
Probabilistic Grammars and Hierarchical Dirichlet Processes

Percy Liang∗, Michael I. Jordan∗†, Dan Klein∗

University of California at Berkeley

November 8, 2009

Chapter ? of

The Handbook of Applied Bayesian Analysis

Eds: Tony O’Hagan & Mike West
Oxford University Press

Abstract

Probabilistic context-free grammars (PCFGs) have played an important role in the model-
ing of syntax in natural language processing and other applications, but choosing the proper
model complexity is often difficult. We present a nonparametric Bayesian generalization of the
PCFG based on the hierarchical Dirichlet process (HDP). In our HDP-PCFG model, the effective
complexity of the grammar can grow with increasing data. We describe an efficient variational
inference algorithm for our model and present experiments on both a synthetic grammar induc-
tion task and a large-scale natural language parsing task.

Keywords: natural language processing, nonparametric Bayesian statistics, variational inference

∗Computer Science Division, EECS Department, University of California at Berkeley, Berkeley CA 94720
†Department of Statistics, University of California at Berkeley, Berkeley CA 94720

1

1 Introduction

The field of natural language processing (NLP) aims to develop algorithms that allow computers
to understand and generate natural language. The field emerged from computational linguistics,
a field whose early history was shaped in part by a rejection of statistical approaches to language,
where “statistical” at the time generally referred to simplistic Markovian models on observed se-
quences of words. Despite this unfavorable historical context, statistical approaches to NLP have
been in ascendancy over the past decade (Manning and Schütze, 1999), driven in part by the avail-
ability of large corpora of text and other linguistic resources on the Internet, and driven in part by a
growth in sophistication among NLP researchers regarding the scope of statistical modeling, partic-
ularly latent-variable modeling. The phenomenon of language itself is also responsible: language
is replete with ambiguity, so it is inevitable that formal inferential methods should play a significant
role in managing this ambiguity.

The majority of the work in statistical NLP has been non-Bayesian, but there is reason to be-
lieve that this is a historical accident. Indeed, despite the large corpora, sparse data problems
abound to which hierarchical Bayesian methods seem well suited. Also, the conditional perspec-
tive of Bayesian statistics seems particularly appropriate for natural language—conditioning on the
current sentence and the current context can provide precise inference despite the high degree of
ambiguity.

In the current chapter, we discuss a Bayesian approach to the problem of syntactic parsing and
the underlying problems of grammar induction and grammar refinement. The central object of
study is the parse tree, an example of which is shown in Figure 1. A substantial amount of the
syntactic structure and relational semantics of natural language sentences can be described using
parse trees. These trees play a central role in a range of activities in modern NLP, including machine
translation (Galley et al., 2004), semantic role extraction (Gildea and Jurafsky, 2002), and question
answering (Hermjakob, 2001), just to name a few. From a statistical perspective, parse trees are an
extremely rich class of objects, and our approach to capturing this class probabilistically will be to
make use of tools from nonparametric Bayesian statistics.

Sentence

Noun-Phrase

Pronoun

They

Verb-Phrase

Verb

solved

Noun-Phrase

Determiner

the

Noun

problem

Prepositional-Phrase

Preposition

with

Noun-Phrase

Proper-Noun

Bayesian

Plural-Noun

statistics

Figure 1: A parse tree for the sentence They solved the problem with Bayesian statistics.

It seems reasonable enough to model parse trees using context-free grammars (CFGs); indeed,
this goal was the original motivation behind the development of the CFG formalism (Chomsky,
1956), and it remains a major focus of research on parsing to this day. Early work on NLP parsing
concentrated on efficient algorithms for computing the set of all parses for a sentence under a
given CFG. Unfortunately, as we have alluded to, natural language is highly ambiguous. In fact,
the number of parses for a sentence grows exponentially with its length. As a result, systems which
enumerated all possibilities were not useful in practice. Modern work on parsing has therefore
turned to probabilistic models which place distributions over parse trees and probabilistic inference
methods which focus on likely trees (Lari and Young, 1990).

The workhorse model family for probabilistic parsing is the family of probabilistic context-free

grammars (PCFGs),1 which are probabilistic generalizations of CFGs and structural generalizations
of hidden Markov models (HMMs). A PCFG (described formally in Section 1.1) is a branching
process in which nodes iteratively rewrite from top to bottom, eventually terminating in dedicated
lexical items, i.e., words. Each node is rewritten independently according to a multinomial distribu-
tion specific to that node’s symbol. For example, a noun phrase frequently rewrites as a determiner
followed by a noun (e.g., the problem).

Early work focused on grammar induction (also known as grammatical inference): estimating
grammars directly from raw sentences without any other type of supervision (Carroll and Charniak,
1992). Grammar induction is an important scientific problem connecting cognitive science, linguis-
tics, statistics, and even philosophy. A successful grammar induction system would have important
implications for human language learning, and it would also be a valuable asset for being able to
parse sentences with little human effort. However, a combination of model misspecification and
local optima issues with the EM algorithm stymied these initial attempts. It turned out that it was
necessary to impose more constraints on the tree structure (Pereira and Shabes, 1992).

Only with the advent of treebanks (Marcus et al., 1993)—hand-labeled collections of parse
trees—were NLP researchers able to develop the first successful broad-coverage natural language
parsers, but it still took a decade before the performance of the best parsers started to level off. In
this supervised setting, maximum likelihood estimates for PCFGs have a simple closed-form solu-
tion: the rule probabilities of the PCFG are proportional to the counts of the associated grammar
productions across all of the trees in the treebank (Charniak, 1996). However, such statistical gram-
mars do not perform well for parsing. The problem is that treebanks contain only a handful of very
coarse symbols, such as NP (noun phrase) and VP (verb phrase), so the conditional independences
assumed by the PCFG over these coarse symbols are unrealistic. The true syntactic process is vastly
more complex. For example, noun phrases can be subjects or objects, singular or plural, definite or
indefinite, and so on. Similarly, verb phrases can be active or passive, transitive or intransitive, past
or present, and so on. For a PCFG to adequately capture the true syntactic process, finer-grained
grammar symbols are required. Much of the past decade of NLP parsing work can be seen as trying
to optimally learn such fine-grained grammars from coarse treebanks.

Grammars can be refined in many ways. Some refinements are syntactically motivated. For
example, if we augment each symbol with the symbol of its parent in the tree, we get symbols
such as NP-VP, which represents direct object noun phrases, distinct from NP-S, which represents
subject ones. This strategy is called parent annotation (Johnson, 1998) and can be extended (Klein
and Manning, 2003). For the parse tree in Figure 1, if each node’s symbol is augmented with the
symbols of its parent and grandparent, a maximum likelihood grammar would only allow they to
be produced under a noun phrase in subject position, disallowing ungrammatical sentences such
as *The problem solved they with Bayesian statistics.

Other refinements are semantically motivated. In many linguistic theories, each phrase is iden-
tified with a head word, which characterizes many of the important properties of the phrase. By
augmenting the symbol of each node with the head word of the phrase under that node, we allow
some degree of semantic plausibility to be captured by the parse tree. This process is called lex-
icalization, and was the basis for the first generation of practical treebank parsers (Collins, 1999;
Charniak, 2000). Consider the sentence in Figure 1. It is actually ambiguous: did they use Bayesian
statistics to solve the problem at hand (A) or did Bayesian statistics itself have a fundamental flaw
which they resolved (B)? Though both are perfectly valid syntactically, (B) is implausible semanti-
cally, and we would like our model to prefer (A) over (B). If we lexicalize the verb phrase with solved
(replace VP with VP-solved) and the preposition phrase with statistics (replace PP with PP-statistics),2

we allow semantics to interact through the tree, yielding a better model of language that could pre-

1Also known as stochastic context-free grammars (SCFGs).
2According to standard NLP head conventions, the preposition with would be the head word of a prepositional phrase,

but here we use a non-standard alternative to focus on the semantic properties of the phrase.

fer (A) over (B). Lexicalization produces a very rich model at the cost of multiplying the number of
parameters by millions. In order to cope with the resulting problems of high-dimensionality, elab-
orate smoothing and parameter-tying methods were employed (Collins, 1999; Charniak, 2000), a
recurrent theme in NLP.

Both parent annotation and lexicalization kept the grammar learning problem fully observed:
Given the coarse trees in the treebank, the potential uncertainty resides in the choice of head
words or parents, and these were typically propagated up the tree in deterministic ways. The only
inferential problem remaining was to fit the grammar parameters, which reduces (in the point
estimation setting generally adopted in statistical NLP) to counting and smoothing.

More recently, latent-variable models have been successfully employed for automatically refin-
ing treebank grammars (Matsuzaki et al., 2005; Petrov et al., 2006). In such approaches, each
symbol is augmented with a latent cluster indicator variable and the marginal likelihood of the
model is optimized. Rather than manually specifying the refinements, these latent-variable mod-
els let the data speak, and, empirically, the resulting refinements turn out to encode a mixture of
syntactic and semantic information not captured by the coarse treebank symbols. The latent clus-
ters allow for the modeling of long-range dependencies while keeping the number of parameters
modest.

In this chapter, we address a fundamental question which underlies all of the previous work
on parsing: what priors over PCFGs are appropriate? In particular, we know that we must trade
off grammar complexity (the number of grammar symbols) against the amount of data present.
As we get more data, more of the underlying grammatical processes can be adequately modeled.
Past approaches to complexity control have considered minimum description length (Stolcke and
Omohundro, 1994) and procedures for growing the grammar size heuristically (Petrov et al., 2006).
While these procedures can be quite effective, we would like to pursue a nonparametric Bayesian
approach to PCFGs so that we can state our assumptions about the problem of grammar growth
in a coherent way. In particular, we define a nonparametric prior over PCFGs which allocates
an unbounded number of symbols to the grammar through a Dirichlet process (Ferguson, 1973,
1974), then shares those symbols throughout the grammar using a Bayesian hierarchy of Dirichlet
processes (Teh et al., 2006). We call the resulting model a hierarchical Dirichlet process probabilistic
context-free grammar (HDP-PCFG). In this chapter, we present the formal probabilistic specification
of the HDP-PCFG, algorithms for posterior inference under the HDP-PCFG, and experiments on
grammar learning from large-scale corpora.

1.1 Probabilistic Context-Free Grammars (PCFGs)

Our HDP-PCFG model is based on probabilistic context-free grammars (PCFGs), which have been a
core modeling technique for many aspects of syntactic structure (Charniak, 1996; Collins, 1999) as
well as for problems in domains outside of natural language processing, including computer vision
(Zhu and Mumford, 2006) and computational biology (Sakakibara, 2005; Dyrka and Nebel, 2007).

Formally, a PCFG is specified by the following:

• a set of terminal symbols Σ (the words in the sentence),

• a set of nonterminal symbols S,

• a designated root nonterminal symbol ROOT ∈ S, and

• rule probabilities φ = (φs(γ) : s ∈ S, γ ∈ Σ ∪ (S × S)) with φs(γ) ≥ 0 and
∑

γ φs(γ) = 1.

We restrict ourselves to rules s → γ that produce a right-hand side γ which is either a single
terminal symbol (γ ∈ Σ) or a pair of nonterminal symbols (γ ∈ S×S). Such a PCFG is said to be in
Chomsky normal form. The restriction to Chomsky normal form is made without loss of generality;

it is straightforward to convert a rule with multiple children into a structure (e.g., a right-branching
chain) in which each rule has at most two children.

A PCFG defines a distribution over sentences and parse trees via the following generative pro-
cess: start at a root node with s = ROOT and choose to apply rule s → γ with probability φs(γ); γ
specifies the symbols of the children. For children with nonterminal symbols, recursively generate
their subtrees. The process stops when all the leaves of the tree are terminals. Call the sequence
of terminals the yield. More formally, a parse tree has a set of nonterminal nodes N along with the
symbols corresponding to these nodes s = (si ∈ S : i ∈ N). Let NE denote the nodes having one
terminal child and NB denote the nodes having two nonterminal children. The tree structure is
represented by c = (cj(i) : i ∈ NB, j = 1, 2), where cj(i) ∈ N is the j-th child node of i from left to
right. Let z = (N, s, c) denote the parse tree and x = (xi : i ∈ NE) denote the yield.

The joint probability of a parse tree z and its yield x is given by

p(x, z|φ) =
∏
i∈NB

φsi

(
sc1(i), sc2(i)

) ∏
i∈NE

φsi(xi). (1)

PCFGs are similar to hidden Markov models (HMMs) and these similarities will guide our de-
velopment of the HDP-PCFG. It is important to note at the outset, however, an important qualitative
difference between HMMs and PCFGs. While the HMM can be represented as a graphical model
(a Markovian graph in which the pattern of missing edges corresponds to assertions of conditional
independence), the PCFG cannot. Conditioned on the structure of the parse tree (N, c), we have
a graphical model over the symbols s, but the structure itself is a random object—we must run an
algorithm to compute a probability distribution over these structures. As in the case of the forward-
backward algorithm for HMMs, this algorithm is an efficient dynamic programming algorithm—it
is referred to as the “inside-outside algorithm” and it runs in time cubic in length of the yield (Lari
and Young, 1990). The inside-outside algorithm will play an important role in the inner loop of
our posterior inference algorithm for the HDP-PCFG. Indeed, we will find it essential to design our
model such that it can exploit the inside-outside algorithm.

