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For example, on POS tagging using HMMs:

Unsupervised using EM u 60%
Supervised ≥ 90%

Why does EM fail?
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Four types of errors:

Optimization error
Local optima

Estimation error
Limited data

Approximation error
Likelihood objective 6⇔ accuracy

Identifiability error
Different parameter settings → same objective
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What qualitative changes is EM making?
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Migrations
For the HMM:

Truth
DT NN NN RB VBD NNS
The chief executive allegedly made contributions

Iteration 1
DT JJ NN RB VBN NNS
The chief executive allegedly made contributions

Summarize changes by a set of migrations:

NN→NN VBD→made

JJ→NN VBN→made

What are the prominent migrations over the entire corpora?
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Top HMM migrations
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Top HMM migrations

Iteration 1

START
NN
NNP

Sentence-initial nouns are often proper
START Revenue/NN/NNP rose

NN
JJ

NN
Noun adjuncts → adjectives (inconsistent gold tags)

chief/NN/JJ executive/NN officer

NNP
NNP
NNPS

Inconsistent gold tags
UBS Securities/NNP/NNPS

Iteration 2
NN
JJ

NN (same as above)

START
NN
NNP

(same as above)

JJ
RB

TO
Inconsistent gold tags

contribute much/JJ/RB to
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an element

PP

of make-work

VP→VBZ NP VP→VP PP

Migrations less clear due to uncertainty in tree structure...

Our approach: use a meta-model
•Migrations are hidden alignments to be learned

• Fit using EM (convex, similar to IBM model 1)
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Top PCFG migrations learned by meta-model

Iteration 1

RB VP
S

RB VP
VP

Sentential adverbs → VP adverbs

NP PP
NP

VP PP
VP

PPs raised from NPs to verbal level

Iteration 2

NNP NP
NP

NNP NNP
NP

Right-branching → left-branching structures

VBN PP
VP

VP PP
VP

PP raised to higher VP
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pθ(x,y): joint distribution with parameters θ
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Identifiability error

x: input sentence

y: hidden output

pθ(x,y): joint distribution with parameters θ

Non-identifiability:

Learning is indifferent... pθ1(x) = pθ2(x)

θ1 ? θ2

but matters to prediction (bad!) pθ1(y | x) 6= pθ2(y | x)
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Examples of non-identifiability

• Label symmetries
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Examples of non-identifiability

• Label symmetries

1 2

a b

and 2 1

a b

both generate abababab...

• K-state HMM (if true distribution is < K-state HMM)

1 2

a b

and 1 2 3

a b a

both generate abababab...

• PCFG (if true distribution is HMM)
and can both simulate the HMM

Real data is complex, so last two are not an issue
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• Can we recover θ∗ using EM?
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• Take some parameters θ∗ (say, supervised estimate on real data)

• Use θ∗ to generate synthetic data

• Can we recover θ∗ using EM? No?

θ∗ estimation
error global optimum optimization
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Optimization error decreases with more data

On HMM model (similar for PCFG and a dependency model):
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Why does this phenomenon happen?

• Intuition: with more data, EM can pick up the
salient patterns more easily

• Was also shown for mixture of Gaussians [Srebro, 2006]
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Summary

Approximation error
Meta-model: tool for systematic error analysis

Identifiability error
Distance robust to label symmetries

Estimation error
Decreases with more data

Optimization error
Decreases with more data!
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