procedure reminiscent of
contrastive estimation [23], where the denominator is restricted to a neighborhafoithe correct
parse tree (rather than containing all possible parse)treesur experiments, pruning more aggres-
sively did not hurt performance for grammars with few subgaties, but limited the performance
of grammars with many subcategories.

“Even a tighter threshold produced no search errors on a hekebin [14]. We enforce that the gold parse
is always reachable.

20000

1]
c
@ T T —
2o 15000 X - PARSING TIME | coarse-to-fing cached pruning
22 . 1 subcategory 350 min 30 min
g s No pruning —+— 2 - -
S g 10000 -/ Coarse-to-fine pruning -—x-— 1 2 Subcategorles 390 min 40 min
gs 5000 L Precomputed pruning ---%--- | 4 subcategories| 434 min 44 min
%‘l e K N 8 subcategories 481 min 47 min
5 T L L 16 subcategorie 533 min 52 min
¢} 12 4 8 16

Number of latent subcategories

(a) (b)

Figure 2: Average number of constructed constituents pgeree (a) and time to parse the training
corpus for different pruning regimes and grammar sizes (b).

4 Results

We ran our experiments on the Wall Street Journal (WSJ) ortf the English Penn Treebank
using the standard setup: we trained on sections 2 to 21i08&& was used as development set for
intermediate results. All of section 23 was reserved foffitna test. We used the EVALB parseval
reference implementation for scoring. We will reportéeores and exact match percentages. For
the final test, we selected the grammar that performed bebtathevelopment set.

For our lexicon, we used a simple approach where rare woegs (/e times or less during training)
are replaced by one of 50 unknown word tokens based on a soralbber of word-form features.
To parse new sentences with a grammar, we compute the postiestribution over productions at
each span and extract the tree with the maximum expectederuwhborrect productions [14].

4.1 Efficiency

The average number of constituents that are constructdd pénising a sentence is a good indicator
for the efficiency of our cached pruning schefnEigure 2(a) shows the average number of chart
items that are constructed per sentence. Coarse-to-finengrefers to hierarchical pruning without
caching [14] and while it is better than no-pruning, it stilinstructs a large number of constituents
for heavily refined grammars. In contrast, with cached prgrthe number of constructed chart
items stays roughly constant (or even decreases) when thbernwof subcategories increases. The
reduced number of constructed constituents results infaltiGeduction of parsing time, see Figure
2(b), and makes discriminative training on a large scalpu®computationally feasible.

We found that roughly 100-150 training iterations were regbfbr LBFGS to converge after each
split. Distributing the training over several machinestimightforward as each sentence can be
parsed independently of all other sentences. Starting &onmnsplit X-Bar grammar we were able
to hierarchically train a 16 substate grammar in three dairsyeight CPUs in parallél.

It should be also noted that we can expedite training fultgeraining in an interleaved mode, where
after splitting a grammar we first run generative trainingsome time (which is very fast) and then
use the resulting grammar to initialize the discriminatiaéning. In such a training regime, we only
needed around 50 iterations of discriminative traininglwonvergence, significantly speeding up
the training, while maintaining the same final performance.

4.2 Regularization

Regularization is often necessary to prevent discrimieatiodels from overfitting on the training
set. Surprisingly enough, we found that no regularizatias wecessary when training on the en-
tire training set, even in the presence of an abundance tfrésa During development we trained
on subsets of the training corpus and found that regulésizatas crucial for preventing overfit-

°The harmonic mean of precisidh and recallR: 257

5The other main factor determining the parsing time is thengnar size.
"Memory limitations prevent us from learning grammars witbrensubcategories, a problem that could be
alleviated by merging back the least usefull splits as in [2]

EXACT MATCH F,-SCORE
generative| discriminative|| generative| discriminative

1 subcategory 7.6 7.8 64.8 67.3
2 subcategories 14.6 20.1 76.4 80.8
4 subcategories 24.6 31.3 83.7 85.6
8 subcategories 31.4 37.0 86.6 87.8
16 subcategories 35.8 39.4 88.7 89.3

Table 1: Discriminative training is superior to generatraning for exact match and for,Fscore.

