
Learning and Inference for Hierarchically Split PCFGs

Slav Petrov and Dan Klein
{petrov,klein}@cs.berkeley.edu

University of California, Berkeley,
Berkeley, CA, 94720

Abstract

Treebank parsing can be seen as the search for an optimally
refined grammar consistent with a coarse training treebank.
We describe a method in which a minimal grammar is hier-
archically refined using EM to give accurate, compact gram-
mars. The resulting grammars are extremely compact com-
pared to other high-performance parsers, yet the parser gives
the best published accuracies on several languages, as well
as the best generative parsing numbers in English. In addi-
tion, we give an associated coarse-to-fine inference scheme
which vastly improves inference time with no loss in test set
accuracy.

Introduction

We present a general method for inducing structured models.
Given labeled training data we extract a minimal model and
show how to induce additional latent structure by iteratively
refining the model. We then present an efficient inference
procedure that takes advantage of the hierarchical structure
of our model. While we illustrate our method on parsing nat-
ural language, the technique is applicable to other domains
such as speech recognition and machine translation.

Parsing is the task of uncovering the syntactic structure
of language and is often viewed as an important prereq-
uisite for building systems capable of understanding lan-
guage (see Leaseet al. (2006) for an overview of pars-
ing and its applications). Parsers are typically trained on
a collection of hand parsed sentences (treebank). Because
the constituents of the treebank imply unrealistic context-
freedom assumptions, they are not well suited for model-
ing language. Therefore, a variety of techniques have been
developed to both enrich and generalize the naive gram-
mar by manually introducing annotations (Collins 1999;
Klein & Manning 2003). In contrast, we induce latent struc-
tures without any additional human input, resulting in state-
of-the art parsing performance on a variety of languages.

In the following we will focus on two problems:learning,
in which we must select a model given a treebank, andinfer-
ence, in which we must select a parse for a sentence given
the learned model.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

FRAG

RB

Not

NP

DT

this

NN

year

.

.

(a)

ROOT

FRAG

FRAG

RB

Not

NP

DT

this

NN

year

.

.

(b)

ROOT

FRAG-x

FRAG-x

RB-x

Not

NP-x

DT-x

this

NN-x

year

.-x

.

(c)

Figure 1: (a) The original tree. (b) The (binarized) X-bar tree.
(c) The annotated tree.

Learning
To obtain a grammar from the training trees, we learn a
set of rule probabilities on latent annotations that maxi-
mizes the likelihood of the training trees. The Expectation-
Maximization (EM) algorithm allows us to do that, despite
the fact that the original trees lack the latent annotations.

Initialization
We consider PCFG grammars which are derived from a raw
treebank according to the method of Petrovet al. (2006), as
follows: A simple X-bar grammar is created by binarizing
the treebank trees; for each local tree rooted at an evaluation
nonterminalX , we introduce a cascade of new nodes labeled
X so that each has two children (Figure 1). Since we will
evaluate our grammar on its ability to recover the Penn Tree-
bank nonterminals, we must include them in our grammar.
Therefore, this initialization is the absolute minimum start-
ing grammar that includes the evaluation nonterminals (and
maintains separate grammar symbols for each of them). It is
a very compact grammar: 98 symbols,1 236 unary rules, and
3840 binary rules. However, it also has a very low parsing
performance: 63.4% F12 on the development set.

EM-Algorithm
Given a sentencew and its unannotated treeT , consider
a nonterminalA spanning(r, t) and its childrenB andC
spanning(r, s) and (s, t). Let Ax be a subsymbol ofA,
By of B, andCz of C. Then the inside and outside prob-

abilities PIN (r, t, Ax)
def
= P (wr:t|Ax) and POUT(r, t, Ax)

def
=

145 part of speech tags, 27 phrasal categories and the 26 inter-
mediate symbols which were added during binarization

2The harmonic mean of precisionP and recallR: 2PR

P+R
.

