
Coarse-to-Fine Syntactic Machine Translation
using Language Projections

Slav Petrov Aria Haghighi Dan Klein
Computer Science Division, EECS Department

University of California at Berkeley
Berkeley, CA 94720

{petrov, aria42, klein}@eecs.berkeley.edu

Abstract

The intersection of tree transducer-based
translation models with n-gram language
models results in huge dynamic programs for
machine translation decoding. We propose a
multipass, coarse-to-fine approach in which
the language model complexity is incremen-
tally introduced. In contrast to previous order-
based bigram-to-trigram approaches, we fo-
cus on encoding-based methods, which use
a clustered encoding of the target language.
Across various encoding schemes, and for
multiple language pairs, we show speed-ups of
up to 50 times over single-pass decoding while
improving BLEU score. Moreover, our entire
decoding cascade for trigram language models
is faster than the corresponding bigram pass
alone of a bigram-to-trigram decoder.

1 Introduction

In the absence of an n-gram language model, decod-
ing a synchronous CFG translation model is very
efficient, requiring only a variant of the CKY al-
gorithm. As in monolingual parsing, dynamic pro-
gramming items are simply indexed by a source lan-
guage span and a syntactic label. Complexity arises
when n-gram language model scoring is added, be-
cause items must now be distinguished by their ini-
tial and final few target language words for purposes
of later combination. This lexically exploded search
space is a root cause of inefficiency in decoding, and
several methods have been suggested to combat it.
The approach most relevant to the current work is
Zhang and Gildea (2008), which begins with an ini-
tial bigram pass and uses the resulting chart to guide

a final trigram pass. Substantial speed-ups are ob-
tained, but computation is still dominated by the ini-
tial bigram pass. The key challenge is that unigram
models are too poor to prune well, but bigram mod-
els are already huge. In short, the problem is that
there are too many words in the target language. In
this paper, we propose a new, coarse-to-fine, mul-
tipass approach which allows much greater speed-
ups by translating into abstracted languages. That
is, rather than beginning with a low-order model of
a still-large language, we exploit language projec-
tions, hierarchical clusterings of the target language,
to effectively reduce the size of the target language.
In this way, initial passes can be very quick, with
complexity phased in gradually.

Central to coarse-to-fine language projection is
the construction of sequences of word clusterings
(see Figure 1). The clusterings are deterministic
mappings from words to clusters, with the property
that each clustering refines the previous one. There
are many choice points in this process, including
how these clusterings are obtained and how much
refinement is optimal for each pass. We demon-
strate that likelihood-based hierarchical EM train-
ing (Petrov et al., 2006) and cluster-based language
modeling methods (Goodman, 2001) are superior
to both rank-based and random-projection methods.
In addition, we demonstrate that more than two
passes are beneficial and show that our computa-
tion is equally distributed over all passes. In our
experiments, passes with less than 16-cluster lan-
guage models are most advantageous, and even a
single pass with just two word clusters can reduce
decoding time greatly.

To follow related work and to focus on the effects
of the language model, we present translation re-
sults under an inversion transduction grammar (ITG)
translation model (Wu, 1997) trained on the Eu-
roparl corpus (Koehn, 2005), described in detail in
Section 3, and using a trigram language model. We
show that, on a range of languages, our coarse-to-
fine decoding approach greatly outperforms base-
line beam pruning and bigram-to-trigram pruning on
time-to-BLEU plots, reducing decoding times by up
to a factor of 50 compared to single pass decoding.
In addition, coarse-to-fine decoding increases BLEU
scores by up to 0.4 points. This increase is a mixture
of improved search and subtly advantageous coarse-
to-fine effects which are further discussed below.

2 Coarse-to-Fine Decoding

In coarse-to-fine decoding, we create a series of ini-
tially simple but increasingly complex search prob-
lems. We then use the solutions of the simpler prob-
lems to prune the search spaces for more complex
models, reducing the total computational cost.