L, regularization L, regularization
Fi-score| Exact| # Feat.| #lter. || Fi-score| Exact| #Feat. | # Iter.
1 subcategory 67.3 7.8 23 K 44 67.4 7.9 35K 67
2 subcategories 80.8 201 | 74K 108 80.3 19.5 123 K 132
4 subcategories 85.6 31.3 | 147K 99 85.7 315 547 K 148
8 subcategories 87.8 37.0 | 318K 82 87.6 369 | 2,983K | 111
16 subcategorie§ 89.3 39.4 | 698K 75 89.1 38.7 | 11,489 K| 102

Table 2: L regularization produces sparser solutions and requivesrfegaining iterations thand.
regularization.

ting. This result is in accordance with [16] where a variaéibBayesian approach was found to be
beneficial for small training sets but performed on par with tér large amounts of training data.

Regularization is achieved by adding a penalty term to theditimnal log likelihood function
L.ona(0). This penalty term is often a weighted norm of the parametetor and thereby penalizes
large parameter values. We investigatedand L, regularization:

1 Ox_ Ox—y\’
Lona®) = Leonat) — 5 30 120 fond®) = Lena®) ~ 3 (P52) @
X—y X—=n

where the regularization parameters tuned on a held out set. In the tase, the penalty term is
a convex and differentiable function of the parameters amté can be easily intergrated into our
training procedure. In the Lcase, however, the penalty term is discontinuous whenevee pa-
rameter equals zero. To handle the discontinuinty of thdigra, we used the orthant-wise limited-
memory quasi-Newton algorithm of [24].

Table 2 shows that while there is no significant performarifferénce in models trained with;Lor

L, regularization, there is significant difference in the nemaf training iterations and the sparsity
of the parameter vector.;Lregularization leads to extremely sparse parameter \&e(36€6 of the
parameters are zero in the 16 subcategory case), while ampsear value becomes exactly zero with
L, regularization. It remains to be seen how this sparsity eaaxploited, as these zeros become
ones when exponentiated in order to be used in the computattioside and outside scores.

4.3 Final Test Set Results

Table 1 shows a comparison of generative and discrimingtisenmars for different numbers of
subcategories. Discriminative training is superior togyative training for exact match as well as for
F1-score for all numbers of subcategories. For our largeshgrars, we see absolute improvements
of 3.63% and 0.61% in exact match and $core respectively. The better performance is due to
better parameter estimates, as the model classes definkd ggrierative and discriminative model
(probabilistic vs. weighted CFGs) are equivalent [18] anel $ame feature sets were used in all
experiments.

Our final test set parsing; Fscore of 88.8/88.3 (40 word sentences/all sentencesjter lean most
other systems, including basic generative latent varigtdenmars [1] (F-score of 86.7/86.1) and
even fully lexicalized systems [13] (Fscore of 88.6/88.2), but falls short of the very best system
[12, 14], which achieve accuracies above 90%. However, nétlye techniques used in [12, 14]
are orthogonal to what was presented here (additional ocai/bverlapping features, merging of
unnecessary splits) and could be incorporated into theidiswative model.

o 0.% [k. T 80% MERGING | Grammar Lexicon
S o2k & ¢ N i only in . NNP, NNS,
o oar \ 1 | generative CD, WP$
c 08} ~ generative —+— - S 'S BAR, DT, CC, IN,
g 1% N discriminative ---x---] common NP @’ VBD, VB, VBZ,
- %‘6‘ L 1 1 | | | | N VP, VP NN, RB, JJ

"0 010203040506070809 1 |onlyin —

L VBG
Merging Percentage discriminative ADJR, SINV
(@) (b)

Figure 3: (a) Loss in Fscore for different amounts of merging. (b) Categories with subcate-
gories after merging 80% of the subcategories accordinggtarterging criterion in [2].