Traditionally, PCFGs are defined with a fixed, finite number of nonterminals S, where the pa-
rameters φ are fit using (smoothed) maximum likelihood. The focus of this chapter is on developing
a nonparametric version of the PCFG which allows S to be countably infinite and which performs
approximate posterior inference over the set of nonterminal symbols and the set of parse trees. To
define the HDP-PCFG and develop effective posterior inference algorithms for the HDP-PCFG, we
need to bring several ingredients together—most notably the ability to generate new symbols and
to tie together multiple usages of the same symbol on a parse tree (provided by the HDP), and
the ability to efficiently compute probability distributions over parse trees (provided by the PCFG).
Thus, the HDP-PCFG is a nonparametric Bayesian generalization of the PCFG, but it can also be
viewed as a generalization along the Chomsky hierarchy, taking a nonparametric Markovian model
(the HDP-HMM) to a nonparametric probabilistic grammar (the HDP-PCFG).

The rest of this chapter is organized as follows. Section 2 provides the probabilistic specifi-
cation of the HDP-PCFG for grammar induction, and Section 3 extends this specification to an
architecture appropriate for grammar refinement (the HDP-PCFG-GR). Section 4 describes an effi-
cient variational method for approximate Bayesian inference in these models. Section 5 presents
experiments: using the HDP-PCFG to induce a small grammar from raw text, and using the HDP-
PCFG-GR to parse the Wall Street Journal, a standard large-scale dataset. For supplementary in-
formation, see the appendix, where we review DP-based models related to and leading up to the
HDP-PCFG (Appendix A.1), discuss general issues related to approximate inference for these types
of models (Appendix A.2), and provide some empirical intuition regarding the interaction between
model and inference (Appendix A.3). The details of the variational inference algorithm are given
in Appendix B.

HDP-PCFG

β ∼ GEM(α) [draw top-level symbol probabilities]
For each grammar symbol z ∈ {1, 2, . . . }:
−φT

z ∼ Dir(αT) [draw rule type parameters]
−φE

z ∼ Dir(αE) [draw emission parameters]
−φB

z ∼ DP(αB , ββ>) [draw binary production parameters]

For each node i in the parse tree:
−ti ∼ Mult(φT

zi
) [choose rule type]

−If ti = EMISSION:
−−xi ∼ Mult(φE

zi
) [emit terminal symbol]

−If ti = BINARY-PRODUCTION:
−−(zc1(i), zc2(i)) ∼ Mult(φB

zi
) [generate child symbols]

β

φB
z

φT
z

φE
z

z ∞

z1

z2

x2

z3

x3

Figure 2: The probabilistic specification of the HDP-PCFG. We also present a graphical represen-
tation of the model. Drawing this graphical model assumes that the parse is known, which is not
our assumption, so this representation should be viewed as simply suggestive of the HDP-PCFG.
In particular, we show a simple fixed tree in which node z1 has two children (z2 and z3), each of
which has one observed terminal child.

2 The Hierarchical Dirichlet Process PCFG (HDP-PCFG)

At the core of the HDP-PCFG sits the Dirichlet process (DP) mixture model (Antoniak, 1974), a
building block for a wide variety of nonparametric Bayesian models. The DP mixture model cap-
tures the basic notion of clustering which underlies symbol formation in the HDP-PCFG. From
there, the HDP-PCFG involves several structural extensions of the DP mixture model. As a first
stepping stone, consider hidden Markov models (HMMs), a dynamic generalization of mixture
models, where clusters are linked structurally according to a Markov chain. To turn the HMM into
a nonparametric Bayesian model, we use the hierarchical Dirichlet process (HDP), yielding the
HDP-HMM, an HMM with a countably infinite state space. The HDP-PCFG differs from the HDP-
HMM in that, roughly speaking, the HDP-HMM is a chain-structured model while HDP-PCFG is a
tree-structured model. But it is important to remember that the tree structure in the HDP-PCFG is
a random object over which inferences must be made. Another distinction is that rules can rewrite
to two nonterminal symbols jointly. For this, we need to define DPs with base measures which
are products of DPs, thereby adding another degree of complexity to the HDP machinery. For a
gradual introduction, see Appendix A.1, where we walk through the intermediate steps leading
up to the HDP-PCFG—the Bayesian finite mixture model (Appendix A.1.1), the DP mixture model
(Appendix A.1.2), and the HDP-HMM (Appendix A.1.3).

2.1 Model definition

Figure 2 defines the generative process for the HDP-PCFG, which consists of two stages: we first
generate the grammar (which includes the rule probabilities) specified by (β, φ); then we generate
a parse tree and its yield (z, x) using that grammar. To generate the grammar, we first draw a count-
ably infinite set of stick-breaking probabilities, β ∼ GEM(α), which provides us with a base distribu-
tion over grammar symbols, represented by the positive integers (Figure 3(a); see Appendix A.1.2
for a formal definition of the stick-breaking distribution). Next, for each symbol z = 1, 2, . . . , we
generate the probabilities of the rules of the form z → γ, i.e., those which condition on z as the
left-hand side. The emission probabilities φEz are drawn from a Dirichlet distribution, and provide
multinomial distributions over terminal symbols Σ. For the binary production probabilities, we

(a) β ∼ GEM(α)
1 2 3 4 5 6

· · ·

(b) ββ>

left child

right child

(c) φB
z ∼ DP(αB , ββ>)

left child

right child

Figure 3: The generation of binary production probabilities given the top-level symbol probabilities
β. First, β is drawn from the stick-breaking prior, as in any DP-based model (a). Next, the outer-
product ββ> is formed, resulting in a doubly-infinite matrix (b). We use this as the base distribution
for generating the binary production distribution from a DP centered on ββ> (c).

first form the product distribution ββ> (Figure 3(b)), represented as a doubly-infinite matrix. The
binary production probabilities φBz are then drawn from a Dirichlet process with base distribution
ββ>—this provides multinomial distributions over pairs of nonterminal symbols (Figure 3(c)). The
Bayesian hierarchy ties these distributions together through the base distribution over symbols, so
that the grammar effectively has a globally shared inventory of symbols. Note that the HDP-PCFG
hierarchy ties distributions over symbol pairs via distributions over single symbols, in contrast to
the hierarchy in the standard HDP-HMM, where the distributions being tied are defined over the
same space as that of the base distribution. Finally, we generate a “switching” distribution φTz over
the two rule types {EMISSION, BINARY-PRODUCTION} from a symmetric Dirichlet. The shapes of all
the Dirichlet distributions and the Dirichlet processes in our models are governed by concentration
hyperparameters: α, αT , αB, αE .

Given a grammar, we generate a parse tree and sentence in the same manner as for an ordinary
PCFG: start with the root node having the designated root symbol. For each nonterminal node i,
we first choose a rule type ti using φTzi

and then choose a rule with that type—either an emission
from Mult(φEzi

) producing xi or a binary production from Mult(φTzi
) producing

(
zc1(i), zc2(i)

)
. We

recursively apply the procedure on any nonterminal children.

2.2 Partitioning the preterminal and constituent symbols

It is common to partition nonterminal grammar symbols into those that emit only terminals (preter-
minal symbols) and those that produce only two child grammar symbols (constituent symbols). An
easy way to accomplish this is to let αT = (0, 0). The resulting Dir(0, 0) prior on the rule type prob-
abilities forces any draw φTz ∼ Dir(αT) to put mass on only one rule type. Despite the simplicity
of this approach, is not suitable for our inference method, so let us make the partitioning more
explicit.

Define two disjoint inventories, one for preterminal symbols (βP ∼ GEM(α)) and one for con-
stituent symbols (βC ∼ GEM(α)). Then, we can define the following four rule types: preterminal-
preterminal productions with rule probabilities φPPz ∼ DP

(
αPP , βP (βP)>

)
, preterminal-constituent

productions with φPCz ∼ DP
(
αPC , βP (βC)>

)
, constituent-preterminal productions with φCPz ∼

DP
(
αCP , βC(βP)>

)
, and constituent-constituent productions with φCCz ∼ DP

(
αCC , βC(βC)>

)
.

Each node has a symbol which is either a preterminal (P, z) or a constituent (C, z). In the for-
mer case, a terminal is produced from φEz . In the latter case, one of the four rule types is first

chosen given φTz and then a rule of that type is chosen.

2.3 Other nonparametric grammars

An alternative definition of an HDP-PCFG would be as follows: for each symbol z, draw a distribu-
tion over left child symbols φB1

z ∼ DP(α, β) and an independent distribution over right child sym-
bols φB2

z ∼ DP(α, β). Then define the binary production distribution as the product φBz = φB1
z φB2>

z .
This also yields a distribution over symbol pairs and defines a different type of nonparametric PCFG.
This model is simpler than the HDP-PCFG and does not require any additional machinery beyond
the HDP-HMM. However, the modeling assumptions imposed by this alternative are unappealing
as they assume the left child and right child are independent given the parent, which is certainly
not the case in natural language.

Other alternatives to the HDP-PCFG include the adaptor grammar framework of Johnson et al.
(2006) and the infinite tree framework of Finkel et al. (2007). Both of these nonparametric
Bayesian models have been developed using the Chinese restaurant process rather than the stick-
breaking representation. In an adaptor grammar, the grammar symbols are divided into adapted
and non-adapted symbols. Non-adapted symbols behave like parametric PCFG symbols, while
adapted symbols are associated with a nonparametric Bayesian prior over subtrees rather than
over pairs of child symbols as in PCFGs. While this gives adaptor grammars the ability to capture
more global properties of a sentence, recursion is not allowed on adaptor symbols (that is, the
coexistence of rules of the form A → BC and B → DA is disallowed if A is an adaptor symbol).
Applications of adaptor grammars have mostly focused on the modeling of word segmentation and
collocation rather than full constituency syntax. The infinite tree framework is more closely related
to the HDP-PCFG, differing principally in that it has been developed for dependency parsing rather
than constituency parsing.

3 The HDP-PCFG for grammar refinement (HDP-PCFG-GR)

While the HDP-PCFG is suitable for grammar induction, where we try to infer a full grammar
from raw sentences, in practice we often have access to treebanks, which are collections of tens of
thousands of sentences, each hand-labeled with a syntactic parse tree. Not only do these observed
trees help constrain the model, they also declare the coarse symbol inventories which are assumed
by subsequent linguistic processing. As discussed in Section 1, these treebank trees represent only
the coarse syntactic structure. In order to obtain accurate parsing performance, we need to learn a
more refined grammar.

We introduce an extension of the HDP-PCFG appropriate for grammar refinement (the HDP-
PCFG-GR). The HDP-PCFG-GR differs from the basic HDP-PCFG in that the coarse symbols are
fixed and only their subsymbols are modeled and controlled via the HDP machinery. This formula-
tion makes explicit the level of coarse, observed symbols and provides implicit control over model
complexity within those symbols using a single, unified probabilistic model.

3.1 Model definition

The essential difference in the grammar refinement setting is that now we have a collection of HDP-
PCFG models, one for each symbol s ∈ S, and each HDP-PCFG operates at the subsymbol level.
In practical applications we also need to allow unary productions—a symbol producing exactly
one child symbol—the PCFG counterpart of transitions in HMMs. Finally, each nonterminal node
i ∈ N in the parse tree has a symbol-subsymbol pair (si, zi), so each subsymbol needs to specify
a distribution over both child symbols and subsymbols. The former is handled through a finite

Dirichlet distribution since the finite set of symbols is known. The latter is handled with the HDP
machinery, since the (possibly unbounded) set of subsymbols is unknown.

Despite the apparent complexity of the HDP-PCFG-GR model, it is fundamentally a PCFG where
the symbols are (s, z) pairs with s ∈ S and z ∈ {1, 2, . . . }. The rules of this PCFG take one of
three forms: (s, z) → x for some terminal symbol x ∈ Σ, unary productions (s, z) → (s′, z′) and
binary productions (s, z) → (s′, z′)(s′′, z′′). We can think of having a single (infinite) multinomial
distribution over all right-hand sides given (s, z). Interestingly, the prior distribution of these rule
probabilities is no longer a Dirichlet or a Dirichlet process, but rather a more general Pólya tree
over distributions on {Σ ∪ (S × Z) ∪ (S × Z × S × Z)}.

Figure 4 provides the complete description of the generative process. As in the HDP-PCFG, we
first generate the grammar: For each (coarse) symbol s, we generate a distribution over its sub-
symbols βs, and then for each subsymbol z, we generate a distribution over right-hand sides via
a set of conditional distributions. Next, we generate a distribution φTsz over the three rule types
{EMISSION,UNARY-PRODUCTION, BINARY-PRODUCTION}. The emission distribution φTsz is drawn
from a Dirichlet as before. For the binary rules, we generate from a Dirichlet a distribution φbsz
over pairs of coarse symbols and then for each coarse symbol s′ ∈ S, we generate from a Dirichlet
process a distribution φbszs′s′′ over pairs of subsymbols (z′, z′′). The unary probabilities are gen-
erated analogously. Given the grammar, we generate a parse tree and a sentence via a recursive
process similar to the one for the HDP-PCFG; the main difference is that at each node, we first gen-
erate the coarse symbols of its children and then the child subsymbols conditioned on the coarse
symbols.