P (w1:rAxwt:n) can be computed recursively using the set
of rule probabilitiesβ (Matsuzaki, Miyao, & Tsujii 2005):

PIN (r, t, Ax) =
∑

y,z

β(Ax → ByCz)
×PIN (r, s, By)PIN (s, t, Cz)

POUT(r, s, By) =
∑

x,z

β(Ax → ByCz)
×POUT(r, t, Ax)PIN (s, t, Cz)

POUT(s, t, Cz) =
∑

x,y

β(Ax → ByCz)
×POUT(r, t, Ax)PIN (r, s, By)

Although we show only the binary component here, of
course there are both binary and unary productions that are
included. In the Expectation step, one computes the poste-
rior probability of each annotated rule and position in each
training set treeT :

P ((r, s, t, Ax → ByCz)|w, T) ∝ POUT(r, t, Ax)

×β(Ax → ByCz)PIN (r, s, By)PIN (s, t, Cz) (1)
In the Maximization step, one uses the above probabilities
as weighted observations to update the rule probabilities:

β(Ax → ByCz) :=
#{Ax → ByCz}

∑

y′,z′ #{Ax → By′Cz′}

Note that, because there is no uncertainty about the location
of the brackets, this formulation of the inside-outside algo-
rithm is linear in the length of the sentence rather than cubic
(Pereira & Schabes 1992).

Splitting
EM is only guaranteed to find a local maximum of the like-
lihood, and, indeed, in practice it often gets stuck in a sub-
optimal configuration. If the search space is very large, even
restarting may not be sufficient to alleviate this problem.
We therefore repeatedly split and re-train the grammar. In
each iteration we initialize EM with the results of the smaller
grammar, splitting every previous annotation symbol in two
and adding a small amount of randomness (1%) to break the
symmetry. Hierarchical splitting leads to better parameter
estimates over directly estimating a grammar with2k sub-
symbols per symbol. It is interesting to note that the induced
splits are linguistically interpretable. As an example some
of the learnt categories for the determiner part of speech are
shown in Figure 2.

Merging
Creating more latent annotations results in a tighter fit to
the training data but at the same time can lead to overfitting.
Therefore, it would be to our advantage to split the latent an-
notations only where needed, rather than splitting them all.
In addition, if all symbols are split equally often, one quickly
(4 split cycles) reaches the limits of what is computationally
feasible in terms of training time and memory usage. To pre-
vent oversplitting, we could measure the utility of splitting
each latent annotation individually and then split the best
ones first. However, not only is this impractical, requiring
an entire training phase for each new split, but it assumes
the contributions of multiple splits are independent. In fact,
extra subsymbols may need to be added to several nontermi-
nals before they can cooperate to pass information along the

G0

G1

G2

G3

G4

G5

G6

X-bar =

G =

π
i

the

that

this

this

0 1 2 3 4

That

5 6 7

some

some

8 9 10 11

these

12 13

the

the

the

14 15

The

16

a

a

17

Figure 2: Hierarchical refinement proceeds top-down while projec-
tion recovers coarser grammars. The top word for the first refine-
ments of the determiner tag is shown on the right.

parse tree. Therefore, we go in the opposite direction; that
is, we split every symbol in two, train, and then measure for
each annotation the loss in likelihood incurred when remov-
ing it. If this loss is small, the new annotation does not carry
enough useful information and can be removed. What is
more, contrary to the gain in likelihood for splitting, the loss
in likelihood for merging can be efficiently approximated.

LetT be a training tree generating a sentencew. Consider
a noden of T spanning(r, t) with the labelA; that is, the
subtree rooted atn generateswr:t and has the labelA. In the
latent model, its labelA is split up into several latent labels,
Ax. The likelihood of the data can be recovered from the
inside and outside probabilities atn:

P(w, T) =
∑

x

PIN (r, t, Ax)POUT(r, t, Ax) (2)

Consider merging, atn only, two annotationsA1 andA2.
SinceA now combines the statistics ofA1 andA2, its pro-
duction probabilities are the sum of those ofA1 and A2,
weighted by their relative frequencyp1 andp2 in the train-
ing data. Therefore the inside score ofA is:

PIN (r, t, A) = p1PIN (r, t, A1) + p2PIN (r, t, A2)

SinceA can be produced asA1 or A2 by its parents, its
outside score is:

POUT(r, t, A) = POUT(r, t, A1) + POUT(r, t, A2)

Replacing these quantities in (2) gives us the likelihood
Pn(w, T) where these two annotations and their correspond-
ing rules have been merged, around only noden.