2.1 Related Work

Taken broadly, the coarse-to-fine approach is not
new to machine translation (MT) or even syntactic
MT. Many common decoder precomputations can
be seen as coarse-to-fine methods, including the A*-
like forward estimates used in the Moses decoder
(Koehn et al., 2007). In an ITG framework like
ours, Zhang and Gildea (2008) consider an approach
in which the results of a bigram pass are used as
an A* heuristic to guide a trigram pass. In their
two-pass approach, the coarse bigram pass becomes
computationally dominant. Our work differs in two
ways. First, we use posterior pruning rather than
A* search. Unlike A* search, posterior pruning
allows multipass methods. Not only are posterior
pruning methods simpler (for example, there is no
need to have complex multipart bounds), but they
can be much more effective. For example, in mono-
lingual parsing, posterior pruning methods (Good-
man, 1997; Charniak et al., 2006; Petrov and Klein,
2007) have led to greater speedups than their more
cautious A* analogues (Klein and Manning, 2003;
Haghighi et al., 2007), though at the cost of guaran-
teed optimality.

LM
 O

rd
er

Bits in language model

the,report-NP-these,states

1

π
2

3

2 3

the-NP-states0-NP-1 01-NP-10 010-NP-100

0,1-NP-0,1 01,10-NP-00,10 010,100-NP-000,100

...

...

∞

Figure 2: Possible state projections π for the target noun
phrase “the report for these states” using the clusters
from Figure 1. The number of bits used to encode the tar-
get language vocabulary is varied along the x-axis. The
language model order is varied along the y-axis.

Second, we focus on an orthogonal axis of ab-
straction: the size of the target language. The in-
troduction of abstract languages gives better control
over the granularity of the search space and provides
a richer set of intermediate problems, allowing us
to adapt the level of refinement of the intermediate,
coarse passes to minimize total computation.

Beyond coarse-to-fine approaches, other related
approaches have also been demonstrated for syntac-
tic MT. For example, Venugopal et al. (2007) con-
siders a greedy first pass with a full model followed
by a second pass which bounds search to a region
near the greedy results. Huang and Chiang (2007)
searches with the full model, but makes assumptions
about the the amount of reordering the language
model can trigger in order to limit exploration.

2.2 Language Model Projections

When decoding in a syntactic translation model with
an n-gram language model, search states are spec-
ified by a grammar nonterminal X as well as the
the n-1 left-most target side words ln−1, . . . , l1 and
right-most target side words r1, . . . , rn−1 of the gen-
erated hypothesis. We denote the resulting lexical-
ized state as ln−1, . . . , l1-X-r1, . . . , rn−1. Assum-
ing a vocabulary V and grammar symbol set G, the
state space size is up to |V |2(n−1)|G|, which is im-
mense for a large vocabulary when n > 1. We
consider two ways to reduce the size of this search
space. First, we can reduce the order of the lan-
guage model. Second, we can reduce the number
of words in the vocabulary. Both can be thought
of as projections of the search space to smaller ab-

these

one

we

they

the

a

that

for

states

report

of

to

also

been

will

must

0 1

00 01

000 001 010 011 100 101 110 111

10 11

Figure 1: An example of hierarchical clustering of target language vocabulary (see Section 4). Even with a small
number of clusters our divisive HMM clustering (Section 4.3) captures sensible syntactico-semantic classes.

stracted spaces. Figure 2 illustrates those two or-
thogonal axes of abstraction.

Order-based projections are simple. As shown
in Figure 2, they simply strip off the appropriate
words from each state, collapsing dynamic program-
ming items which are identical from the standpoint
of their left-to-right combination in the lower or-
der language model. However, having only order-
based projections is very limiting. Zhang and Gildea
(2008) found that their computation was dominated
by their bigram pass. The only lower-order pass
possible uses a unigram model, which provides no
information about the interaction of the language
model and translation model reorderings. We there-
fore propose encoding-based projections. These
projections reduce the size of the target language vo-
cabulary by deterministically projecting each target
language word to a word cluster. This projection ex-
tends to the whole search state in the obvious way:
assuming a bigram language model, the state l-X-r
projects to c(l)-X-c(r), where c(·) is the determin-
istic word-to-cluster mapping.