HDP-PCFG for grammar refinement (HDP-PCFG-GR)

For each symbol s ∈ S:
−βs ∼ GEM(α) [draw subsymbol probabilities]
−For each subsymbol z ∈ {1, 2, . . . }:
−−φT

sz ∼ Dir(αT) [draw rule type parameters]
−−φE

sz ∼ Dir(αE(s)) [draw emission parameters]
−−φu

sz ∼ Dir(αu(s)) [draw unary symbol production parameters]
−−For each child symbol s′ ∈ S:
−−−φU

szs′ ∼ DP(αU , βs′) [draw unary subsymbol production parameters]
−−φb

sz ∼ Dir(αb(s)) [draw binary symbol production parameters]
−−For each pair of child symbols (s′, s′′) ∈ S × S:
−−−φB

szs′s′′ ∼ DP(αB , βs′β>s′′) [draw binary subsymbol production parameters]

For each node i in the parse tree:
−ti ∼ Mult(φT

sizi
) [choose rule type]

−If ti = EMISSION:
−−xi ∼ Mult(φE

sizi
) [emit terminal symbol]

−If ti = UNARY-PRODUCTION:
−−sc1(i) ∼ Mult(φu

sizi
) [generate child symbol]

−−zc1(i) ∼ Mult(φU
sizisc1(i)

) [generate child subsymbol]
−If ti = BINARY-PRODUCTION:
−−(sc1(i), sc2(i)) ∼ Mult(φsizi

) [generate child symbols]
−−(zc1(i), zc2(i)) ∼ Mult(φB

sizisc1(i)sc2(i)
) [generate child subsymbols]

Figure 4: The definition of the HDP-PCFG for grammar refinement (HDP-PCFG-GR).

The HDP-PCFG-GR is a generalization of many of the DP-based models in the literature. When
there is exactly one symbol (|S| = 1), it reduces to the HDP-PCFG, where the subsymbols in the
HDP-PCFG-GR play the role of symbols in the HDP-PCFG. Suppose we have two distinct symbols A

and B and that all trees are three node chains of the form A → B → x. Then the HDP-PCFG-GR
is equivalent to the nested Dirichlet process (Rodriguez et al., 2008). If the subsymbols of A are
observed for all data points, we have a plain hierarchical Dirichlet process (Teh et al., 2006), where
the subsymbol of A corresponds to the group of data point x.

4 Bayesian inference

In this section, we describe an approximate posterior inference algorithm for the HDP-PCFG based
on variational inference. We present an algorithm only for the HDP-PCFG; the extension to the
HDP-PCFG-GR is straightforward, requiring only additional bookkeeping. For the basic HDP-PCFG,
Section 4.1 describes mean-field approximations of the posterior. Section 4.2 discusses the opti-
mization of this approximation. Finally, Section 4.3 addresses the use of this approximation for
predicting parse trees on new sentences. For a further discussion of the variational approach, see
Appendix A.2.1. Detailed derivations are presented in Appendix B.

4.1 Structured mean-field approximation

The random variables of interest in our model are the parameters θ = (β, φ), the parse tree z, and
the yield x (which we observe). Our goal is thus to compute the posterior p(θ, z | x). We can
express this posterior variationally as the solution to an optimization problem:

argmin
q∈Q

KL(q(θ, z) || p(θ, z | x)). (2)

Indeed, if we let Q be the family of all distributions over (θ, z), the solution to the optimization
problem is the exact posterior p(θ, z | x), since KL divergence is minimized exactly when its two
arguments are equal. Of course, solving this optimization problem is just as intractable as di-
rectly computing the posterior. Though it may appear that no progress has been made, having a
variational formulation allows us to consider tractable choices of Q in order to obtain principled
approximate solutions.

For the HDP-PCFG, we define the set of approximate distributions Q to be those that factor as
follows:

Q =
{
q :
[
q(β)

K∏
z=1

q(φTz)q(φEz)q(φBz)
]
q(z)

}
. (3)

Figure 5 shows the graphical model corresponding to the family of approximate distributions we
consider. Furthermore, we impose additional parametric forms on the factors as follows:

• q(β) is degenerate (q(β) = δβ∗(β) for some β∗) and truncated (β∗z = 0 for z > K).

The truncation is typical of inference algorithms for DP mixtures that are formulated using
the stick-breaking representation (Blei and Jordan, 2005). It can be justified by the fact that
a truncated stick-breaking distribution well approximates the original stick-breaking distri-
bution in the following sense: Let G =

∑∞
z=1 βzδφz and let GK =

∑K
z=1 β

′
zδφz denote the

truncated version, where β′z = βz for z < K, β′K = 1 −
∑K−1

z=1 βz and β′z = 0 for z > K.
The variational distance between G and GK decreases exponentially as a function of the
truncation level K (Ishwaran and James, 2001).

We also require q(β) to be degenerate to avoid the computational difficulties due to the
nonconjugacy of β and φBz .

• q(φTz), q(φEz), and q(φBz) are Dirichlet distributions. Although the binary production param-
eters φBz specify a distribution over {1, 2, . . . }2, the K-component truncation on β forces φBz

β

φB
z

φT
z

φE
z

z ∞

z1

z2 z3

Figure 5: We approximate the posterior over parameters and parse trees using structured mean-
field. Note that the posterior over parameters is completely factorized, but the posterior over parse
trees is not constrained.

to assign zero probability to all but a finite K ×K subset. Therefore, only a finite Dirichlet
distribution and not a general DP is needed to characterize the distribution over φBz .

• q(z) is any multinomial distribution (this encompasses all possible distributions over the dis-
crete space of parse trees). Though the number of parse trees is exponential in the sentence
length, it will turn out that the optimal q(z) always has a factored form which can be found
efficiently using dynamic programming.

Note that if we had restricted all the parameter distributions to be degenerate (q(φ) = δφ∗(φ)
for some φ∗) and fixed β∗ to be uniform, then we would get the objective function optimized by
the EM algorithm. If we further restrict q(z) = δz∗(z) for some z∗, we would obtain the objective
optimized by Viterbi EM.

4.2 Coordinate ascent

We now present an algorithm for solving the optimization problem described in (2) and (3). Unfor-
tunately, the optimization problem is non-convex, and it is intractable to find the global optimum.
However, we can use a simple coordinate ascent algorithm to find a local optimum. The algorithm
optimizes one factor in the mean-field approximation of the posterior at a time while fixing all other
factors. Optimizing q(z) is the analog of the E-step in fitting an ordinary PCFG, and optimizing q(φ)
is the analog of the M-step. Optimizing q(β) has no analog in EM. Note that Kurihara and Sato
(2004) proposed a structured mean-field algorithm for Bayesian PCFGs; like ours, their algorithm
optimizes q(z) and q(φ), but it does not optimize q(β).

Although mathematically our algorithm performs coordinate ascent on the mean-field factors
shown in (3), the actual implementation of the algorithm does not actually require storing each
factor explicitly; it stores only summaries sufficient for updating the other factors. For example, to
update q(φ), we only need the expected counts derived from q(z); to update q(z), we only need the
multinomial weights derived from q(φ) (see below for details).

4.2.1 Updating posterior over parse trees q(z) (“E-step”)

A sentence is a sequence of terminals x = (x1, . . . , xn); conditioned on the sentence length n, a
parse tree can represented by the following set of variables: z = {z[i,j] : 1 ≤ i ≤ j ≤ n}, where the
variable z[i,j] indicates whether there is a node in the parse tree whose terminal span is (xi, . . . , xj),
and, if so, what the grammar symbol at that node is. In the first case, the value of z[i,j] is a grammar
symbol, in which case we call [i, j] a constituent; otherwise, z[i,j] takes on a special NON-NODE value.
In order for z to specify a valid parse tree, two conditions must hold: (1) [1, n] is a constituent, and

(2) for each constituent [i, j] with i < j, there exists exactly one k ∈ [i, j − 1] for which [i, k] and
[k + 1, j] are constituents.

Before deriving the update for q(z), we introduce some notation. Let B(z) = {[i, j] : i <
j and z[i,j] 6= NON-NODE} be the set of binary constituents. Let c1([i, j]) = [i, k] and c2([i, j]) =
[k + 1, j], where k is the unique integer such that [i, k] and [k + 1, j] are constituents.

The conditional distribution over the parse tree is given by the following:

p(z | θ, x) ∝ p(x, z | θ)

=
n∏
i=1

φTz[i,i](E)φEz[i,i](xi)
∏

[i,j]∈B(z)

φTz[i,j](B)φBz[i,j](zc1([i,j])zc2([i,j])), (4)

where we have abbreviated the rule types: E = EMISSION and B = BINARY-PRODUCTION. The first
product is over the emission probabilities of generating each terminal symbol xi, and the second
product is over the binary production probabilities used to produce the parse tree. Using this
conditional distribution, we can form the mean-field update by applying the general mean-field
update rule (see (35) in Appendix B.1):

q(z) ∝
n∏
i=1

W T
z[i,i]

(E)WE
z[i,i]

(xi)
∏

[i,j]∈B(z)

W T
z[i,j]

(B)WB
z[i,j]

(zc1([i,j]), zc2([i,j])), (5)

where the multinomial weights are defined as follows:

WE
z (x) def= exp{Eq(φ) log φEz (x)}, (6)

WB
z (z′, z′′) def= exp{Eq(φ) log φBz (z′z′′)}, (7)

W T
z (t) def= exp{Eq(φ) log φTz (t)}. (8)

These multinomial weights for a d-dimensional Dirichlet are simply d numbers that “summarize”
that distribution. Note that if q(φ) were degenerate, then W T ,WE ,WB would be equal to their
non-random counterparts φT , φE , φB. In this case, the mean-field update (5) is the same as condi-
tional distribution (4). Even when q(φ) is not degenerate, note that (4) and (5) factor in the same
way, which has important implications for computational efficiency.

To compute the normalization constant of (5), we can use using dynamic programming. In the
context of PCFGs, this amounts to using the standard inside-outside algorithm (Lari and Young,
1990); see Manning and Schütze (1999) for details. This algorithm runs in O(n3K3) time, where n
is the length of the sentence and K is the truncation level. However, if the tree structure is fixed as
in the case of grammar refinement, then we can use a variant of the forward-backward algorithm
which runs in just O(nK3) time (Matsuzaki et al., 2005; Petrov et al., 2006).

A common perception is that Bayesian inference is slow because one needs to compute integrals.
Our mean-field inference algorithm is a counterexample: because we can represent uncertainty
over rule probabilities with single numbers, much of the existing PCFG machinery based on EM can
be imported into the Bayesian framework in a modular way. In Section A.3.2, we give an empirical
interpretation of the multinomial weights, showing how they take into account the uncertainty of
the random rule probabilities they represent.

4.2.2 Updating posterior over rule probabilities q(φ) (“M-step”)

The mean-field update for q(φ) can be broken up into independent updates for the rule type param-
eters q(φTz) the emission parameters q(φEz) and the binary production parameters q(φBz) for each
symbol z ∈ S.

Just as optimizing q(z) only required the multinomial weights of q(φ), optimizing q(φ) only re-
quires a “summary” of q(z). In particular, this summary consists of the expected counts of emissions,
rule types, and binary productions, which can be computed by the inside-outside algorithm:

CE(z, x) def= Eq(z)
∑

1≤i≤n
I[z[i,i] = z, xi = x], (9)

CB(z, z′ z′′) def= Eq(z)
∑

1≤i≤k<j≤n
I[z[i,j] = z, z[i,k] = z′, z[k+1,j] = z′′], (10)

CT (z, t) def=
∑
γ

Ct(z, γ). (11)

Applying (35), we obtain the following updates (see Appendix B.3 for a derivation):

q(φEz) = Dir(φEz ;αE + CE(z)),
q(φBz) = Dir(φBz ;αB + CB(z)),
q(φTz) = Dir(φTz ;αT + CT (z)).

4.2.3 Updating the top-level component weights q(β)

Finally, we need to update the parameters in the top level of our Bayesian hierarchy q(β) = δβ∗(β).
Unlike the other updates, there is no closed-form expression for the optimal β∗. In fact, the objective
function (2) is not even convex in β∗. Nonetheless, we can use a projected gradient algorithm
(Bertsekas, 1999) to improve β∗ to a local optimum. The optimization problem is as follows:

min
β∗

KL (q(θ, z) || p(θ, z | x)) (12)

= max
β∗

Eq log p(θ, z | x) +H(q(θ, z)) (13)

= max
β∗

log GEM(β∗;α) +
K∑
z=1

Eq log Dir(φBz ;αBβ∗β∗T) + constant (14)

def= max
β∗

L(β∗) + constant. (15)

We have absorbed all terms that do not depend on β∗ into the constant, including the entropy, since
δβ∗ is always degenerate. See Appendix B.4 for the details of the gradient projection algorithm and
the derivation of L(β) and ∇L(β).

4.3 Prediction: parsing new sentences

After having found an approximate posterior over parameters of the HDP-PCFG, we would like to be
able to use it to parse new sentences, that is, predict their parse trees. Given a loss function `(z, z′)
between parse trees, the Bayes optimal parse tree for a new sentence xnew is given as follows:

z∗new = argmin
z′new

Ep(znew|xnew,x,z)`(znew, z
′
new) (16)

= argmin
z′new

Ep(znew|θ,xnew)p(θ,z|x)`(znew, z
′
new). (17)

If we use the 0-1 loss `(znew, z
′
new) = 1 − I[znew = z′new], then (16) is equivalent to finding the

maximum marginal likelihood parse, integrating out the parameters θ:

z∗new = argmax
znew

Ep(θ,z|x)p(znew | θ, xnew). (18)

We can substitute in place of the true posterior p(θ, z | x) our approximate posterior q(θ, z) =
q(θ)q(z) to get an approximate solution:

z∗new = argmax
znew

Eq(θ)p(znew | θ, xnew). (19)

If q(θ) were degenerate, then we could evaluate the argmax efficiently using dynamic program-
ming (the Viterbi version of the inside algorithm). However, even for a fully-factorized q(θ), the
argmax cannot be computed efficiently, as noted by MacKay (1997) in the context of variational
HMMs. The reason behind this difficulty is that the integration over that rule probabilities cou-
ples distant parts of the parse tree which use the same rule, thus destroying the Markov property
necessary for dynamic programming. We are thus left with the following options:

1. Maximize the expected log probability instead of the expected probability:

z∗new = argmax
znew

Eq(θ) log p(znew | xnew, θ). (20)

Concretely, this amounts to running the Viterbi algorithm with the same multinomial weights
that were used while fitting the HDP-PCFG.