We approximate the overall loss in data likelihood due to
mergingA1 andA2 everywhere in all sentenceswi by the
product of this loss for each local change:

∆ANNOTATION (A1, A2) =
∏

i

∏

n∈Ti

Pn(wi, Ti)

P(wi, Ti)

This expression is an approximation because it neglects in-
teractions between instances of a symbol at multiple places
in the same tree. These instances, however, are often far
apart and are likely to interact only weakly, and this simpli-
fication avoids the prohibitive cost of running an inference
algorithm for each tree and annotation. We refer to the oper-
ation of splitting annotations and re-merging some of them
based on likelihood loss as a split-merge (SM) cycle. SM
cycles allow us to progressively increase the complexity of
our model, giving priority to the most useful extensions.

 74

 76

 78

 80

 82

 84

 86

 88

 90

 200 400 600 800 1000

F
1

Total number of grammar symbols

50% Merging and Smoothing
50% Merging

Splitting but no Merging
Flat Training

Figure 3: Hierarchical training leads to better parameter estimates.
Merging reduces the grammar size significantly, while preserving
the accuracy and enabling us to do more SM cycles. Parameter
smoothing leads to even better accuracy.

Smoothing
Splitting nonterminals leads to a better fit to the data by al-
lowing each annotation to specialize in representing only a
fraction of the data. The smaller this fraction, the higher the
risk of overfitting. Merging, by allowing only the most ben-
eficial annotations, helps mitigate this risk, but it is not the
only way. We can further minimize overfitting by forcing the
production probabilities from annotations of the same non-
terminal to be similar. For example, a noun phrase in subject
position certainly has a distinct distribution, but may benefit
from being smoothed with counts from other noun phrases.
Smoothing the productions of each subsymbol by shrinking
them towards their common base symbol gives a more reli-
able estimate, allowing them to share statistical strength.

We perform smoothing in a linear way. The estimated
probability of a productionpx = P(Ax → By Cz) is inter-
polated with the average over all subsymbols ofA.

p′x = (1− α)px + αp̄ where p̄ =
1

n

∑

x

px

Here,α is a small constant: we found 0.01 to be a good
value, but the actual quantity was surprisingly unimportant.

Inference
Once we have learned a refined PCFG we can use it to do in-
ference to predict the syntactic structure of a given sentence.

Coarse-to-Fine Approaches
When working with large grammars, it is standard to prune
the search space in some way. A commonly adopted strat-
egy is to use apre-parsephase in which a sentence is rapidly
parsed with a very coarse, treebank grammar. Any item
X :[i, j] with sufficiently low posterior probability in the pre-
parse triggers the pruning of its refined variants in a subse-
quent full parse. In Petrov & Klein (2007), we proposed
a novel multi-stage coarse-to-fine method which is particu-
larly natural for our hierarchically split grammar, but which
is, in principle, applicable to any grammar. We construct a
sequence of increasingly refined grammars, reparsing with
each refinement. The contributions of our method are that
we derive sequences of refinements in a new way, we con-
sider refinements which are themselves complex, and, be-
cause our full grammar is not impossible to parse with, we

automatically tune the pruning thresholds on held-out data.

Projection
In our method, which we callhierarchical coarse-
to-fine parsing, we consider a sequence of PCFGs
G0, G1, . . . Gn = G, where eachGi is a refinement of the
preceding grammarGi−1 andG is the full grammar of inter-
est. Each grammarGi is related toG = Gn by aprojection
πn→i or πi for brevity. A projection is a map from the non-
terminal (including pre-terminal) symbols ofG onto a re-
duced domain. A projection of grammar symbols induces a
projection of rules and therefore entire non-weighted gram-
mars (see Figure 2).

