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Evolution of the DT tag during hierarchical splitting and merging. 
Shown are the top three words for each subcategory and their respective probability.
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Learning Inference Results

Observed categories are too coarse:

Adaptive Grammar Refinement:
     Split each category in k subcategories 
     and fit grammar with the EM algorithm.

Reference:
Slav Petrov, Adam Pauls and Dan Klein,
"Learning Structured Models for Phone Recognition", 
in EMNLP-CoNLL '07

Smoothing:
    Reduce overfitting by shrinking the 
    productions of each subcategory
    towards their common base 
    category.

Reference: 
Slav Petrov, Leon Barrett, Romain Thibaux and Dan Klein, 
"Learning accurate, compact and interpretable tree annotation", in ACL-COLING '06

Reference:
Slav Petrov and Dan Klein,
"Improved Inference for Unlexicalized Parsing", in NAACL-HLT '07

The most frequent three words in the subcategories of several part-of-speech tags.

VBZ
VBZ-0 gives sells takes
VBZ-1 comes goes works
VBZ-2 includes owns is
VBZ-3 puts provides takes
VBZ-4 says adds Says
VBZ-5 believes means thinks
VBZ-6 expects makes calls
VBZ-7 plans expects wants
VBZ-8 is ’s gets
VBZ-9 ’s is remains
VBZ-10 has ’s is
VBZ-11 does Is Does

NNP
NNP-0 Jr. Goldman INC.
NNP-1 Bush Noriega Peters
NNP-2 J. E. L.
NNP-3 York Francisco Street
NNP-4 Inc Exchange Co
NNP-5 Inc. Corp. Co.
NNP-6 Stock Exchange York
NNP-7 Corp. Inc. Group
NNP-8 Congress Japan IBM
NNP-9 Friday September August
NNP-10 Shearson D. Ford
NNP-11 U.S. Treasury Senate
NNP-12 John Robert James
NNP-13 Mr. Ms. President
NNP-14 Oct. Nov. Sept.
NNP-15 New San Wall

JJS
JJS-0 largest latest biggest
JJS-1 least best worst
JJS-2 most Most least

DT
DT-0 the The a
DT-1 A An Another
DT-2 The No This
DT-3 The Some These
DT-4 all those some
DT-5 some these both
DT-6 That This each
DT-7 this that each
DT-8 the The a
DT-9 no any some
DT-10 an a the
DT-11 a this the

CD
CD-0 1 50 100
CD-1 8.50 15 1.2
CD-2 8 10 20
CD-3 1 30 31
CD-4 1989 1990 1988
CD-5 1988 1987 1990
CD-6 two three five
CD-7 one One Three
CD-8 12 34 14
CD-9 78 58 34
CD-10 one two three
CD-11 million billion trillion

PRP
PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

RBR
RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

IN
IN-0 In With After
IN-1 In For At
IN-2 in for on
IN-3 of for on
IN-4 from on with
IN-5 at for by
IN-6 by in with
IN-7 for with on
IN-8 If While As
IN-9 because if while
IN-10 whether if That
IN-11 that like whether
IN-12 about over between
IN-13 as de Up
IN-14 than ago until
IN-15 out up down

RB
RB-0 recently previously still
RB-1 here back now
RB-2 very highly relatively
RB-3 so too as
RB-4 also now still
RB-5 however Now However
RB-6 much far enough
RB-7 even well then
RB-8 as about nearly
RB-9 only just almost
RB-10 ago earlier later
RB-11 rather instead because
RB-12 back close ahead
RB-13 up down off
RB-14 not Not maybe
RB-15 n’t not also

General technique for learning refined, structured models when only
    the trace of a complex underlying process is observed.
Learns compact and accurate grammars from a treebank without
    additional human input.
Gives best known parsing accuracy on a variety of languages, while
    being extremely efficient.
Interactive demo and download at http://nlp.cs.berkeley.edu

Extensions

Reference:
Percy Liang, Slav Petrov, Michael Jordan and Dan Klein,
"The Infinite PCFG using Hierarchical Dirichlet Processes", 
in EMNLP-CoNLL '07

Hierarchical Dirichlet Processes as a 
nonparametric Bayesian alternative 
to split and merge:

Merging:
    Roll back the least useful 
    splits in order to allocate
    complexity only where 
    needed. 
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Hierarchical Splitting:
     

     Repeatedly split each 
     annotation symbol in 
     two and retrain the 
     grammar, initializing 
     with the previous 
     grammar.
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Parse Efficiency:
     Rapidly pre-parse the sentence in a 
     hierarchical coarse-to-fine fashion
     pruning away unlikely chart items.

Parse Selection:
     Use a variational approximation to select the tree with  
     the maximum number of expected correct rules (since 
     computing the best parse tree is intractable and 
     selecting the best derivation is a poor approximation).
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Automatic refinement of acoustic models 
learns phone-internal structure as well as 
phone-external context: 

Learned grammars are compact and interpretable:
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Parser F1 F1

ENGLISH
Charniak & Johnson ’05 90.1 89.6
This Work 90.6 90.1

GERMAN
Dubey ’05 76.3 -
This Work 80.8 80.1

CHINESE
Chiang & Bikel ’02 80.0 76.6
This Work 86.3 83.4

Bracket posterior 
probabilities during 

coarse-to-fine decoding
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