2. Extract the mode θ∗ = q(θ) and parse using θ∗ with dynamic programming. One problem with
this approach is that the mode is not always well defined, for example, when the Dirichlet
posteriors have concentration parameters less than 1.

3. Use options 1 or 2 to obtain a list of good candidates, and then choose the best candidate
according to the true objective (19).

In practice, we used the first option.

4.3.1 Grammar refinement

Given a new sentence xnew, recall that the HDP-PCFG-GR (Section 3.1) defines a joint distribution
over a coarse tree snew of symbols and a refinement znew described by subsymbols. Finding the best
refined tree (snew, znew) can be carried out using the same methods as for the HDP-PCFG described
above. However, in practical parsing applications, we are interested in predicting coarse trees for
use in subsequent processing. For example, we may wish to minimize the 0-1 loss with respect to
the coarse tree (1− I[snew = s′new]). In this case, we need to integrate out znew:

s∗new = argmax
snew

Eq(θ)
∑
znew

p(snew, znew | θ, xnew). (21)

Note that even if q(θ) is degenerate, this expression is difficult to compute because the sum over
znew induces long-range dependencies (which is the whole point of grammar refinement), and as a
result, p(snew | xnew, θ) does not decompose and cannot be handled via dynamic programming.

Instead, we adopt the following two-stage strategy, which works quite well in practice (cf. Mat-
suzaki et al., 2005). We first construct an approximate distribution p̃(s | x) which does decompose
and then find the best coarse tree with respect to p̃(s | x) using the Viterbi algorithm:

s∗new = argmax
s

p̃(s | x). (22)

We consider only tractable distributions p̃ which permit dynamic programming. These distribu-
tions can be interpreted as PCFGs where the new symbols S×{(i, j) : 1 ≤ i ≤ j ≤ n} are annotated
with the span. The new rule probabilities must be consistent with the spans; that is, the only rules
allowed to have nonzero probability are of the form (a, [i, j])→ (b, [i, k]) (c, [k + 1, j]) (binary) and

(a, [i, j]) → (b, [i, j]) (unary), where a, b, c ∈ S and x ∈ Σ. The “best” such distribution is found
according to a KL-projection:

p̃(s | x) = argmin
p̃′ tractable

KL
(
expEq(θ) log p(snew | xnew, θ) || p̃′(s | x)

)
, (23)

This KL-projection can be done by simple moment-matching, where the moments we need to com-
pute are of the form I[(s[i,j] = a, s[i,k] = b, s[k+1,j] = c)] and I[s[i,j] = a, s[i,j] = b] for a, b, c ∈ S,
which can be computed using the dynamic programming algorithm described in Section 4.2.1.

Petrov and Klein (2007) discuss several other alternatives, but show that the two-step strategy
described above performs the best.

5 Experiments

We now present an empirical evaluation of the HDP-PCFG and HDP-PCFG-GR models for grammar
induction and grammar refinement, respectively. We first show that the HDP-PCFG and HDP-PCFG-
GR are able to recover a known grammar more accurately than a standard PCFG estimated with
maximum likelihood (Sections 5.1 and 5.2). We then present results on a large-scale parsing task
(Section 5.3).

5.1 Inducing a synthetic grammar using the HDP-PCFG

In the first experiment, the goal was to recover a PCFG grammar given only sentences generated
from that grammar. Consider the leftmost grammar in Figure 6; this is the “true grammar” that
we wish to recover. It has a total of eight nonterminal symbols, four of which are left-hand sides
of only emission rules (these are the preterminal symbols) and four of which are left-hand sides of
only binary production rules (constituent symbols). The probability of each rule is given above the
appropriate arrow. Though very simple, this grammar still captures some of the basic phenomena
of natural language such as noun phrases (NPs), verb phrases (VPs), determiners (DTs), adjectives
(JJs), and so on.

From this grammar, we sampled 1000 sentences. Then, from these sentences alone, we at-
tempted to recover the grammar using the standard PCFG and the HDP-PCFG. For the standard
PCFG, we allocated 20 latent symbols, 10 for preterminal symbols and 10 for constituent symbols.
For the HDP-PCFG (using the version described in Section 2.2), we set the stick-breaking truncation
level to K = 10 for the preterminal and constituent symbols. All Dirichlet hyperparameters were
set to 0.01. We ran 300 iterations of EM for the standard PCFG and variational inference for the
HDP-PCFG. Since both algorithms are prone to local optima, we ran the algorithms 30 times with
different random initializations. We also encouraged the use of constituent symbols by placing
slightly more prior weight on rule type probabilities corresponding to production-production rules.

In none of the 30 trials did the standard PCFG manage to recover the true grammar. We say a
rule is active if its multinomial weight (see Section 4.2.1) is at least 10−6 and its left-hand side has
total posterior probability also at least 10−6. In general, rules with weight smaller than 10−6 can be
safely ignored without affect parsing results. In a typical run of the standard PCFG, all 20 symbols
were used and about 150 of the rules were active (in contrast, there are only 15 rules in the true
grammar). The HDP-PCFG managed to do much better. Figure 6 shows three grammars (of the
30 trials) which had the highest variational objective values. The symbols are numbered 1 to K
in the model, but we have manually labeled them with to suggest their actual role in the syntax.
Each grammar has around 4–5 constituent symbols (there were 4 in the true grammar) and 6–7
preterminal symbols (4 in the true grammar), which yields around 25 active rules (15 in the true
grammar).

True grammar Recovered grammar 1 Recovered grammar 2 Recovered grammar 3

S 1.0→ NP VP

NP 0.5→ DT NN

NP 0.5→ DT NPBAR

NPBAR 0.5→ JJ NN

NPBAR 0.5→ JJ NPBAR

VP 1.0→ VB NP

DT 0.5→ the

DT 0.5→ a

JJ 0.5→ big

JJ 0.5→ black

NN 0.33→ mouse

NN 0.33→ cat

NN 0.33→ dog

VB 0.5→ chased

VB 0.5→ ate

=⇒

the cat ate a mouse
the cat ate the black mouse

a big big black cat chased the black mouse
a black big dog chased a cat
the mouse chased a mouse
the mouse ate a black dog

...

S 1.0→ NP VP

NP 0.5→ DT NN

NP 0.5→ DT NPBAR

VP 1.0→ VB NP

NPBAR 0.11→ JJ2 NPBAR

NPBAR 0.38→ JJ1 NPBAR

NPBAR 0.07→ JJ-big NN

NPBAR 0.42→ JJ2 NN

NPBAR 0.02→ JJ2 NN-cat/dog

DT 0.51→ a

DT 0.5→ the

JJ1 0.52→ big

JJ1 0.48→ black

JJ-big 1.0→ big

JJ2 0.59→ black

JJ2 0.42→ big

NN 0.35→ mouse

NN 0.32→ dog

NN 0.33→ cat

NN-cat/dog 0.47→ cat

NN-cat/dog 0.53→ dog

VB 0.49→ chased

VB 0.51→ ate

S 1.0→ NP-V NP

NP-V 1.0→ NP VB

NP 0.47→ DT2 NPBAR

NP 0.04→ DT1 NN-mouse

NP 0.29→ DT2 NN

NP 0.17→ DT1 NN

NP 0.03→ DT1 NPBAR

NPBAR 0.02→ JJ NN-mouse

NPBAR 0.01→ JJ-big NN-mouse

NPBAR 0.48→ JJ NN

NPBAR 0.49→ JJ NPBAR

DT1 0.45→ a

DT1 0.55→ the

DT2 0.52→ a

DT2 0.48→ the

JJ 0.51→ black

JJ 0.49→ big

JJ-big 1.0→ big

NN 0.35→ dog

NN 0.36→ cat

NN 0.29→ mouse

NN-mouse 1.0→ mouse

VB 0.49→ chased

VB 0.51→ ate

S 1.0→ NP-VB NP

NP-VB 1.0→ NP VB

NP 0.5→ DT NN

NP 0.25→ DT-JJ+1 NN

NP 0.25→ DT-JJ+2 NN

DT-JJ+1 0.79→ DT JJ1

DT-JJ+1 0.18→ DT JJ2

DT-JJ+1 0.03→ DT-a JJ2

DT-JJ+2 0.49→ DT-JJ+2 JJ1

DT-JJ+2 0.37→ DT-JJ+1 JJ1

DT-JJ+2 0.15→ DT-JJ+1 JJ2

DT 0.5→ the

DT 0.5→ a

DT-a 1.0→ a

JJ1 0.52→ black

JJ1 0.48→ big

JJ2 0.56→ big

JJ2 0.44→ black

NN 0.33→ cat

NN 0.34→ mouse

NN 0.32→ dog

VB 0.49→ chased

VB 0.51→ ate

True parse Recovered parse 1 Recovered parse 2 Recovered parse 3
S

NP

DT

the

NN

cat

VP

VB

ate

NP

DT

the

NPBAR

JJ

black

NN

mouse

S

NP

DT1

the

NN

cat

VP

VB

ate

NP

DT2

the

NPBAR

JJ2

black

NN

mouse

S

NP-VB

NP

DT2

the

NN

cat

VB

ate

NP

DT2

the

NPBAR

JJ

black

NN

mouse

S

NP-VB

NP

DT

the

NN

cat

VB

ate

NP

DT-JJ+1

DT

the

JJ1

black

NN

mouse

Figure 6: We generated 1000 sentences from the true grammar. The HDP-PCFG model recovered
the three grammars (obtained from different initializations of the variational inference algorithm).
The parse trees of a sentence under the various grammars are also shown. The first is essentially
the same as that of the true grammar, while the second and third contain various left-branching
alternatives.

While the HDP-PCFG did not recover the exact grammar, it was able to produce grammars that
were sensible. Interestingly, each of the three grammars used a slightly different type of syntactic
structure to model the data. The first one is the closest to the true grammar and differs only in that
it allocated three subsymbols for JJ and two for NN instead of one. Generally, extra subsymbols
provide a better fit of the noisy observations, and here, the sparsity-inducing DP prior was only
partially successful in producing a parsimonious model.

The second grammar differs fundamentally from the true grammar in that the subject and the
verb are grouped together as a constituent (NP-VB) rather than the verb and the object (VP). This
is a problem with non-identifiability; in this simple example, both grammars describe the data
equally well and have the same grammar complexity. One way to break this symmetry is to use an
informative prior—e.g., that natural language structures tend to be right-branching.

The third grammar differs from the true grammar in one additional way, namely that noun
phrases are also left-branching; that is, for the black mouse, the and black are grouped together
rather than black and mouse. Intuitively, this grammar suggests the determiner as the head word
of the phrase rather than the noun. This head choice is not entirely unreasonable; indeed there is
an ongoing debate in the linguistics community about whether the determiner (the DP hypothesis)
or the noun (the NP hypothesis) should be the head (though even in a DP analysis the determiner
and adjective should not be grouped).

Given that our variational algorithm converged to various modes depending on initialization,
it is evident that the true Bayesian posterior over grammars is multimodal. A fully Bayesian infer-
ence procedure would explore and accurately represent these modes, but this is computationally
intractable. Starting our variational algorithm from various initializations provides a cheap, if im-
perfect, way of exploring some of the modes.

Inducing grammars from raw text alone is an extremely difficult problem. Statistical approaches
to grammar induction have been studied since the early 1990s (Carroll and Charniak, 1992). As
these early experiments were discouraging, people turned to alternative algorithms (Stolcke and
Omohundro, 1994) and models (Klein and Manning, 2004; Smith and Eisner, 2005). Though we
have demonstrated partial success with the HDP-PCFG on synthetic examples, it is unlikely that
this method alone will solve grammar induction problems for large-scale corpora. Thus, for the
remainder of this section, we turn to the more practical problem of grammar refinement, where
the learning of symbols is constrained by a coarse treebank.

5.2 Refining a synthetic grammar with the HDP-PCFG-GR

We first conduct a simple experiment, similar in spirit to the grammar induction experiment, to
show that the HDP-PCFG-GR can recover a simple grammar while a standard PCFG-GR (a PCFG
adapted for grammar refinement) cannot. From the grammar in Figure 7(a), we generated 2000
trees of the form shown in Figure 7(b). We then replaced all Xis with X in the training data to
yield a coarse grammar. Note that the two terminal symbols always have the same subscript, a
correlation not captured by their parent X. We trained both the standard PCFG-GR and the HDP-
PCFG-GR using the modified trees as the input data, hoping to estimate the proper refinement of
X. We used a truncation of K = 20 for both S and X, set all hyperparameters to 1, and ran EM and
the variational algorithm for 100 iterations.

S → X1X1 | X2X2 | X3X3 | X4X4

X1 → a1 | b1 | c1 | d1

X2 → a2 | b2 | c2 | d2

X3 → a3 | b3 | c3 | d3

X4 → a4 | b4 | c4 | d4

S

Xi Xi

{ai, bi, ci, di} {ai, bi, ci, di}

(a) (b)

Figure 7: (a) A synthetic grammar with a uniform distribution over rules. (b) The grammar gener-
ates trees of the form shown on the right.

