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For example, on POS tagging using HMMs:
Unsupervised using EM = 60%

Supervised > 90%
Why does EM fail?
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Problem: model likelihood 45 prediction accuracy

PCFG (EM starting from supervised parameter estimate):
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What qualitative changes is EM making?
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Migrations

For the HMM:

DT NN NN RB VBD NNS
The chief executive allegedly made contributions

'

DT JJ NN RB VBN NNS
The chief executive allegedly made contributions

Summarize changes by a set of migrations:

NN—NN VBD—made
JJ—NN VBN—made

What are the prominent migrations over the entire corpora?
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Top HMM migrations

Iteration 1
START PMNAN Sentence-initial nouns are often proper
NNP START Revenue/NN/NNP rose
— NN Noun adjuncts — adjectives (inconsistent gold tags)
JJ chief/NN/JJ executive/NN officer
NNP NN Inconsistent gold tags
NNPS UBS Securities/NNP/NNPS
Iteration 2
ﬁtN — NN (same as above)
NN
START — NNP (same as above)
H Inconsistent gold tags

RB =10 contribute much/JJ/RB to
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Migrations less clear due to uncertainty in tree structure...

Our approach: use a meta-model
e Migrations are hidden alignments to be learned

e Fit using EM (convex, similar to IBM model 1)
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Top PCFG migrations learned by meta-model

Iteration 1

Sentential adverbs — VP adverbs

‘ PPs raised from NPs to verbal level

‘ - Right-branching — left-branching structures

| PP raised to higher VP




Meta-modeling summary

e Meta-model: a diagnostic tool to analyze errors systematically



Meta-modeling summary
e Meta-model: a diagnostic tool to analyze errors systematically

e General phenomenon: regularization of syntactic structure



Meta-modeling summary
e Meta-model: a diagnostic tool to analyze errors systematically

e General phenomenon: regularization of syntactic structure

v/ Approximation error
|dentifiability error
Estimation error
Optimization error




|dentifiability error

X: Input sentence
y: hidden output
po(X,y): joint distribution with parameters 6

10



|dentifiability error

X: Input sentence
y: hidden output
po(X,y): joint distribution with parameters 6

Non-identifiability:

10



|dentifiability error

X: Input sentence
y: hidden output
po(X,y): joint distribution with parameters 6

Non-identifiability:

Learning is indifferent... Po, (%)

10



|dentifiability error

X: Input sentence
y: hidden output
po(X,y): joint distribution with parameters 6

Non-identifiability:

Learning is indifferent... Po, (%)

but matters to prediction (bad!)  pg, (¥ | x)

— Do, (X)
? 0,
#  po,(¥ | %)
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e Label symmetries

@O@ and w both generate abababab...
l l ! }

d

o K-state HMM (if true distribution is < K-state HMM)

@O@ and @m both generate abababab...

| | | ) )
a b a b a

e PCFG (if true distribution is HMM)

% and ﬁi@@ can both simulate the HMM

Real data is complex, so last two are not an issue
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Optimization error decreases with more data

On HMM model (similar for PCFG and a dependency model):
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Why does this phenomenon happen?

e Intuition: with more data, EM can pick up the
salient patterns more easily

e Was also shown for mixture of Gaussians [Srebro, 2006]
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