4.4 Analysis

Generatively trained grammars with latent variables haantshown to exhibit many linguistically
interpretable phenomena [2]. Space does not permit a thhrexposition, angost hoc analysis of
learned structures is prone to seeing what one expectsphetteless it can be helpful to illustrate
the broad patterns that are learned. Not surprisingly, ntamyparable trends can be observed in
generatively and discriminatively trained grammars. Famaple, the same subdivisions of the
determiner categoniT) into definite ¢he), indefinite @), demonstrativetfis) and quantificational
(some) elements emerge under both training regimes. Another plain the preposition category
(IN) where subcategories for subordinating conjunctions (ikat) and different types of proper
prepositions are learned. Typically the divisions in thecdminative grammars are much more
pronounced, putting the majority of the weight on a few dcsminwords.

While many similarities can be found, it is especially itging to examine how generative and
discriminative grammars differ. The nominal categoriegémerative grammars exhibit many clus-
ters of semantic nature (e.g. subcategories for dates, targnénits, capitalized words, etc.). For
example, the following two subcategories of the proper ndINP) category{New, San, Wal} and
{York, Francisco, Streét(here represented by the three most likely words) are leldogehe gen-
erative grammars. These subcategories are very usefulddeling correlations when generating
words and many clusters with such semantic patterns appdheigenerative grammars. How-
ever, these clusters do not interact strongly with disaodtign and are therefore not learned by
the discriminative grammars. Similar observations hotcpfaral proper noundYNPS), superlative
adjectives JJ9), and cardinal number€D), which are heavily split into semantic subcategories in
the generative grammars but are split very little or not kinahe discriminative grammars.

Examining the phrasal splits is much more intricate. Wedfwe give just one example from
grammars with two subcategories, which illustrates thenrddference between generative and dis-
criminative grammars. Simple declarative clausgsafe the most common sentences in the Penn
Treebank, and in the generative case the most likely expa$itheROOT category isROOT— S,
being chosen 91% of the time. In the discriminative caseghasluction is only the third likeliest
with a weight 0f13.2. The highest weighted expansion of fR@OT in the discriminative grammar

is ROOT— SBARQ;, with a weight 0f46.5, a production that has a probability of 0.3% in the gener-
ative grammar. While generative grammars model the engpidistributions of productions in the
training set, discriminative grammars maximize the disamnative power of the model. This can for
example result in putting the majority of the weight on umdpresented productions.

We applied the merging criterion suggested in [2] to two grears with two subcategories in order
to quantitatively examine how many subcategories are éghrhhis criterion approximates the loss
in joint likelihood incurred from merging two subcategariegnd we extended it to approximate the
loss in conditional likelihood from merging two subcateigerat a given node. Figure 3(a) shows
the loss in -score when the least useful fraction of the subcategoreesiarged. Our observation
that the discriminative grammars learn far fewer clusteeanfirmed, as one can merge back 80%
of the subcategories at almost no loss {n(while one can merge only 50% in the generative case).
This suggest that one can learn discriminative grammarstwdaie significantly more compact and
accurate than their generative counterparts. Figure B(ys which categories remain split when
80% of the splits are merged. While there is a substantiallaydetween the learned splits, one
can see that joint likelihood can be better maximized by imdithe lexicon, while conditional
likelihood is better maximized by refining the grammar.

5 Conclusions and Future Work

We have presented a hierarchical pruning procedure travskfficient discriminative training of
log-linear grammars with latent variables. We avoid repdaomputation of similar quantities by
caching information between training iterations and apjpnating feature expectations. We pre-
sented a direct gradient-based procedure for optimiziagctinditional likelihood function which
in our experiments on full-scale treebank parsing leadgordninative latent models which outper-
form both the comparable generative latent models, as weha discriminative non-latent base-
lines. We furthemore investigated different regularizagpenalties and showed that tegulariza-
tion leads to extremely sparse solutions

While our results are encouraging, this is merely a firststigation into large-scale discriminative
training of latent variable grammars and opens the door famynfuture experiments: discrimina-
tive grammars allow the seamless integration of non-londl @erlapping features and it will be
interesting to see how proven features from reranking syst§d0, 11, 12] and other orthogonal
improvements like merging and smoothing [2] will perfornmain end-to-end discriminative system.

