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Problem: learning complex hidden-variable models
Traditional solution: approximate EM

one intractable model
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Our solution: product EM (train submodels to agree)

two tractable submodels
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Applications: unsupervised NLP, phylogenetic HMMs

1 minute summary

Phylogenetic HMMs
Goal: model both nucleotide mutations across species and
dependencies between adjacent sites
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Computational challenge: doing inference in a loopy graph
Agreement-based solution:

Break up model into the red part and the green part

Unsupervised word alignment
Goal: learn to output a matching between two sequences by
modeling the translation process of words between a pair of
sentences

Computational challenge: enumerating all matchings
Agreement-based solution:

Two complementary HMM alignment models [Vogel, 1996]:
the railroad term is “ demand loading ”

le terme ferroviaire est “ chargement sur demande ”

le terme ferroviaire est “ chargement sur demande ”

the railroad term is “ demand loading ”

Motivating applications

Setup:
M submodels {pm(x, z; θm) : m = 1, . . . ,M}

Objective function:

Oagree(θ) def= log
∑

z

∏
m

pm(x, z; θm)

Interpretation:
Each submodel m independently generates (xm, zm)

θ1

z1 x1

· · ·
θM

zM xM

Oagree(θ) = p(x1 = · · · = xM = x, z1 = · · · = zM ; θ)

Algorithm:
Introduce auxiliary q, use Jensen’s inequality:

Oagree ≥ L(θ, q) def=
∑
m

Eq log pm(x, z; θm) +H(q)

E-step: q(z) ∝
∏
m pm(x, z; θm)

M-step: θm = argmaxθ′m Eq log p(x, z; θ′m)
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Properties:
• E-step couples submodels: could be intractable

•M-step decomposes into M tractable steps

Product EM

Assume submodels are in exponential family:

pm(x, z; θm) = exp
{
θTm
(
φXm(x)φZ(z)

)
−Am(θm)

}
for x ∈ X , z ∈ Zm and 0 otherwise

Reformulation of Product EM:

Aggregate parameters: b =
∑
m bm, bm = φXm(x)Tθm

E-step: compute expected sufficient statistics

µ = E(b,∩mZm) def= Eq(z;b)φZ(z) with support ∩mZm
M-step: set θm to match moments φXm(x)µ

Exponential family formulation

Two sources of intractability in the E-step:
• Domain Z = ∩mZm is unwieldy (e.g., matchings)

• Parameters b result in high tree-width graph

New objective function:
• A function of sufficient statistics µm and parameters θm for

each submodel m = 1, . . . ,M
• See paper for some preliminary bounds

Algorithm:

Aggregate parameters: b =
∑
m bm

E-step: compute statistics µm = E(b′,Z ′)
Aggregate statistics: µ̄ = 1

M

∑
m µm

M-step: set θm to match moments φXm(x)µ̄
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Choices for E-steps:
• Domain-approximate product EM: b′ = b,Z ′ = Zm

(used for word alignment)

• Parameter-approximate product EM: b = Mbm,Z ′ = Z
(used for phylogenetic HMMs)

Properties:
• E-step decomposes into M tractable steps now

•M-step decomposes into M tractable steps as in product EM

Approximate product EM

• Phylogenetic HMMs: agreement-based learning yields faster
convergence

• Unsupervised word alignment: agreement-based learning
yields best published results
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