In our multipass approach, we will want a se-
quence c1 . . . cn of such projections. This requires a
hierarchical clustering of the target words, as shown
in Figure 1. Each word’s cluster membership can be
represented by an n-bit binary string. Each prefix of
length k declares that word’s cluster assignment at
the k-bit level. As we vary k, we obtain a sequence
of projections ck(·), each one mapping words to a
more refined clustering. When performing inference
in a k-bit projection, we replace the detailed original
language model over words with a coarse language
model LMk over the k-bit word clusters. In addition,
we replace the phrase table with a projected phrase

table, which further increases the speed of projected
passes. In Section 4, we describe the various clus-
tering schemes explored, as well as how the coarse
LMk are estimated.

2.3 Multipass Decoding

Unlike previous work, where the state space exists
only at two levels of abstraction (i.e. bigram and tri-
gram), we have multiple levels to choose from (Fig-
ure 2). Because we use both encoding-based and
order-based projections, our options form a lattice
of coarser state spaces, varying from extremely sim-
ple (a bigram model with just two word clusters) to
nearly the full space (a trigram model with 10 bits or
1024 word clusters).

We use this lattice to perform a series of coarse
passes with increasing complexity. More formally,
we decode a source sentence multiple times, in a
sequence of state spaces S0, S1, . . . , Sn=S, where
each Si is a refinement of Si−1 in either language
model order, language encoding size, or both. The
state spaces Si and Sj (i < j) are related to each
other via a projection operator πj→i(·) which maps
refined states deterministically to coarser states.

We start by decoding an input x in the simplest
state space S0. In particular, we compute the chart
of the posterior distributions p0(s) = P (s|x) for all
states s ∈ S0. These posteriors will be used to prune
the search space S1 of the following pass. States s
whose posterior falls below a threshold t trigger the
removal of all more refined states s′ in the subse-
quent pass (see Figure 3). This technique is poste-
rior pruning, and is different from A* methods in
two main ways. First, it can be iterated in a multi-
pass setting, and, second, it is generally more effi-

0-X-0

11-X-10 10-X-11 11-X-1100-X-11 10-X-1011-X-01 01-X-1010-X-00 11-X-00 10-X-0100-X-00 01-X-00 00-X-01

1-X-0 0-X-1 1-X-1

2-Bit Pass

1-Bit Pass

 < t ? < t ? < t ? < t ? < t ? < t ? < t ? < t ?

< t ?< t ? < t ? < t ?

01-X-1100-X-1001-X-01

Figure 3: Example of state pruning in coarse-to-fine decoding using the language encoding projection (see Section 2.2).
During the coarse one-bit word cluster pass, two of the four possible states are pruned. Every extension of the pruned
one-bit states (indicated by the grey shading) are not explored during the two-bit word cluster pass.

cient with a potential cost of increased search errors
(see Section 2.1 for more discussion).

Looking at Figure 2, multipass coarse-to-fine de-
coding can be visualized as a walk from a coarse
point somewhere in the lower left to the most re-
fined point in the upper right of the grid. Many
coarse-to-fine schedules are possible. In practice,
we might start decoding with a 1-bit word bigram
pass, followed by an 3-bit word bigram pass, fol-
lowed by a 5-bit word trigram pass and so on (see
Section 5.3 for an empirical investigation). In terms
if time, we show that coarse-to-fine gives substantial
speed-ups. There is of course an additional mem-
ory requirement, but it is negligible. As we will see
in our experiments (Section 5) the largest gains can
be obtained with extremely coarse language mod-
els. In particular, the largest coarse model we use in
our best multipass decoder uses a 4-bit encoding and
hence has only 16 distinct words (or at most 4096
trigrams).