References

[1] T. Matsuzaki, Y. Miyao, and J. Tsuijii. Probabilistic CR@th latent annotations. 1ACL ' 05, 2005.

[2] S. Petrov, L. Barrett, R. Thibaux, and D. Klein. Learnimgrurate, compact, and interpretable tree anno-
tation. InACL ’06, 2006.

[3] A.Y.Ngand M. I. Jordan. On discriminative vs. generatolassifiers: A comparison of logistic regression
and naive Bayes. INIPS’02, 2002.

[4] J. Lafferty, A. McCallum, and F. Pereira. ConditionalriRiom Fields: Probabilistic models for segment-
ing and labeling sequence data.l@ML '01, 2001.

[5] D. Klein and C. Manning. Conditional structure vs comatiial estimation in NLP models. IEMNLP
02, 2002.

[6] B. Taskar, D. Klein, M. Collins, D. Koller, and C. Mannin§/lax-margin parsing. IfEMNLP ' 04, 2004.
[7] J. Henderson. Discriminative training of a neural netwstatistical parser. I1ACL ' 04, 2004.

[8] J. Turian, B. Wellington, and I. D. Melamed. Scalablecdisiinative learning for natural language parsing
and translation. IINIPS’07, 2007.

[9] M. Johnson. Joint and conditional estimation of taggamgl parsing models. IACL '01, 2001.
[10] M. Collins. Discriminative reranking for natural langge parsing. IhCML ’00, 2000.
[11] T. Koo and M. Collins. Hidden-variable models for digainative reranking. IEMNLP ’* 05, 2005.

[12] E. Charniak and M. Johnson. Coarse-to-Fine N-Bestif@aend MaxEnt Discriminative Reranking. In
ACL’05, 2005.

[13] M. Collins. Head-Driven Satistical Models for Natural Language Parsing. PhD thesis, UPenn., 1999.

[14] S. Petrov and D. Klein. Improved inference for unlekimad parsing. IrHLT-NAACL ' 07, 2007.

[15] K. Lariand S. Young. The estimation of stochastic catifeee grammars using the inside-outside algo-
rithm. Computer Speech and Language, 1990.

[16] P. Liang, S. Petrov, M. I. Jordan, and D. Klein. The infiPCFG using hierarchical Dirichlet processes.
In EMNLP ' 07, 2007.

[17] F. Pereiraand Y. Schabes. Inside-outside reestimé&tion partially bracketed corpora. &CL, 1992.

[18] N. A. Smith and M. Johnson. Weighted and probabilistiatext-free grammars are equally expressive.
To appear in Computational Lingusitics, 2007.

[19] J. Nocedal and S. J. Wrighilumerical Optimization. Springer, 1999.

[20] N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton. tSpid merge EM algorithm for mixture
models.Neural Computation, 12(9):2109-2128, 2000.

[21] P. F. Brown, S. A. D. Pietra, V. J. D. Pietra, and R. L. MarcThe mathematics of statistical machine
translation.Computational Lingusitics, 19(2), 1993.

[22] E. Charniak, M. Johnson, D. McClosky, et al. Multi-léeearse-to-fine PCFG Parsing. HLT-NAACL
’06, 2006.

[23] N. A. Smith and J. Eisner. Contrastive estimation: fiirag log-linear models on unlabeled data.AGL
'05, 2005.

[24] G. Andrew and J. Gao. Scalable training of L1-regukedifog-linear models. [hCML *07, 2007.