In our case, we also require the projections to be sequen-
tially compatible, so thatπi→j =πk→j ◦πi→k. That is, each
projection is itself a coarsening of the previous projections.
In particular, the projectionπi→j is the map that collapses
split symbols in roundi to their earlier identities in roundj.

It is straightforward to take a projectionπ and map a
CFG G to its induced projectionπ(G). What is less ob-
vious is how the probabilities associated with the rules of
G should be mapped. In the case whereπ(G) is coarser
than the treebank originally used to trainG, and when that
treebank is available, it is easy to project the treebank anddi-
rectly estimate, say, the maximum-likelihood parameters for
π(G).However, treebank estimation has several limitations.
First, the treebank used to trainG may not be available. Sec-
ond, if the grammarG is heavily smoothed or otherwise reg-
ularized, its own distribution over trees may be far from that
of the treebank. Third, and most importantly, we may wish
to project grammars for which treebank estimation is prob-
lematic, for example, grammars which are more refined than
the observed treebank grammars.

Estimating Projected Grammars
There is a well worked-out notion of estimating a gram-
mar from an infinite distribution over trees (Corazza & Satta
2006). In particular, we can estimate parameters for a pro-
jected grammarπ(G) from the tree distribution induced by
G (which can itself be estimated in any manner).

The generalization of maximum likelihood estimation is
to find the estimates forπ(G) with minimum KL divergence
from the tree distribution induced byG. Sinceπ(G) is a
grammar over coarser symbols, we fitπ(G) to the distri-
butionG induces overπ-projected trees:P (π(T)|G). The
proofs of the general case are given in Corazza & Satta
(2006), but the resulting procedure is quite intuitive. Given
a (fully observed) treebank, the maximum-likelihood esti-
mate for the probability of a ruleX → Y Z would simply be
the ratio of the count ofX to the count of the configuration
X → Y Z. If we wish to find the estimate which has mini-
mum divergence to an infinite distributionP (T), we use the
same formula, but the counts become expected counts:

P (X → Y Z) =
EP (T)[X → Y Z]

EP (T)[X]

with unaries estimated similarly. In our specific case,X, Y,
andZ are symbols inπ(G), and the expectations are taken
overG’s distribution ofπ-projected trees,P (π(T)|G).

G0 G2 G4 G6

Nonterminals 98 217 485 1090
Rules 3,700 19,600 126,100 531,200
No Pruning 52 min 99 min 288 min 1612 min
X-Bar Pruning 8 min 14 min 30 min 111 min
Coarse to Fine 6 min 10 min 12 min 15 min
F1 for above 64.8 85.2 89.7 91.2

Table 1: Grammar sizes, parsing times and accuracies for hierar-
chically split PCFGs with and without hierarchical coarse-to-fine
parsing on our development set.

Calculating Projected Expectations
Concretely, we can estimate the minimum divergence pa-
rameters ofπ(G) for any projectionπ and PCFGG if we
can calculate the expectations of the projected symbols and
rules according toP (π(T)|G).We can exploit the structure
of our projections to obtain the desired expectations in a sim-
ple and efficient way.

First, consider the problem of calculating the expected
counts of a symbolX in a tree distribution given by a gram-
mar G, ignoring the issue of projection. These expected
counts obey the following one-step equations (assuming a
uniqueroot symbol):

c(root) = 1

c(X) =
∑

Y →αXβ

P (αXβ|Y)c(Y)

Here,α, β, or both can be empty, and a ruleX → γ appears
in the sum once for eachX it contains.