3 Inversion Transduction Grammars

While our approach applies in principle to a vari-
ety of machine translation systems (phrase-based or
syntactic), we will use the inversion transduction
grammar (ITG) approach of Wu (1997) to facili-
tate comparison with previous work (Zens and Ney,
2003; Zhang and Gildea, 2008) as well as to focus on
language model complexity. ITGs are a subclass of
synchronous context-free grammars (SCFGs) where
there are only three kinds of rules. Preterminal unary
productions produce terminal strings on both sides
(words or phrases): X → e/f . Binary in-order pro-
ductions combine two phrases monotonically (X →
[Y Z]). Finally, binary inverted productions invert
the order of their children (X → 〈Y Z〉). These pro-
ductions are associated with rewrite weights in the

standard way.

Without a language model, SCFG decoding is just
like (monolingual) CFG parsing. The dynamic pro-
gramming states are specified by iXj , where 〈i, j〉 is
a source sentence span and X is a nonterminal. The
only difference is that whenever we apply a CFG
production on the source side, we need to remem-
ber the corresponding synchronous production on
the target side and store the best obtainable transla-
tion via a backpointer. See Wu (1996) or Melamed
(2004) for a detailed exposition.

Once we integrate an n-gram language model, the
state space becomes lexicalized and combining dy-
namic programming items becomes more difficult.
Each state is now parametrized by the initial and
final n−1 words in the target language hypothesis:
ln−1, ..., l1-iXj-r1, ..., rn−1. Whenever we combine
two dynamic programming items, we need to score
the fluency of their concatentation by incorporat-
ing the score of any language model features which
cross the target side boundaries of the two concate-
nated items (Chiang, 2005). Decoding with an in-
tegrated language model is computationally expen-
sive for two reasons: (1) the need to keep track of
a large number of lexicalized hypotheses for each
source span, and (2) the need to frequently query the
large language model for each hypothesis combina-
tion.

Multipass coarse-to-fine decoding can alleviate
both computational issues. We start by decoding
in an extremely coarse bigram search space, where
there are very few possible translations. We com-
pute standard inside/outside probabilities (iS/oS),
as follows. Consider the application of non-inverted
binary rule: we combine two items lb-iBk-rb and
lc-kCj-rc spanning 〈i, k〉 and 〈k, j〉 respectively to
form a larger item lb-iAj-rc, spanning 〈i, j〉. The

lb-iAj -rc lb-iBk-rb lc-kCj-rc

rclb

+

lb rc

+=

iS(lb-iAj -rc) += iS(lb-iBk-rb) · iS(lc-kCj-rc)LM(rb, lc) ·p(X→[Y Z]) ·

lcrb

Figure 4: Monotonic combination of two hypotheses dur-
ing the inside pass involves scoring the fluency of the con-
catenation with the language model.

inside score of the new item is incremented by:

iS(lb-iAj-rc) += p(X → [Y Z]) · iS(lb-iBk-rb) ·
iS(lc-kCj-rc) · LM(rb, lc)

This process is also illustrated in Figure 4. Of
course, we also loop over the split point k and ap-
ply the other two rule types (inverted concatenation,
terminal generation). We omit those cases from this
exposition, as well as the update for the outside pass;
they are standard and similar. Once we have com-
puted the inside and outside scores, we compute pos-
terior probabilities for all items:

p(la-iAj-ra) =
iS(la-iAj-ra)oS(la-iAj-ra)

iS(root)

where iS(root) is sum of all translations’ scores.
States with low posteriors are then pruned away.
We proceed to compute inside/outside score in the
next, more refined search space, using the projec-
tions πi→i−1 to map between states in Si and Si−1.
In each pass, we skip all items whose projection into
the previous stage had a probability below a stage-
specific threshold. This process is illustrated in Fig-
ure 3. When we reach the most refined search space
S∞, we do not prune, but rather extract the Viterbi
derivation instead.1

4 Learning Coarse Languages

Central to our encoding-based projections (see Sec-
tion 2.2) are hierarchical clusterings of the tar-
get language vocabulary. In the present work,
these clusterings are each k-bit encodings and yield
sequences of coarse language models LMk and
phrasetables PTk.