Figure 8 shows the posterior probabilities of the subsymbols in the grammars produced by
the PCFG-GR (a) and HDP-PCFG-GR (b). The PCFG-GR used all 20 subsymbols of both S and X
to fit the noisy co-occurrence statistics of left and right terminals, resulting in 8320 active rules
(with multinomial weight larger than 10−6). On the other hand, for the HDP-PCFG-GR, only four
subsymbols of X and one subsymbol of S had non-negligible posterior mass; 68 rules were active. If
the threshold is relaxed from 10−6 to 10−3, then only 20 rules are active, which corresponds exactly
to the true grammar.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
subsymbol

0.25

p
os

te
ri

or

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
subsymbol

0.25

p
os

te
ri

or

(a) PCFG-GR (b) HDP-PCFG-GR

Figure 8: The posterior probabilities over the subsymbols of the grammar produced by the PCFG-
GR are roughly uniform, whereas the posteriors for the HDP-PCFG-GR are concentrated on four
subsymbols, the true number in the original grammar.

5.3 Parsing the Penn Treebank

In this section, we show that the variational HDP-PCFG-GR can scale up to real-world datasets.
We truncated the HDP-PCFG-GR at K subsymbols, and compared its performance with a standard
PCFG-GR with K subsymbols estimated using maximum likelihood (Matsuzaki et al., 2005).

5.3.1 Dataset and preprocessing

We ran experiments on the Wall Street Journal (WSJ) portion of the Penn Treebank, a standard
dataset used in the natural language processing community for evaluating constituency parsers.
The dataset is divided into 24 sections and consists of approximately 40,000 sentences. As is
standard, we fit a model on sections 2–21, used section 24 for tuning the hyperparameters of our
model, and evaluated parsing performance on section 22.

The HDP-PCFG-GR is defined only for grammars with unary and binary production rules, but
the Penn Treebank contains trees in which a node has more than two children. Therefore, we use
a standard binarization procedure to transform our trees. Specifically, for each nonterminal node
with symbol X, we introduce a right-branching cascade of new nodes with symbol X.

Another issue that arises when dealing with a large-scale dataset of this kind is that words have
a Zipfian distribution and in parsing new sentences we invariably encounter new words that did
not appear in the training data. We could let the HDP-PCFG-GR’s generic Dirichlet prior manage
this uncertainty, but would like to use prior knowledge such as the fact that a capitalized word
that we have not seen before is most likely a proper noun. We use a simple method to inject this
prior knowledge: replace any word appearing fewer than 5 times in the training set with one of
50 special “unknown word” tokens, which are added to Σ. These tokens can be thought of as
representing manually constructed word clusters.

We evaluated our predicted parse trees using F1 score, defined as follows. Given a (coarse)
parse tree s, let the labeled brackets be defined as

LB(s) = {(s[i,j], [i, j]) : s[i,j] 6= NON-NODE, 1 ≤ i ≤ j ≤ n}.

Given the correct parse tree s and a predicted parse tree s′, the precision, recall and F1 scores are
defined as follows:

Precision(s, s′) =
|LB(s) ∩ LB(s′)|
|LB(s)|

Recall(s, s′) =
|LB(s) ∩ LB(s′)|
|LB(s′)|

(24)

F1(s, s′)−1 =
1
2
(
Precision(s, s′)−1 + Recall(s, s′)−1

)
. (25)

5.3.2 Hyperparameters

There are six hyperparameters in the HDP-PCFG-GR model, which we set in the following manner:
α = 1, αT = 1 (uniform distribution over unaries versus binaries), αE = 1 (uniform distribution
over terminal words), αu(s) = αb(s) = 1

N(s) , where N(s) is the number of different unary (binary)
right-hand sides of rules with left-hand side s in the treebank grammar. The two most important
hyperparameters are αU and αB, which govern the sparsity of the right-hand side for unary and
binary rules. We set αU = αB although greater accuracy could probably be gained by tuning these
individually. It turns out that there is not a single αB that works for all truncation levels, as shown
in Table 1. If αB is too small, the grammars are overly sparse, but if αB is too large, the extra
smoothing makes the grammars too uniform (see Figure 9).

truncation K 2 4 8 12 16 20
best αB 16 12 20 28 48 80

uniform αB 4 16 64 144 256 400

Table 1: For each truncation level, we report the αB that yielded the highest F1 score on the
development set.

1 2 4 6 8 10 12 14 16 20 24 28 32 40 48

concentration parameter αB

72

74

76

78

80

F1

Figure 9: Development F1 performance on the development set for various values of αB, training
on only section 2 with truncation K = 8.

If the top-level distribution β is uniform, the value of αB corresponding to a uniform prior
over pairs of child subsymbols is K2. Interestingly, the best αB appears to be superlinear but
subquadratic in K. We used these best values of αB in the following experiments.

5.3.3 Results

The regime in which Bayesian inference is most important is when the number of training data
points is small relative to the complexity of the model. To explore this regime, we conducted a
first experiment where we trained the PCFG-GR and HDP-PCFG-GR on only section 2 of the Penn
Treebank.

Table 2 shows the results of this experiment. Without smoothing, the PCFG-GR trained using EM
improves as K increases but starts to overfit around K = 4. If we smooth the PCFG-GR by adding
0.01 pseudocounts (which corresponds using a Dirichlet prior with concentration parameters 1.01,
. . . , 1.01), we see that the performance does not degrade even asK increases to 20, but the number
of active grammar rules needed is substantially more. Finally, we see that the HDP-PCFG-GR yields
performance comparable to the smoothed PCFG-GR, but the number of grammar rules needed is
smaller.

We also conducted a second experiment to demonstrate that our methods can scale up to real-
istically large corpora. In particular, in this experiment we trained on all of sections 2–21. When
using a truncation level of K = 16, the standard PCFG-GR with smoothing yielded an F1 score of
88.36 using 706,157 active rules. The HDP-PCFG-GR yielded an F1 score of 87.08 using 428,375

K PCFG-GR PCFG-GR (smoothed) HDP-PCFG-GR
F1 Size F1 Size F1 Size

1 60.47 2558 60.36 2597 60.50 2557
2 69.53 3788 69.38 4614 71.08 4264
4 75.98 3141 77.11 12436 77.17 9710
8 74.32 4262 79.26 120598 79.15 50629

12 70.99 7297 78.80 160403 78.94 86386
16 66.99 19616 79.20 261444 78.24 131377
20 64.44 27593 79.27 369699 77.81 202767

Table 2: Shows the development F1 scores and grammar sizes (the number of active rules) as
we increase the truncation K. The ordinary PCFG-GR overfits around K = 4. Smoothing with
0.01 pseudocounts prevents this, but produces much larger grammars. The HDP-PCFG-GR attains
comparable performance with smaller grammars.

active rules. We thus see that the HDP-PCFG-GR achieves broadly comparable performance com-
pared to existing state-of-the-art parsers, while requiring a substantially smaller number of rules.
Finally, note that K = 16 is a relatively stringent truncation and we would expect to see improved
performance from the HDP-PCFG-GR with a larger truncation level.

6 Discussion

The HDP-PCFG represents a marriage of grammars and Bayesian nonparametrics. We view this
marriage as a particularly natural one, given the need for syntactic models to have large, open-
ended numbers of grammar symbols. Moreover, given that the most successful methods that have
been developed for grammar refinement have been based on clustering of grammar symbols, we
view the Dirichlet process as providing a natural starting place for approaching this problem from
a Bayesian point of view. The main problem that we have had to face has been that of tying of
clusters across parse trees, and this problem is readily solved via the hierarchical Dirichlet process.

We have also presented an efficient variational inference algorithm to approximate the Bayesian
posterior over grammars. Although more work is needed to demonstrate the capabilities and limita-
tions of the variational approach, it is important to emphasize the need for fast inference algorithms
in the domain of natural language processing. A slow parser is unlikely to make inroads in the ap-
plied NLP community. Note also that the mean-field variational algorithm that we presented is
closely linked to the EM algorithm, and the familiarity of the latter in the NLP community may help
engender interest in the Bayesian approach.

The NLP community is constantly exploring new problem domains that provide fodder for
Bayesian modeling. Currently, one very active direction of research is the modeling of multilin-
gual data—for example, synchronous grammars which jointly model the parse trees of pairs of
sentences which are translations of each other (Wu, 1997). These models have also received a
initial Bayesian treatment (Blunsom et al., 2009). Also, many of the models used in machine trans-
lation are essentially already nonparametric, as the parameters of these models are defined on large
subtrees rather than individual rules as in the case of the PCFG. Here, having a Bayesian model that
integrates over uncertainty can provide more accurate results (DeNero et al., 2008). A major open
challenge for these models is again computational; Bayesian inference must be fast if its application
to NLP is likely to succeed.

Bayesian finite mixture model

β ∼ Dir(α, . . . , α) [draw component probabilities]
For each component z ∈ {1, . . . ,K}:
−φz ∼ G0 [draw component parameters]

For each data point i ∈ {1, . . . , n}:
−zi ∼ Mult(β) [choose component]
−xi ∼ F (·;φzi) [generate data point]

β

zi

xi

i n

φz

z K

Figure 10: The definition and graphical model of the Bayesian finite mixture model.

A Broader Context and Background

In this section, we present some of the background in nonparametric Bayesian modeling and in-
ference needed for understanding the HDP-PCFG. Appendix A.1 describes various simpler models
that lead up to the HDP-PCFG. Appendix A.2 overviews some general issues in variational inference
and Appendix A.3 provides a more detailed discussion of the properties of mean-field variational
inference in the nonparametric setting.

A.1 DP-based models

We first review the Dirichlet process (DP) mixture model (Antoniak, 1974), a building block for a
wide variety of nonparametric Bayesian models, including the HDP-PCFG. The DP mixture model
captures the basic notion of clustering which underlies symbol formation in the HDP-PCFG. We
then consider the generalization of mixture models to hidden Markov models (HMMs), where
clusters are linked structurally according to a Markov chain. To turn the HMM into a nonparametric
Bayesian model, we introduce the hierarchical Dirichlet process (HDP). Combining the HDP with
the Markov chain structure yields the HDP-HMM, an HMM with a countably infinite state space.
This provides the background and context for the HDP-PCFG (Section 2).

A.1.1 Bayesian finite mixture models

We begin our tour with the familiar Bayesian finite mixture model in order to establish notation
which will carry over to more complex models. The model structure is summarized in two ways in
Figure 10: symbolically in the diagram on the left side of the figure and graphically in the diagram
on the right side of the figure. As shown in the figure, we consider a finite mixture with K mixture
components, where each component z ∈ {1, . . . ,K} is associated with a parameter vector φz drawn
from some prior distribution G0 on a parameter space Φ. We let the vector β = (β1, . . . , βK) denote
the mixing proportions; thus the probability of choosing the mixture component indexed by φz
is given by βz. This vector is assumed to be drawn from a symmetric Dirichlet distribution with
hyperparameter α.

Given the parameters β and φ = (φz : z = 1, . . . ,K), the data points x = (x1, . . . , xn) are as-
sumed to be generated conditionally i.i.d. as follows: first choose a component zi with probabilities
given by the multinomial probability vector β and then choose xi from the distribution indexed by
zi; i.e., from F (·;φzi).

There is another way to write the finite mixture model that will be helpful in developing non-
parametric Bayesian extensions. In particular, instead of expressing the choice of a mixture com-
ponent as a choice of a label from a multinomial distribution, let us instead combine the mixing

proportions and the parameters associated with the mixture components into a single object—a
random measure G—and let the choice of a mixture component be expressed as a draw from G. In
particular, write

G =
K∑
z=1

βzδφz , (26)

where δφz is a delta function at location φz. Clearly G is random, because both the coefficients {βz}
and the locations {φz} are random. It is also a measure, assigning a nonnegative real number to
any Borel subset B of Φ: G(B) =

∑
z:φz∈B βz. In particular, as desired, G assigns probability βz

to the atom φz. To summarize, we can equivalently express the finite mixture model in Figure 10
as the draw of a random measure G (from a stochastic process that has hyperparameters G0 and
α), followed by n conditionally-independent draws of parameter vectors from G, one for each data
point. Data points are then drawn from the mixture component indexed by the corresponding
parameter vector.

A.1.2 Dirichlet process mixture models

The Dirichlet process (DP) mixture model extends the Bayesian finite mixture model to a mix-
ture model having a countably infinite number of mixture components. Since we have an infinite
number of mixture components, it no longer makes sense to consider a symmetric prior over the
component probabilities as we did in the finite case; the prior over component probabilities must
decay in some way. This is achieved via a so-called stick-breaking distribution (Sethuraman, 1994).

0 1β1 β2 β3 ...

Figure 11: A sample β ∼ GEM(α) from the stick-breaking distribution with α = 1.

The stick-breaking distribution that underlies the DP mixture is defined as follows. First define
a countably infinite collection of stick-breaking proportions V1, V2, . . . , where the Vz are drawn
independently from a one-parameter beta distribution: Vz ∼ Beta(1, α), where α > 0. Then define
an infinite random sequence β as follows:

βz = Vz
∏
z′<z

(1− Vz′). (27)

As shown in Figure 11, the values of βz defined this procedure can be interpreted as portions of
a unit-length stick. In particular, the product

∏
z′<z(1 − Vz′) is the currently remaining portion of

the stick and multiplication by Vz breaks off a proportion of the remaining stick length. It is not
difficult to show that the values βz sum to one (with probability one) and thus β can be viewed as
an infinite-dimensional random probability vector.

We write β ∼ GEM(α) to mean that β = (β1, β2, . . .) is distributed according to the stick-
breaking distribution. The hyperparameter α determines the rate of decay of the βz; a larger value
of α implies a slower rate of decay.

We present a full specification of the DP mixture model in Figure 12. This specification empha-
sizes the similarity with the Bayesian finite mixture; all that has changed is that the vectors β and φ
are infinite dimensional (note that “Mult” in Figure 12 is a multinomial distribution in an extended
sense, its meaning is simply that index z is chosen with probability βz).