In principle, this linear system can be solved in any way.3

In our experiments, we solve this system iteratively, with the
following recurrences:

c0(X)←

{

1 if X = root
0 otherwise

ci+1(X)←
∑

Y →αXβ

P (αXβ|Y)ci(Y)

Note that, as in many other iterative fixpoint methods, such
as policy evaluation for Markov decision processes, the
quantitiesck(X) have a useful interpretation as the expected
counts ignoring nodes deeper than depthk (i.e. the roots are
all the root symbol, soc0(root) = 1). This iteration may of
course diverge ifG is improper, but, in our experiments, it
converged within around 25 iterations; this is unsurprising,
since the treebank contains few nodes deeper than 25 and
our base grammarG seems to have captured this property.

Hierarchical Coarse-to-Fine Parsing
For a final grammarG = Gn, we compute estimates for the
n projectionsGn−1, . . . , G0 =X-Bar, whereGi = πi(G) as
described in the previous section. Additionally we project
to a grammarG−1 in which all nonterminals, except for the
preterminals, have been collapsed. During parsing, we start
of by exhaustively computing the inside/outside scores with

3Whether or not the system has solutions depends on the pa-
rameters of the grammar. In particular,G may be improper, though
the results of Chi (1999) imply thatG will be proper if it is the
maximum-likelihood estimate of a finite treebank.

G−1. At each stage, chart items with low posterior proba-
bility are removed from the chart, and we proceed to com-
pute inside/outside scores with the next, more refined gram-
mar, using the projectionsπi→i−1 to map between symbols
in Gi andGi−1. In each pass, we skip chart items whose
projection into the previous stage had a probability below a
stage-specific threshold, until we reachG = Gn (after seven
passes in our case). ForG, we do not prune but instead re-
turn the minimum risk tree.

The pruning thresholds were empirically determined on
a held out set. We found our projected grammar estimates
to be significantly better suited for pruning than the original
grammars, which were learned during training.

Experimental Results
Table 1 shows the tremendous reduction in parsing time (all
times are cumulative) and gives an overview over grammar
sizes and parsing accuracies. In particular, in our Java im-
plementation on a 3GHz processor, it is possible to parse
1600 sentences in less than 900 sec. with an F1 of 91.2%.
This compares favorably to the previously best generative
lexicalized parser for English (Charniak & Johnson (2005):
90.7% in 1300 sec.). For German and Chinese our learnt
grammars outperform the previously best parsers by an even
larger margin (see Petrov & Klein (2007) for details).

Conclusions
The approach we have presented gives an extremely accurate
and compact grammar, learned in a fully automated fashion.
In addition, the split structure admits an extremely efficient
coarse-to-fine inference scheme. This approach is applica-
ble more broadly, to other problems where we have observed
training structure which is coarser than the true underlying
process in a similar way. The final parser along with gram-
mars for a variety of languages is available for download at
http://nlp.cs.bekerley.edu.

References
Charniak, E., and Johnson, M. 2005. Coarse-to-Fine N-Best Pars-
ing and MaxEnt Discriminative Reranking. InACL’05.
Chi, Z. 1999. Statistical properties of probabilistic context-free
grammars. InComputational Linguistics.
Collins, M. 1999. Head-Driven Statistical Models for Natural
Language Parsing. Ph.D. Dissertation, U. of Penn.
Corazza, A., and Satta, G. 2006. Cross-entropy and estimation of
probabilistic context-free grammars. InHLT-NAACL ’06.
Klein, D., and Manning, C. 2003. Accurate unlexicalized parsing.
In ACL ’03, 423–430.
Lease, M.; Charniak, E.; Johnson, M.; and McClosky, D. 2006.
A look at parsing and its applications. InAAAI ’06.
Matsuzaki, T.; Miyao, Y.; and Tsujii, J. 2005. Probabilistic CFG
with latent annotations. InACL ’05, 75–82.
Pereira, F., and Schabes, Y. 1992. Inside-outside reestimation
from partially bracketed corpora. InACL ’92.
Petrov, S., and Klein, D. 2007. Improved inference for unlexical-
ized parsing. InHLT-NAACL ’07.
Petrov, S.; Barrett, L.; Thibaux, R.; and Klein, D. 2006. Learning
accurate, compact, and interpretable tree annotation. InACL ’06.