1Other final decoding strategies are possible, of course, in-
cluding variational methods and minimum-risk methods (Zhang
and Gildea, 2008).

Given a hierarchical clustering, we estimate the
corresponding LMk from a corpus obtained by re-
placing each token in a target language corpus with
the appropriate word cluster. As with our original
refined language model, we estimate each coarse
language model using the SRILM toolkit (Stolcke,
2002). The phrasetables PTk are similarly estimated
by replacing the words on the target side of each
phrase pair with the corresponding cluster. This pro-
cedure can potentially map two distinct phrase pairs
to the same coarse translation. In such cases we keep
only one coarse phrase pair and sum the scores of the
colliding originals.

There are many possible schemes for creating hi-
erarchical clusterings. Here, we consider several di-
visive clustering methods, where coarse word clus-
ters are recursively split into smaller subclusters.

4.1 Random projections

The simplest approach to splitting a cluster is to ran-
domly assign each word type to one of two new sub-
clusters. Random projections have been shown to be
a good and computationally inexpensive dimension-
ality reduction technique, especially for high dimen-
sional data (Bingham and Mannila, 2001). Although
our best performance does not come from random
projections, we still obtain substantial speed-ups
over a single pass fine decoder when using random
projections in coarse passes.

4.2 Frequency clustering

In frequency clustering, we allocate words to clus-
ters by frequency. At each level, the most frequent
words go into one cluster and the rarest words go
into another one. Concretely, we sort the words in
a given cluster by frequency and split the cluster so
that the two halves have equal token mass. This ap-
proach can be seen as a radically simplified version
of Brown et al. (1992). It can, and does, result in
highly imbalanced cluster hierarchies.

4.3 HMM clustering

An approach found to be effective by Petrov and
Klein (2007) for coarse-to-fine parsing is to use
likelihood-based hierarchical EM training. We
adopt this approach here by identifying each clus-
ter with a latent state in an HMM and determiniz-
ing the emissions so that each word type is emitted

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 1 2 3 4 5 6 7 8 9 10

P
er

p
le

x
it

y

Number of bits in coarse language model

HMM
JCluster

Frequency
Random

Figure 5: Results of coarse language model perplexity
experiment (see Section 4.5). HMM and JClustering have
lower perplexity than frequency and random clustering
for all number of bits in the language encoding.

by only one state. When splitting a cluster s into
s1 and s2, we initially clone and mildly perturb its
corresponding state. We then use EM to learn pa-
rameters, which splits the state, and determinize the
result. Specifically, each word w is assigned to s1 if
P (w|s1) > P (w|s2) and s2 otherwise. Because of
this determinization after each round of EM, a word
in one cluster will be allocated to exactly one of that
cluster’s children. This process not only guarantees
that the clusters are hierarchical, it also avoids the
state drift discussed by Petrov and Klein (2007). Be-
cause the emissions are sparse, learning is very effi-
cient. An example of some of the words associated
with early splits can be seen in Figure 1.

4.4 JCluster

Goodman (2001) presents a clustering scheme
which aims to minimize the entropy of a word given
a cluster. This is accomplished by incrementally
swapping words between clusters to locally mini-
mize entropy.2 This clustering algorithm was devel-
oped with a slightly different application in mind,
but fits very well into our framework, because the
hierarchical clusters it produces are trained to maxi-
mize predictive likelihood.

4.5 Clustering Results

We applied the above clustering algorithms to our
monolingual language model data to obtain hierar-

2The software for this clustering technique is available at
http://research.microsoft.com/˜joshuago/.