Let us also consider the alternative specification of the DP mixture model using random mea-
sures. Proceeding by analogy to the finite mixture model, we define a random measure G as
follows:

G =
∞∑
z=1

βzδφz , (28)

DP mixture model

β ∼ GEM(α) [draw component stick probabilities]
For each component z ∈ {1, 2, . . . }:
−φz ∼ G0 [draw component parameters]

For each data point i ∈ {1, . . . , n}:
−zi ∼ Mult(β) [choose component]
−xi ∼ F (·;φzi) [generate data point]

β

zi

xi

i n

φz

z ∞

Figure 12: The definition and graphical model of the DP mixture model.

where δφz is a delta function at location φz. As before, the randomness has two sources: the
random choice of the φz (which are drawn independently from G0) and the random choice of the
coefficients {βz}, which are drawn from GEM(α). We say that such a random measure G is a draw
from a Dirichlet process, denoted G ∼ DP(α,G0). This random measure G plays the same role
in the DP mixture as the corresponding G played in the finite mixture; in particular, given G the
parameter vectors are independent draws from G, one for each data point.

The term “Dirichlet process” is appropriate because the random measure G turns out to have
finite-dimensional Dirichlet marginals: for an arbitrary partition (B1, B2, . . . , Br) of the parameter
space Φ (for an arbitrary integer r), Sethuraman (1994) showed that(

G(B1), G(B2), . . . , G(Br)
)
∼ Dir

(
αG0(B1), αG0(B2), . . . , αG0(Br)

)
.

A.1.3 Hierarchical Dirichlet process hidden Markov models (HDP-HMMs)

The hidden Markov model (HMM) can be viewed as a dynamic version of a finite mixture model.
As in the finite mixture model, an HMM has a set of K mixture components, referred to as states in
the HMM context. Associated to each state, z ∈ {1, 2, . . . ,K}, is a parameter vector φEz ; this vector
parametrizes a family of emission distributions, F (·;φEz), from which data points are drawn. The
HMM differs from the finite mixture in that states are not selected independently, but are linked
according to a Markov chain. In particular, the parametrization for the HMM includes a transition
matrix, whose rows φTz are the conditional probabilities of transitioning to a next state z′ given that
the current state is z. Bayesian versions of the HMM place priors on the parameter vectors {φEz , φTz }.
Without loss of generality, assume that the initial state distribution is fixed and degenerate.

A nonparametric version of the HMM can be developed by analogy to the extension of the
Bayesian finite mixture to the DP mixture. This has been done by Teh et al. (2006), following
on from earlier work by Beal et al. (2002). The resulting model is referred to as the hierarchical
Dirichlet process HMM (HDP-HMM). In this section we review the HDP-HMM, focusing on the new
ingredient, which is the need for a hierarchical DP.

Recall that in our presentation of the DP mixture, we showed that the choice of the mixture
component (i.e., the state) could be conceived in terms of a draw from a random measure G. Recall
also that the HMM generalizes the mixture model by making the choice of the state conditional on
the previous state. This suggests that in extending the HMM to the nonparametric setting we should
consider a set of random measures, {Gz}, one measure for each value of the current state.

A difficulty arises, however, if we simply proceed by letting each Gz be drawn independently
from a DP. In this case, the atoms forming Gz and those forming Gz′ , for z 6= z′, will be distinct
with probability one (assuming that the distribution G0 is continuous). This means that the set of
next states available from z will be entirely disjoint from the set of states available from z′.

HDP-HMM

β ∼ GEM(γ) [draw top-level state probabilities]
For each state z ∈ {1, 2, . . . }:
−φEz ∼ Dir(γ) [draw emission parameters]
−φTz ∼ DP(α, β) [draw transition parameters]

For each time step i ∈ {1, . . . , n}:
−xi ∼ Mult(φEzi

) [emit current observation]
−zi+1 ∼ Mult(φTzi

) [choose next state]

β

φT
z

φE
z

z ∞

z1 z2 z3 · · ·

x1 x2 x3 · · ·

Figure 13: The definition and graphical model of the HDP-HMM.

To develop a nonparametric version of the HMM, we thus require a notion of hierarchical Dirich-
let process (HDP), in which the random measures {Gz} are tied. The HDP of Teh et al. (2006) does
this by making a single global choice of the atoms underlying each of the random measures. Each
of the individual measures Gz then weights these atoms differently. The general framework of the
HDP achieves this as follows:

G0 ∼ DP(γ,H) (29)

Gz ∼ DP(α,G0), z = 1, . . . ,K, (30)

where γ and α are concentration hyperparameters, where H is a measure and where K is the
number of measures in the collection {Gz}. The key to this hierarchy is the presence of G0 as the
base measure used to draw the random measures {Gz}. Because G0 is discrete, only the atoms in
G0 can be chosen as atoms in the {Gz}. Moreover, because the stick-breaking weights in G0 decay,
it is only a subset of the atoms—the highly-weighted atoms—that will tend to occur frequently in
the measures {Gz}. Thus, as desired, we share atoms among the {Gz}.

To apply these ideas to the HMM and to the PCFG, it will prove helpful to streamline our
notation. Note in particular that in the HDP specification, the same atoms are used for all of the
random measures. What changes among the measures G0 and the {Gz} is not the atoms but the
stick-breaking weights. Thus we can replace with the atoms with the positive integers and focus
only on the stick-breaking weights. In particular, we re-express the HDP as follows:

β ∼ GEM(γ) (31)

φTz ∼ DP(α, β), z = 1, . . . ,K. (32)

In writing the hierarchy this way, we are abusing notation. In (31), the vector β is a vector with
an infinite number of components, but in (32), the symbol β refers to the measure that has atoms
at the integers with weights given by the components of the vector. Similarly, the symbol φTz refers
technically to a measure on the integers, but we will also abuse notation and refer to φTz as a vector.

It is important not to lose sight of the simple idea that is expressed by (32): the stick-breaking
weights corresponding to the measures {Gz} are reweightings of the global stick-breaking weights
given by β. (An explicit formula relating φTz and β can be found in Teh et al. (2006).)

Returning to the HDP-HMM, the basic idea is to use (31) and (32) to fill the rows of an infinite-
dimensional transition matrix. In this application of the HDP, K is equal to infinity, and the vectors
generated by (31) and (32) form the rows of a transition matrix for an HMM with a countably
infinite state space.

We provide a full probabilistic specification of the HDP-HMM in Figure 13. Each state z is asso-
ciated with transition parameters φTz and emission parameters φEz . Note that we have specialized

to multinomial observations in this figure, so that φEz is a finite-dimensional vector that we endow
with a Dirichlet distribution. Given the parameters {φTz , φEz }, a state sequence (z1, . . . , zn) and an
associated observation sequence (x1, . . . , xn) are generated as in the classical HMM. For simplicity
we assume that z1 is always fixed to a designated START state. Given the state zt at time t, the
next state zt+1 is obtained by drawing an integer from φTzt

, and the observed data point at time t is
obtained by a draw from φEzt

.

A.2 Bayesian inference

We would like to compute the full Bayesian posterior p(θ, z | x) over the HDP-PCFG grammar θ and
latent parse trees z given observed sentences x. Exact computation of this posterior is intractable,
so we must resort to an approximate inference algorithm.

A.2.1 Sampling versus variational inference

The two major classes of methodology available for posterior inference in the HDP-PCFG are
Markov chain Monte Carlo (MCMC) sampling (Robert and Casella, 2004) or variational infer-
ence (Wainwright and Jordan, 2008). MCMC sampling is based on forming a Markov chain that has
the posterior as its stationary distribution, while variational inference is based on treating the pos-
terior distribution as the solution to an optimization problem and then relaxing that optimization
problem. The two methods have complementary strengths: under appropriate conditions MCMC is
guaranteed to converge to a sample from the true posterior, and its stochastic nature makes it less
prone to local optima than deterministic approaches. Moreover, the sampling paradigm also pro-
vides substantial flexibility; a variety of sampling moves can be combined via Metropolis-Hastings.
On the other hand, variational inference can provide a computationally-efficient approximation to
the posterior. While the simplest variational methods can have substantial bias, improved approx-
imations can be obtained (at increased computational cost) via improved relaxations. Moreover,
storing and manipulating a variational approximation to a posterior can be easier than working
with a collection of samples.

In our development of the HDP-PCFG, we have chosen to work within the variational inference
paradigm, in part because computationally efficient inference is essential in parsing applications,
and in part because of the familiarity of variational inference ideas within NLP. Indeed, the EM
algorithm can be viewed as coordinate ascent on a variational approximation that is based on a
degenerate posterior, and the EM algorithm (the inside-outside algorithm in the case of PCFGs
(Lari and Young, 1990)) has proven to be quite effective in NLP applications to finite non-Bayesian
versions of the HMM and PCFG. Our variational algorithm generalizes EM by using non-degenerate
posterior distributions, allowing us to capture uncertainty in the parameters. Also, the variational
algorithm is able to incorporate the DP prior, while EM cannot in a meaningful way (see Sec-
tion A.3.3 for further discussion). On the other hand, the variational algorithm is procedurally very
similar to EM and incurs very little additional computational overhead.

A.2.2 Representation used by the inference algorithm

Variational inference is based on an approximate representation of the posterior distribution. For
DP mixture models (Figure 12), there are several possible choices of representation. In particular,
one can use a stick-breaking representation (Blei and Jordan, 2005) or a collapsed representation
based on the Chinese restaurant process, where the parameters β and φ have been marginalized
out (Kurihara et al., 2007).

Algorithms that work in the collapsed representation have the advantage that they only need to
work in the finite space of clusterings rather than the infinite-dimensional parameter space. They
have also been observed to perform slightly better in some applications (Teh et al., 2007). In the

Two-component mixture model

φ1 ∼ Beta(1, 1) [draw parameter for component 1]
φ2 ∼ Beta(1, 1) [draw parameter for component 2]
For each data point i ∈ {1, . . . , n}:
−zi ∼ Mult(1

2 ,
1
2) [choose component]

−xi ∼ Bin(5, φzi) [generate data point]

Figure 14: A two-component mixture model.

stick-breaking representation, one must deal with the infinite-dimensional parameters by either
truncating the stick (Ishwaran and James, 2001), introducing auxiliary variables that effectively
provide an adaptive truncation (Walker, 2004), or adaptively allocating more memory for new
components (Papaspiliopoulos and Roberts, 2008).

While collapsed samplers have been effective for the DP mixture model, there is a major draw-
back to using them for structured models such as the HDP-HMM and HDP-PCFG. Consider the
HDP-HMM. Conditioned on the parameters, the computation of the posterior probability z can
be done efficiently using the forward-backward algorithm, a dynamic program that exploits the
Markov structure of the sequence. However, when parameters have been marginalizing out, the
hidden states z sequence are coupled, making dynamic programming impossible.3 As a result, col-
lapsed samplers for the HDP-HMM generally end up sampling one state zi at a time conditioned
on the rest. This sacrifice can be especially problematic when there are strong dependencies along
the Markov chain, which we would expect in natural language. For example, in an HMM model
for part-of-speech tagging where the hidden states represent parts-of-speech, consider a sentence
containing a two-word fragment heads turn. Two possible tag sequences might be NOUN VERB or
VERB NOUN. However, in order for the sampler to go from one to the other, it would have to go
through NOUN NOUN or VERB VERB, both of which are very low probability configurations.

An additional advantage of the non-collapsed representation is that conditioned on the param-
eters, inference on the parse trees decouples and can be easily parallelized, which is convenient for
large datasets. Thus, we chose to use the stick-breaking representation for inference.

A.3 Mean-field variational inference for DP-based models

Since mean-field inference is only an approximation to the HDP-PCFG posterior, it is important
to check that the approximation is a sensible one—that we have not entirely lost the benefits of
having a nonparametric Bayesian model. For example, EM, which approximates the posterior over
parameters with a single point estimate, is a poor approximation, which lacks the model selection
capabilities of mean-field variational inference, as we will see in Section A.3.3.

In this section, we evaluate the mean-field approximation with some illustrative examples of
simple mixture models. Section A.3.1 discusses the qualitative nature of the approximated poste-
rior, Section A.3.2 shows how the DP prior manifests itself in the mean-field update equations, and
Section A.3.3 discusses the long term effect of the DP prior over multiple mean-field iterations.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

φ1

φ2

(a) True posterior

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

φ1

φ2

(b) Mean-field

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

φ1

φ2

(c) Degenerate (EM)

Figure 15: Shows (a) the true posterior p(φ1, φ2 | x), (b) the optimal mean-field posterior, and (c)
the optimal degenerate posterior (found by EM).

A.3.1 Mean-field approximation of the true posterior

Consider simple mixture model in Figure 14. Suppose we observe n = 3 data points drawn from
the model: (1, 4), (1, 4), and (4, 1), where each data point consists of 5 binomial trials. Figure 15
shows how the true posterior over parameters compares with EM and mean-field approximations.
We make two remarks:

1. The true posterior is symmetrically bimodal, which reflects the non-identifiability of the mix-
ture components: φ1 and φ2 can be interchanged without affecting the posterior probability.
The mean-field approximation can approximate only one of those modes, but does so quite
well in this simple example. In general, the mean-field posterior tends to underestimate the
variance of the true posterior.

2. The mode found by mean-field has higher variance in the φ1 coordinate than the φ2. This
is caused by the fact that there component 2 has two data points ((1, 4) and (1, 4)) support-
ing the estimates whereas component 1 has only one ((4, 1)). EM (using MAP estimation)
represents the posterior as a single point at the mode, which ignores the varying amounts of
uncertainty in the parameters.