 28

 28.2

 28.4

 28.6

 28.8

 29

 29.2

 29.4

 100 1000 10000 100000

B
L

E
U

Total time in seconds

HMM
JCluster

Frequence
Random

Single pass (no clustering)

Figure 6: Coarse-to-fine decoding with HMM or JClus-
tering coarse language models reduce decoding times
while increasing accuracy.

chical clusters. We then trained coarse language
models of varying granularity and evaluated them on
a held-out set. To measure the quality of the coarse
language models we use perplexity (exponentiated
cross-entropy).3 Figure 5 shows that HMM clus-
tering and JClustering have lower perplexity than
frequency and random based clustering for all com-
plexities. In the next section we will present a set of
machine translation experiments using these coarse
language models; the clusterings with better per-
plexities generally produce better decoders.

5 Experiments

We ran our experiments on the Europarl corpus
(Koehn, 2005) and show results on Spanish, French
and German to English translation. We used the
setup and preprocessing steps detailed in the 2008
Workshop on Statistical Machine Translation.4 Our
baseline decoder uses an ITG with an integrated tri-
gram language model. Phrase translation parame-
ters are learned from parallel corpora with approx-
imately 8.5 million words for each of the language
pairs. The English language model is trained on the
entire corpus of English parliamentary proceedings
provided with the Europarl distribution. We report
results on the 2000 development test set sentences
of length up to 126 words (average length was 30
words).

3We assumed that each cluster had a uniform distribution
over all the words in that cluster.

4See http://www.statmt.org/wmt08 for details.

 0

 50

 100

 150

 200

 250

 300

1-2-3-f1-3-f2-3-f1-f2-f3-f4-ff

T
o

ta
l

ti
m

e
in

 m
in

u
te

s

Language model bits for coarse passes

fine
4 bits
3 bits
2 bits
1 bit

Figure 7: Many passes with extremely simple language
models produce the highest speed-ups.

Our ITG translation model is broadly competitive
with state-of-the-art phrase-based-models trained on
the same data. For example, on the Europarl devel-
opment test set, we fall short of Moses (Koehn et al.,
2007) by less than one BLEU point. On Spanish-
English we get 29.47 BLEU (compared to Moses’s
30.40), on French-English 29.34 (vs. 29.95), and
23.80 (vs. 24.64) on German-English. These differ-
ences can be attributed primarily to the substantially
richer distortion model used by Moses.

The multipass coarse-to-fine architecture that we
have introduced presents many choice points. In
the following, we investigate various axes individu-
ally. We present our findings as BLEU-to-time plots,
where the tradeoffs were generated by varying the
complexity and the number of coarse passes, as well
as the pruning thresholds and beam sizes. Unless
otherwise noted, the experiments are on Spanish-
English using trigram language models. When
different decoder settings are applied to the same
model, MERT weights (Och, 2003) from the unpro-
jected single pass setup are used and are kept con-
stant across runs. In particular, the same MERT
weights are used for all coarse passes; note that this
slightly disadvantages the multipass runs, which use
MERT weights optimized for the single pass de-
coder.

5.1 Clustering

In section Section 4, HMM clustering and JCluster-
ing gave lower perplexities than frequency and ran-
dom clustering when using the same number of bits
for encoding the language model. To test how these

 28

 28.2

 28.4

 28.6

 28.8

 29

 29.2

 29.4

 29.6

 100 1000 10000 100000

B
L

E
U

Total time in seconds

Encoding+Order
Order

Encoding
Single pass

Figure 8: A combination of order-based and encoding-
based coarse-to-fine decoding yields the best results.

models perform at pruning, we ran our decoder sev-
eral times, varying only the clustering source. In
each case, we used a 2-bit trigram model as a sin-
gle coarse pass, followed by a fine output pass. Fig-
ure 6 shows that we can obtain significant improve-
ments over the single-pass baseline regardless of the
clustering. To no great surprise, HMM clustering
and JClustering yield better results, giving a 30-fold
speed-up at the same accuracy, or improvements of
about 0.3 BLEU when given the same time as the
single pass decoder. We discuss this increase in ac-
curacy over the baseline in Section 5.5. Since the
performance differences between those two cluster-
ing algorithms are negligible, we will use the sim-
pler HMM clustering in all subsequent experiments.