A.3.2 EM and mean-field updates in the E-step

In this section we explore the difference between EM and mean-field updates as reflected in the E-
step. Recall that in the E-step, we optimize a multinomial distribution q(z) over the latent discrete
variables z; for the HDP-PCFG, the optimal multinomial distribution is given by (5) and is propor-
tional to a product of multinomial weights (36). The only difference between EM and mean-field is
that EM uses the maximum likelihood estimate of the multinomial parameters whereas mean-field
uses the multinomial weights. Unlike the maximum likelihood solution, the multinomial weights
do not have to sum to one; this provides mean-field with an additional degree of freedom that the
algorithm can use to capture some of the uncertainty. This difference is manifested in two ways,
via a local tradeoff and a global tradeoff between components.

Local tradeoff Suppose that β ∼ Dir(α, . . . , α), and we observe counts (c1, . . . , cK) ∼ Mult(β).
Think of β as a distribution over the K mixture components and c1, . . . , cK as the expected counts

3However, it is still possible to sample in the collapsed representation and still exploit dynamic programming via
Metropolis-Hastings (Johnson et al., 2007).

0.4 0.8 1.2 1.6 2.0

x

0.4

0.8

1.2

1.6

2.0

x

exp(Ψ(·))

Figure 16: The exp(Ψ(·)) function, which is used in computing the multinomial weights for mean-
field inference. It has the effect of adversely impacting small counts more than large counts.

computed in the E-step. In the M-step, we compute the posterior over β, and compute the multi-
nomial weights needed for the next E-step.

For MAP estimation (equivalent to assuming a degenerate q(β)), the multinomial weights would
be

Wi =
ci + α− 1∑K

j=1(cj + α− 1)
.

When α = 1, maximum likelihood is equivalent to MAP, which corresponds to simply normalizing
the counts (Wi ∝ ci).

Using a mean-field approximation for q(β) yields the following multinomial weights:

Wi = exp{Eβ∼Dir(c1+α,...,cK+α) log βi} =
exp(Ψ(ci + α))

exp(Ψ(
∑K

j=1(cj + α)))
. (33)

Let α = α′

K and recall from that for large K, Dir(α
′

K , . . . ,
α′

K) behaves approximately like a Dirichlet
process prior with concentration α′ (Theorem 2 of Ishwaran and Zarepour (2002)).

When K is large, α = α′

K ≈ 0, so, crudely, Wi ∝ exp(Ψ(ci)) (although the weights need not
sum to 1). The exp(Ψ(·)) function is shown in Figure 16. We see that exp(Ψ(·)) has the effect of
reducing the weights; for example, when c > 1

2 , exp(Ψ(c)) ≈ c− 1
2 . However, the relative reduction

1− exp(Ψ(ci))
ci

is much more for small values of ci than for large values of ci.
This induces a rich-gets-richer effect characteristic of Dirichlet processes, where larger counts

get further boosted and small counts get further diminished. As c increases, however, the rela-
tive reduction tends to zero. This asymptotic behavior is in agreement with the general fact that
the Bayesian posterior over parameters converges to a degenerate distribution at the maximum
likelihood estimate.

Global tradeoff Thus far we have considered the numerator of the multinomial weight (33),
which determines how the various components of the multinomial are traded off locally. In addi-
tion, there is a global tradeoff that occurs between different multinomial distributions due to the
denominator. Consider the two-component mixture model from Section A.3.1. Suppose that after

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2 4 6 8 10 12 14

po
st

er
io

r
co

m
po

ne
nt

 w
ei

gh
t

iteration

(a) Dirichlet(1) prior; EM
component 0
component 1
component 2
component 3
component 4
component 5
component 6
component 7

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 2 4 6 8 10 12 14

po
st

er
io

r
co

m
po

ne
nt

 w
ei

gh
t

iteration

(b) Dirichlet(1.1) prior; EM
component 0
component 1
component 2
component 3
component 4
component 5
component 6
component 7

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10 12 14

po
st

er
io

r
co

m
po

ne
nt

 w
ei

gh
t

iteration

(c)truncated GEM(1) prior; EM
component 0
component 1
component 2
component 3
component 4
component 5
component 6
component 7

 0.115

 0.12

 0.125

 0.13

 0.135

 0 2 4 6 8 10 12 14

po
st

er
io

r
co

m
po

ne
nt

 w
ei

gh
t

iteration

(d) Dirichlet(1) prior; mean-field
component 0
component 1
component 2
component 3
component 4
component 5
component 6
component 7

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12 14

po
st

er
io

r
co

m
po

ne
nt

 w
ei

gh
t

iteration

(e) Dirichlet(1/K) prior; mean-field
component 0
component 1
component 2
component 3
component 4
component 5
component 6
component 7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12 14

po
st

er
io

r
co

m
po

ne
nt

 w
ei

gh
t

iteration

(f)truncated GEM(1) prior; mean-field
component 0
component 1
component 2
component 3
component 4
component 5
component 6
component 7

Figure 17: The evolution of the posterior mean of the component probabilities under the null
data-generating distribution for three priors p(β) using either EM or mean-field.

the E-step, the expected sufficient statistics are (20, 20) for component 1 and (0.5, 0.2) for com-
ponent 2. In the M-step, we compute the multinomial weights Wzj for components z = 1, 2 and
dimensions j = 1, 2. For another observation (1, 0) ∼ Bin1(φz), where z ∼ Mult(1

2 ,
1
2), the optimal

posterior q(z) is proportional to the multinomial weights Wz1.
For MAP (q(φ1, φ2) is degenerate), these weights are

W11 =
20

20 + 20
= 0.5 and W21 =

0.5
0.5 + 0.2

≈ 0.714,

and thus component 2 has higher probability. For mean-field (q(φ1, φ2) is a product of two Dirich-
lets), these weights are

W11 =
eΨ(20+1)

eΨ(20+20+1)
≈ 0.494 and W21 =

eΨ(0.5+1)

eΨ(0.5+0.2+1)
≈ 0.468,

and thus component 1 has higher probability. Note that mean-field is sensitive to the uncertainty
over parameters: even though the mode of component 2 favors the observation (1, 0), component
2 has sufficiently higher uncertainty that the optimal posterior q(z) will favor component 1.

This global tradeoff is another way in which mean-field penalizes the use of many components.
Components with more data supporting its parameters will be preferred over their meager coun-
terparts.

A.3.3 Interaction between prior and inference

In this section we consider some of the interactions between the choice of prior (Dirichlet or Dirich-
let process) and the choice of inference algorithm (EM or mean-field). Consider a K-component
mixture model with component probabilities β with a “null” data-generating distribution, meaning
that F (·; ·) ≡ 1 (see Section A.1.1). Note that this is not the same as having zero data points, since
each data point still has an unknown assignment variable zi. Because of this, the approximate
posterior q(β) does not converge to the prior p(β).

Figure 17 shows the impact of three priors using both EM and mean-field. Each plot shows
how the posterior over components probabilities change over time. In general, the component

probabilities would be governed by both the influence of the prior shown here and the influence of
a likelihood.

With a Dir(1, . . . , 1) prior and EM, the component probabilities do not change over iterations
since the uniform prior over component probabilities does not prefer one component over the other
(a). If we use mean-field with the same prior, the weights converge to the uniform distribution
since α = 1 roughly has the effect of adding 0.5 pseudocounts (d) (see Section A.3.2). The same
asymptotic behavior can be obtained by using Dir(1.1, . . . , 1.1) and EM, which is equivalent to
adding 0.1 pseudocounts (b).

Since the data-generating distribution is the same for all components, one component should
be sufficient and desirable, but so far, none of these priors encourage sparsity in the components.
The Dir(1

K , . . . ,
1
K) prior (e), which approximates a DP prior (Ishwaran and Zarepour, 2002), does

provide this sparsity if we use mean-field. With α = 1
K near zero, components with more counts

are favored. Therefore, the probability of the largest initial component increases and all others are
driven close to zero. Note that EM is not well defined because the mode is not unique.

Finally, plots (c) and (f) provide two important insights:

1. The Dirichlet process is defined by using the GEM prior (Section A.1.2), but if we use EM
for inference the prior does not produce the desired sparsity in the posterior (c). This is an
instance where the inference algorithm is too weak to leverage the prior. The reason behind
this failure is that the truncation of GEM(1) places a uniform distribution on each of the stick-
breaking proportions, so there is no pressure to move away from the initial set of component
probabilities.

Note that while the truncation of GEM(1) places a uniform distribution over stick-breaking
proportions, it does not induce a uniform distribution over the stick-breaking probabilities.
If we were to compute the MAP stick-breaking probabilities under the induced distribution,
we would obtain a different result. The reason because this discrepancy is that although the
likelihood is independent of the parametrization, the prior is not. Note that full Bayesian
posterior inference is independent of the parametrization.

2. If we perform approximate Bayesian inference using mean-field (f), then we can avoid the
stagnation problem that we had with EM. However, the effect is not as dramatic as in (e). This
shows that although the Dir(1

K , . . . ,
1
K) prior and the truncated GEM(1) prior both converge

to the DP, their effect in the context of mean-field is quite different. It is perhaps surprising
that the stick-breaking prior, which places emphasis on decreasing component sizes, actually
does not result in a mean-field posterior that decays as quickly as the posterior produced by
the symmetric Dirichlet.

B Derivations

This section derives the update equations for the coordinate-wise ascent algorithm presented in
Section 4. We begin by deriving the form of the general update (Section B.1). Then we apply this
result to multinomial distributions (Section B.2) for the posterior over parse trees q(z) and Dirichlet
distributions (Section B.3) for the posterior over rule probabilities q(φ). Finally, we describe the
optimization of the degenerate posterior over the top-level component weights q(β) (Section B.4).

B.1 General updates

In a general setting, we have a fixed distribution p(y) over the variables y = (y1, . . . , yn), which
can be computed up to a normalization constant. (For the HDP-PCFG, p(y) = p(z, θ | x).) We
wish to choose the best mean-field approximation q(y) =

∏n
i=1 q(yi), where the q(yi) are arbitrary

distributions. Recall that the objective of mean-field variational inference (2) is to minimize the
KL-divergence between q(y) and p(y). Suppose we fix q(y−i)

def=
∏
j 6=i q(yj) and wish to optimize

q(yi). We rewrite the variational objective with the intent of optimizing it with respect to q(yi):

KL(q(y)||p(y)) = −Eq(y)[log p(y)]−H(q(y))

= −Eq(y)[log p(y−i)p(yi | y−i)]−
n∑
j=1

H(q(yj))

=
(
− Eq(yi)[Eq(y−i) log p(yi | y−i)]−H(q(yi))

)
+(

− Eq(y−i) log p(y−i)−
∑
j 6=i

H(q(yj))
)

= KL(q(yi)|| exp{Eq(y−i) log p(yi | y−i)}) + constant, (34)

where the constant does not depend on q(yi). We have exploited the fact that the entropy H(q(y))
decomposes into a sum of individual entropies because q is fully factorized.

The KL-divergence is minimized when its two arguments are equal, so if there are no constraints
on q(yi), the optimal update is given by

q(yi) ∝ exp{Eq(y−i) log p(yi | y−i)}. (35)

In fact, we only need to compute p(yi | y−i) up to a normalization constant, because q(yi) must be
normalized anyway.

From (35), we can see a strong connection between Gibbs sampling and mean-field. Gibbs
sampling draws yi ∼ p(yi | y−i). Both algorithms iteratively update the approximation to the
posterior distribution one variable at a time using its conditional distribution.

B.2 Multinomial updates

This general update takes us from (4) to (5) in Section 4.2.1, but we must still compute the multi-
nomial weights defined in (6) and (7). We will show that the multinomial weights for a general
Dirichlet are as follows:

Wi
def= exp{Eφ∼Dir(γ) log φi} =

exp{Ψ(γi)}
exp{Ψ(

∑
j γj)}

, (36)

where Ψ(x) = d
dx log Γ(x) is the digamma function.

The core of this computation is the computation of the mean value of log φi with respect to a
Dirichlet distribution. Write the Dirichlet distribution in exponential family form:

p(φ | γ) = exp
{∑

i

γi log φi︸ ︷︷ ︸
sufficient
statistics

−
[∑

i

log Γ(γi)− log Γ
(∑

i

γi

)
︸ ︷︷ ︸

log-partition function A(γ)

]}
.

Since the expected sufficient statistics of an exponential family are equal to the derivatives of the
cumulant function, we have

E log φi =
∂A(γ)
∂γi

= Ψ(γi)−Ψ
(∑

j

γj

)
.

Exponentiating both sides yields (36).
Finally, in the context of the HDP-PCFG, (36) can be applied with Dir(γ) as q(φE), q(φB), or

q(φT).

B.3 Dirichlet updates

Now we consider updating the Dirichlet components of the mean-field approximation, which in-
clude q(φE), q(φB), and q(φT). We will only derive q(φE) since the others are analogous. The
general mean-field update (35) gives us

q(φEz) ∝ exp
{
Eq(z) log p(φEz | θ\φEz , z, x)

}
(37)

∝ exp
{
Eq(z) log

∏
x∈Σ

φEz (x)α
E(x)

∏
x∈Σ

φEz (x)
Pn

i=1 I[z[i,i]=z,xi=x]
}

(38)

= exp
{∑
x∈Σ

Eq(z)

(
αE(x) +

n∑
i=1

I[z[i,i] = z, xi = x]
)

log φEz (x)
}

(39)

= exp
{∑
x∈Σ

(αE(x) + CE(z, x)) log φEz (x)
}

(40)

=
∏
x∈Σ

φEz (x)α
E(x)+CE(z,x) (41)

∝ Dir(φEz ;αE(·) + CE(z, ·)). (42)

B.4 Updating top-level component weights

In this section, we discuss the computation of the objective function L(β) and its gradient ∇L(β),
which are required for updating the top-level component weights (Section 4.2.3).