5.2 Spacing

Given a hierarchy of coarse language models, all
trigam for the moment, we need to decide on the
number of passes and the granularity of the coarse
language models used in each pass. Figure 7 shows
how decoding time varies for different multipass
schemes to achieve the same translation quality.
A single coarse pass with a 4-bit language model
cuts decoding time almost in half. However, one
can further cut decoding time by starting with even
coarser language models. In fact, the best results
are achieved by decoding in sequence with 1-, 2-
and 3-bit language models before running the final
fine trigram pass. Interestingly, in this setting, each
pass takes about the same amount of time. A simi-
lar observation was reported in the parsing literature,
where coarse-to-fine inference with multiple passes

 28

 28.2

 28.4

 28.6

 28.8

 29

 29.2

 29.4

 29.6

 100 1000 10000

B
L

E
U

Total time in seconds

Spanish

Coarse-To-Fine
Fine Baseline

 28

 28.2

 28.4

 28.6

 28.8

 29

 29.2

 29.4

 100 1000 10000

B
L

E
U

Total time in seconds

French

Coarse-To-Fine

Fine Baseline
 22

 22.5

 23

 23.5

 24

 100 1000 10000

B
L

E
U

Total time in seconds

German

Coarse-To-Fine

Fine Baseline

Figure 9: Coarse-to-fine decoding is faster than single pass decoding with a trigram language model and leads to better
BLEU scores on all language pairs and for all parameter settings.

of roughly equal complexity produces tremendous
speed-ups (Petrov and Klein, 2007).

5.3 Encoding vs. Order

As described in Section 2, the language model com-
plexity can be reduced either by decreasing the vo-
cabulary size (encoding-based projection) or by low-
ering the language model order from trigram to bi-
gram (order-based projection). Figure 7 shows that
both approaches alone yield comparable improve-
ments over the single pass baseline. Fortunately,
the two approaches are complimentary, allowing us
to obtain further improvements by combining both.
We found it best to first do a series of coarse bigram
passes, followed by a fine bigram pass, followed by
a fine trigram pass.

5.4 Final Results

Figure 9 compares our multipass coarse-to-fine de-
coder using language refinement to single pass de-
coding on three different languages. On each lan-
guage we get significant improvements in terms of
efficiency as well as accuracy. Overall, we can
achieve up to 50-fold speed-ups at the same accu-
racy, or alternatively, improvements of 0.4 BLEU
points over the best single pass run.

In absolute terms, our decoder translates on aver-
age about two Spanish sentences per second at the
highest accuracy setting.5 This compares favorably
to the Moses decoder (Koehn et al., 2007), which
takes almost three seconds per sentence.

5Of course, the time for an average sentence is much lower,
since long sentences dominate the overall translation time.

5.5 Search Error Analysis

In multipass coarse-to-fine decoding, we noticed
that in addition to computational savings, BLEU
scores tend to improve. A first hypothesis is
that coarse-to-fine decoding simply improves search
quality, where fewer good items fall off the beam
compared to a simple fine pass. However, this hy-
pothesis turns out to be incorrect. Table 1 shows
the percentage of test sentences for which the BLEU
score or log-likelihood changes when we switch
from single pass decoding to coarse-to-fine multi-
pass decoding. Only about 30% of the sentences
get translated in the same way (if much faster) with
coarse-to-fine decoding. For the rest, coarse-to-fine
decoding mostly finds translations with lower likeli-
hood, but higher BLEU score, than single pass de-
coding.6 An increase of the underlying objectives of
interest when pruning despite an increase in model-
score search errors has also been observed in mono-
lingual coarse-to-fine syntactic parsing (Charniak et
al., 1998; Petrov and Klein, 2007). This effect may
be because coarse-to-fine approximates certain min-
imum Bayes risk objective. It may also be an effect
of model intersection between the various passes’
models. In any case, both possibilities are often per-
fectly desirable. It is also worth noting that the num-
ber of search errors incurred in the coarse-to-fine
approach can be dramatically reduced (at the cost
of decoding time) by increasing the pruning thresh-
olds. However, the fortuitous nature of coarse-to-
fine search errors seems to be a substantial and de-
sirable effect.

6We compared the influence of multipass decoding on the
TM score and the LM score; both decrease.

LL
> = <

B
L

E
U > 3.6% - 26.3%

= 1.5% 29.6 % 12.9 %
< 2.2% - 24.1%

Table 1: Percentage of sentences for which the BLEU
score/log-likelihood improves/drops during coarse-to-
fine decoding (compared to single pass decoding).

6 Conclusions

We have presented a coarse-to-fine syntactic de-
coder which utilizes a novel encoding-based lan-
guage projection in conjunction with order-based
projections to achieve substantial speed-ups. Un-
like A* methods, a posterior pruning approach al-
lows multiple passes, which we found to be very
beneficial for total decoding time. When aggres-
sively pruned, coarse-to-fine decoding can incur ad-
ditional search errors, but we found those errors to
be fortuitous more often than harmful. Our frame-
work applies equally well to other translation sys-
tems, though of course interesting new challenges
arise when, for example, the underlying SCFGs be-
come more complex.

Acknowledgments

This work was supported by the National Science
Foundation (NSF) under grant IIS-0643742.

References
E. Bingham and H.i Mannila. 2001. Random projection

in dimensionality reduction: applications to image and
text data. In KDD ’01.

P. Brown, V. Della Pietra, P. deSouza, J. Lai, and R. Mer-
cer. 1992. Class-based n-gram models of natural lan-
guage. Computational Linguistics.

E. Charniak, S. Goldwater, and M. Johnson. 1998. Edge-
based best-first chart parsing. 6th Workshop on Very
Large Corpora.

E. Charniak, M. Johnson, D. McClosky, et al. 2006.
Multi-level coarse-to-fine PCFG Parsing. In HLT-
NAACL ’06.

D. Chiang. 2005. A hierarchical phrase-based model for
statistical machine translation. In ACL ’05.

J. Goodman. 1997. Global thresholding and multiple-
pass parsing. In EMNLP ’97.

J. Goodman. 2001. A bit of progress in language model-
ing. Technical report, Microsoft Research.

A. Haghighi, J. DeNero, and D. Klein. 2007. A* search
via approximate factoring. In NAACL ’07.

L. Huang and D. Chiang. 2007. Forest rescoring: Faster
decoding with integrated language models. In ACL
’07.

D. Klein and C. Manning. 2003. A* parsing: fast exact
viterbi parse selection. In NAACL ’03.

P. Koehn, H. Hoang, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In ACL ’07.

P. Koehn. 2005. Europarl: A parallel corpus for statisti-
cal machine translation. In MT Summit.

I. D. Melamed. 2004. Statistical machine translation by
parsing. In ACL ’04.

F. Och. 2003. Minimum error rate training in statistical
machine translation. In ACL ’03.

S. Petrov and D. Klein. 2007. Improved inference for
unlexicalized parsing. In HLT-NAACL ’07.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006.
Learning accurate, compact, and interpretable tree an-
notation. In ACL ’06.

A. Stolcke. 2002. SRILM – an extensible language mod-
eling toolkit. In ICSLP ’02.

A. Venugopal, A. Zollmann, and S. Vogel. 2007. An ef-
ficient two-pass approach to synchronous-CFG driven
statistical MT. In HLT-NAACL ’07.

D. Wu. 1996. A polynomial-time algorithm for statisti-
cal machine translation. In ACL ’96.

D. Wu. 1997. Stochastic inversion transduction gram-
mars and bilingual parsing of parallel corpora. In
Computational Linguistics.

R. Zens and H. Ney. 2003. A comparative study on re-
ordering constraints in statistical machine translation.
In ACL ’03.

H. Zhang and D. Gildea. 2008. Efficient multi-pass
decoding for synchronous context free grammars. In
ACL ’08.