We adapt the projected gradient algorithm (Bertsekas, 1999). At each iteration t, given the
current point β(t), we compute the gradient ∇L(β(t)) and update the parameters as follows:

β(t+1) ← Π(β(t) + ηt∇L(β(t))), (43)

where ηt is the step size, which is chosen based on approximate line search, and Π projects its
argument onto the K-dimensional simplex, where K is the truncation level.

Although β specifies a distribution over the positive integers, due to truncation, βz = 0 for
z > K and βK = 1−

∑K−1
z=1 βz. Thus, slightly abusing notation, we write β = (β1, . . . , βK−1) as the

optimization variables, which must reside in the set

T =
{

(β1, . . . , βK−1) : ∀1 ≤ z < K, βz ≥ 0 and
K−1∑
z=1

βz ≤ 1
}
. (44)

The objective function is the sum of two terms, which can be handled separately:

L(β) = log GEM(β;α)︸ ︷︷ ︸
“prior term” Lprior

+
∑
z

Eq log Dir(φBz ;αBββ>)︸ ︷︷ ︸
“rules term” Lrules

. (45)

Prior term Let π : [0, 1]K−1 7→ T be the mapping from stick-breaking proportions u = (u1, . . . , uK−1)
to stick-breaking weights β = (β1, . . . , βK−1) as defined in (27). The inverse map is given by

π−1(β) = (β1/T1, β2/T2, . . . , βK−1/TK−1)>,

where

Tz
def= 1−

z−1∑
z′=1

βz′

are the tail sums of the stick-breaking weights.
The density for the GEM prior is naturally defined in terms of the densities of the independent

beta-distributed stick-breaking proportions u. However, to produce a density on T , we need to
perform a change of variables. First, we compute the Jacobian of π−1:

∇π−1 =

1/T1 0 0 · · · 0
∗ 1/T2 0 · · · 0
∗ ∗ 1/T3 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ ∗ 1/TK−1

 (46)

The determinant of a lower triangular matrix is the product of the diagonal entries, so we have that

log det∇π−1(β) = −
K−1∑
z=1

log Tz, (47)

which yields

Lprior(β) = log GEM(β;α)

= log
K−1∏
z=1

Beta(βz/Tz; 1, α) + log det∇π−1(β)

= log
K−1∏
z=1

Γ(α+ 1)
Γ(α)Γ(1)

(1− βz/Tz)α−1 + log det∇π−1(β)

= (K − 1) logα+
K−1∑
z=1

(α− 1) log(Tz+1/Tz) + log det∇π−1(β)

= (α− 1) log TK −
K−1∑
z=1

log Tz + constant.

Note that the beta prior is only applied to the first K − 1 stick-breaking proportions, since the K-th
proportion is always fixed to 1. The terms from the log densities reduce to (α − 1) log TK via a
telescoping sum, leaving the terms from the Jacobian as the main source of regularization.

Observing that ∂Tz
∂βk

= −I[z > k], we can differentiate the prior term with respect to βk:

∂Lprior(β)
∂βk

= −α− 1
TK

−
K−1∑
z=1

−I[z > k]
Tz

(48)

=
K−1∑
z=k+1

1
Tz
− α− 1

TK
. (49)

To compute the effect of βk on the objective, we only need to look at tail sums of the component
weights that follow it.

For comparison, let us compute the derivative when using a Dirichlet instead of a GEM prior:

L̃prior(β) = log Dir(β;α) = (α− 1)
K∑
z=1

log βk + constant. (50)

Differentiating with respect to βk for k = 1, . . . ,K−1 (βK is a deterministic function of β1, . . . , βK−1)
yields:

∂L̃prior(β)
∂βk

= (α− 1)
(1
βk
− 1
βK

)
=
α− 1
βk

− α− 1
TK

. (51)

Rules term We compute the remaining term in the objective function:

Lrules(β) =
K∑
z=1

Eq(φ) log Dir(φBz ;αBββ>) (52)

=
K∑
z=1

(
log Γ(αB)−

K∑
i=1

K∑
j=1

log Γ(αBβiβj) +
K∑
i=1

K∑
j=1

(αBβiβj − 1)Eq(φ) log φBz (i, j)
)
.

Before differentiating Lrules(β), let us first differentiate a related function Lrules−K(β, βK), de-
fined on K arguments instead of K − 1:

∂Lrules−K(β, βK)
∂βk

=
K∑
z=1

(
− 2

K∑
i=1

αBβiΨ(αBβiβk) +
K∑
i=1

αBβiEq(φ) log φB(k, i)φBz (i, k)
)

(53)

= αB

K∑
z=1

K∑
i=1

βi(Eq(φ) log φBz (k, i)φBz (i, k)− 2Ψ(αBβiβk)).

Now we can apply the chain rule using the fact that ∂βK
∂βk

= −1 for k = 1, . . . ,K − 1:

∂Lrules(β)
∂βk

=
∂Lrules−K(β, βK)

∂βk
+
∂Lrules−K(β, βK)

∂βK
· ∂βK
∂βk

(54)

= αB

K∑
z=1

K∑
i=1

βi(Eq(φ) log φBz (k, i)φBz (i, k)− 2Ψ(αBβiβk))−

αB

K∑
z=1

K∑
i=1

βi(Eq(φ) log φBz (K, i)φBz (i,K)− 2Ψ(αBβiβK)).

References

Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric
problems. Annals of Statistics 2, 1152–1174.

Beal, M., Z. Ghahramani, and C. Rasmussen (2002). The infinite hidden Markov model. In Advances
in Neural Information Processing Systems (NIPS), Cambridge, MA, pp. 577–584. MIT Press.

Bertsekas, D. (1999). Nonlinear Programming. Belmont, MA: Athena Scientific.

Blei, D. and M. I. Jordan (2005). Variational inference for Dirichlet process mixtures. Bayesian
Analysis 1, 121–144.

Blunsom, P., T. Cohn, and M. Osborne (2009). Bayesian synchronous grammar induction. In
Advances in Neural Information Processing Systems (NIPS), Cambridge, MA. MIT Press.

Carroll, G. and E. Charniak (1992). Two experiments on learning probabilistic dependency gram-
mars from corpora. In Workshop Notes for Statistically-Based NLP Techniques, AAAI, pp. 1–13.

Charniak, E. (1996). Tree-bank grammars. In Association for the Advancement of Artificial Intelli-
gence (AAAI), Cambridge, MA, pp. 1031–1036. MIT Press.

Charniak, E. (2000). A maximum-entropy-inspired parser. In Applied Natural Language Processing
and North American Association for Computational Linguistics (ANLP/NAACL), Seattle, Washing-
ton, pp. 132–139. Association for Computational Linguistics.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information
Theory 2, 113–124.

Collins, M. (1999). Head-Driven Statistical Models for Natural Language Parsing. Ph. D. thesis,
University of Pennsylvania.

DeNero, J., A. Bouchard-Côté, and D. Klein (2008). Sampling alignment structure under a Bayesian
translation model. In Empirical Methods in Natural Language Processing (EMNLP), Honolulu, HI,
pp. 314–323.

Dyrka, W. and J. Nebel (2007). A probabilistic context-free grammar for the detection of binding
sites from a protein sequence. Systems Biology, Bioinformatics and Synthetic Biology 1, 78–79.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics 1,
209–230.

Ferguson, T. S. (1974). Prior distributions on spaces of probability measures. Annals of Statistics 2,
615–629.

Finkel, J. R., T. Grenager, and C. Manning (2007). The infinite tree. In Association for Compu-
tational Linguistics (ACL), Prague, Czech Republic, pp. 272–279. Association for Computational
Linguistics.

Galley, M., M. Hopkins, K. Knight, and D. Marcu (2004). What’s in a translation rule? In Human
Language Technology and North American Association for Computational Linguistics (HLT/NAACL),
Boston, MA, pp. 273–280.

Gildea, D. and D. Jurafsky (2002). Automatic labeling of semantic roles. Computational Linguis-
tics 28, 245–288.

Hermjakob, U. (2001). Parsing and question classification for question answering. In Workshop on
Open-domain question answering, ACL, Toulouse, France, pp. 1–6.

Ishwaran, H. and L. F. James (2001). Gibbs sampling methods for stick-breaking priors. Journal of
the American Statistical Association 96, 161–173.

Ishwaran, H. and M. Zarepour (2002). Exact and approximate sum-representations for the Dirichlet
process. Canadian Journal of Statististics 30, 269–284.

Johnson, M. (1998). PCFG models of linguistic tree representations. Computational Linguistics 24,
613–632.

Johnson, M., T. Griffiths, and S. Goldwater (2006). Adaptor grammars: A framework for specifying
compositional nonparametric Bayesian models. In Advances in Neural Information Processing
Systems (NIPS), Cambridge, MA, pp. 641–648. MIT Press.

Johnson, M., T. Griffiths, and S. Goldwater (2007). Bayesian inference for PCFGs via Markov chain
Monte Carlo. In Human Language Technology and North American Association for Computational
Linguistics (HLT/NAACL), Rochester, New York, pp. 139–146.

Klein, D. and C. Manning (2003). Accurate unlexicalized parsing. In Association for Computational
Linguistics (ACL), Sapporo, Japan, pp. 423–430. Association for Computational Linguistics.

Klein, D. and C. D. Manning (2004). Corpus-based induction of syntactic structure: Models of
dependency and constituency. In Association for Computational Linguistics (ACL), Barcelona,
Spain, pp. 478–485. Association for Computational Linguistics.

Kurihara, K. and T. Sato (2004). An application of the variational Bayesian approach to proba-
bilistic context-free grammars. In International Joint Conference on Natural Language Processing
Workshop Beyond Shallow Analyses, Japan.

Kurihara, K., M. Welling, and Y. W. Teh (2007). Collapsed variational Dirichlet process mixture
models. In International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India.

Lari, K. and S. J. Young (1990). The estimation of stochastic context-free grammars using the
inside-outside algorithm. Computer Speech and Language 4, 35–56.

MacKay, D. (1997). Ensemble learning for hidden Markov models. Technical report, University of
Cambridge.

Manning, C. and H. Schütze (1999). Foundations of Statistical Natural Language Processing. Cam-
bridge, MA: MIT Press.

Marcus, M. P., M. A. Marcinkiewicz, and B. Santorini (1993). Building a large annotated corpus of
English: the Penn Treebank. Computational Linguistics 19, 313–330.

Matsuzaki, T., Y. Miyao, and J. Tsujii (2005). Probabilistic CFG with latent annotations. In As-
sociation for Computational Linguistics (ACL), Ann Arbor, Michigan, pp. 75–82. Association for
Computational Linguistics.

Papaspiliopoulos, O. and G. O. Roberts (2008). Retrospective MCMC for Dirichlet process hierar-
chical models. Biometrika 95, 169–186.

Pereira, F. and Y. Shabes (1992). Inside-outside reestimation from partially bracketed corpora. In
Association for Computational Linguistics (ACL), Newark, Delaware, pp. 128–135. Association for
Computational Linguistics.

Petrov, S., L. Barrett, R. Thibaux, and D. Klein (2006). Learning accurate, compact, and inter-
pretable tree annotation. In International Conference on Computational Linguistics and Associa-
tion for Computational Linguistics (COLING/ACL), pp. 433–440. Association for Computational
Linguistics.

Petrov, S. and D. Klein (2007). Learning and inference for hierarchically split PCFGs. In Human
Language Technology and North American Association for Computational Linguistics (HLT/NAACL),
Rochester, New York, pp. 404–411.

Robert, C. P. and G. Casella (2004). Monte Carlo Statistical Methods. New York: Springer.

Rodriguez, A., D. B. Dunson, and A. E. Gelfand (2008). The nested Dirichlet process. Journal of the
American Statistical Association 103, 1131–1144.

Sakakibara, Y. (2005). Grammatical inference in bioinformatics. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27, 1051–1062.

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica 4, 639–650.

Smith, N. and J. Eisner (2005). Contrastive estimation: Training log-linear models on unlabeled
data. In Association for Computational Linguistics (ACL), Ann Arbor, Michigan, pp. 354–362.
Association for Computational Linguistics.

Stolcke, A. and S. Omohundro (1994). Inducing probabilistic grammars by Bayesian model merg-
ing. In International Colloquium on Grammatical Inference and Applications, London, UK, pp.
106–118. Springer-Verlag.

Teh, Y. W., M. I. Jordan, M. Beal, and D. Blei (2006). Hierarchical Dirichlet processes. Journal of
the American Statistical Association 101, 1566–1581.

Teh, Y. W., D. Newman, and M. Welling (2007). A collapsed variational Bayesian inference al-
gorithm for Latent Dirichlet Allocation. In Advances in Neural Information Processing Systems
(NIPS), Cambridge, MA, pp. 1353–1360. MIT Press.

Wainwright, M. and M. I. Jordan (2008). Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning 1, 1–307.

Walker, S. G. (2004). Sampling the Dirichlet mixture model with slices. Communications in Statistics
- Simulation and Computation 36, 45–54.

Wu, D. (1997). Stochastic inversion transduction grammars and bilingual parsing of parallel cor-
pora. Computational Linguistics 23, 377–404.

Zhu, S. C. and D. Mumford (2006). A stochastic grammar of images. Foundations and Trends in
Computer Graphics and Vision 2, 259–362.

