Learning from Measurements in Exponential Families

ICML – Montreal

June 16, 2009

Percy Liang

Michael Jordan

Dan Klein

target predictor p^* human

Types of information:

Labeled examples (specific) [standard supervised learning]

Types of information:

Labeled examples (specific) [standard supervised learning] Constraints (general) [Chang, et al., 2007; Druck, et al., 2008]

Types of information:

Labeled examples (specific) [standard supervised learning] Constraints (general) [Chang, et al., 2007; Druck, et al., 2008] **Measurements**: our unifying framework

Types of information:

Labeled examples (specific) [standard supervised learning] Constraints (general) [Chang, et al., 2007; Druck, et al., 2008] **Measurements**: our unifying framework

Outline:

1. Coherently learn from diverse measurements

Types of information:

Labeled examples (specific) [standard supervised learning] Constraints (general) [Chang, et al., 2007; Druck, et al., 2008] **Measurements**: our unifying framework

Outline:

- 1. Coherently learn from diverse measurements
- 2. Actively select the best measurements

Measurement features: $\sigma(x, y) \in \mathbb{R}^k$

Measurement features: $\sigma(x,y) \in \mathbb{R}^k$ Measurement values: $\tau \in \mathbb{R}^k$

$$\tau = \sum_{i=1}^{n} \sigma(X_i, Y_i) + \text{noise}$$

 $\sigma(X_1, Y_1)$ $\sigma(X_2, Y_2)$ $\sigma(X_3, Y_3)$ \cdots $\sigma(X_i, Y_i)$ \cdots $\sigma(X_n, Y_n)$ + noise

au

Measurement features: $\sigma(x,y) \in \mathbb{R}^k$ Measurement values: $\tau \in \mathbb{R}^k$

$$\tau = \sum_{i=1}^{n} \sigma(X_i, Y_i) + \text{noise}$$

au

Measurement features: $\sigma(x,y) \in \mathbb{R}^k$ Measurement values: $\tau \in \mathbb{R}^k$

$$\tau = \sum_{i=1}^{n} \sigma(X_i, Y_i) + \text{noise}$$

Set σ to reveal various types of information about Y through τ

 $\sigma(X_1, Y_1)$

 $\sigma(X_2, Y_2)$

 $\sigma(X_3, Y_3)$

au

Fully-labeled example:

 $\sigma_j(x,y) = \mathbb{I}[x = View of Los \dots, y = * * * \dots]$

Fully-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View of Los \dots, y = * * * \dots]$$

Partially-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View of Los ..., y_1 = *]$$

Fully-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View of Los \dots, y = * * * \dots]$$

Partially-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View of Los ..., y_1 = *]$$

Labeled predicate:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[x_i = View, y_i = *]$$

Fully-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View of Los \dots, y = * * * \dots]$$

Partially-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View of Los ..., y_1 = *]$$

Labeled predicate:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[x_i = View, y_i = *]$$

Label proportions:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[y_i = *]$$

Fully-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View of Los \dots, y = * * * \dots]$$

Partially-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View of Los ..., y_1 = *]$$

Labeled predicate:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[x_i = View, y_i = *]$$

Label proportions:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[y_i = *]$$

Label preference:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[y_i = \text{FEAT}] - \mathbb{I}[y_i = \text{AVAIL}]$$

Fully-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View of Los \dots, y = * * * \dots]$$

Partially-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View of Los ..., y_1 = *]$$

Labeled predicate:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[x_i = View, y_i = *]$$

Label proportions:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[y_i = *]$$

Label preference:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[y_i = \text{FEAT}] - \mathbb{I}[y_i = \text{AVAIL}]$$

Can get measurement values τ without looking at all examples

Fully-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View of Los \dots, y = * * * \dots]$$

Partially-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View of Los ..., y_1 = *]$$

Labeled predicate:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[x_i = View, y_i = *]$$

Label proportions:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[y_i = *]$$

Label preference:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[y_i = \text{feat}] - \mathbb{I}[y_i = \text{Avail}]$$

Can get measurement values τ without looking at all examples Next: How to combine these diverse measurements coherently?

Bayesian framework:

Bayesian framework:

Bayesian framework:

Exponential families:

$$p_{\theta}(y \mid x) = \exp\{\langle \phi(x, y), \theta \rangle - A(\theta; x)\}$$

Bayesian framework:

Exponential families:

$$p_{\theta}(y \mid x) = \exp\{\langle \phi(x, y), \theta \rangle - A(\theta; x)\}$$

 $\phi(x,y) \in \mathbb{R}^d$: model features

Bayesian framework:

Exponential families:

$$p_{\theta}(y \mid x) = \exp\{\langle \phi(x, y), \theta \rangle - A(\theta; x)\}$$

 $\phi(x,y) \in \mathbb{R}^d$: model features $heta \in \mathbb{R}^d$: model parameters

Bayesian framework:

Exponential families:

$$p_{\theta}(y \mid x) = \exp\{\langle \phi(x, y), \theta \rangle - A(\theta; x)\}$$

 $\phi(x, y) \in \mathbb{R}^d$: model features $\theta \in \mathbb{R}^d$: model parameters $A(\theta; x) = \int \exp\{\langle \phi(x, y), \theta \rangle\} dy$: log-partition function

Variational formulation:

$$\min_{q \in \mathcal{Q}_{Y\theta}} \mathsf{KL}\left(q(Y,\theta) \mid \mid p(\theta, Y \mid \tau, X)\right)$$

Variational formulation:

$$\min_{q \in \mathcal{Q}_{Y\theta}} \mathsf{KL}\left(q(Y,\theta) \mid \mid p(\theta, Y \mid \tau, X)\right)$$

Approximations:

• $\mathcal{Q}_{Y\theta}$: mean-field factorization of q(Y) and degenerate $\tilde{\theta}$

Variational formulation:

$$\min_{q \in \mathcal{Q}_{Y\theta}} \mathsf{KL}\left(q(Y,\theta) \mid \mid p(\theta, Y \mid \tau, X)\right)$$

Approximations:

- $\mathcal{Q}_{Y\theta}$: mean-field factorization of q(Y) and degenerate $\tilde{\theta}$
- KL: measurements only hold in expectation (w.r.t. q(Y))

Variational formulation:

$$\min_{q \in \mathcal{Q}_{Y\theta}} \mathsf{KL}\left(q(Y,\theta) \mid \mid p(\theta, Y \mid \tau, X)\right)$$

Approximations:

- $\mathcal{Q}_{Y\theta}$: mean-field factorization of q(Y) and degenerate $\tilde{\theta}$
- KL: measurements only hold in expectation (w.r.t. q(Y)) Algorithm:
 - Apply Fenchel duality \rightarrow saddlepoint problem
 - Take alternating stochastic gradient steps

(assume zero measurement noise)

 $\mathcal{P} \stackrel{\text{def}}{=} \{ p_{\theta}(y \mid x) : \theta \in \mathbb{R}^d \}$

(assume zero measurement noise)

(assume zero measurement noise)

(assume zero measurement noise)

Interpretation:

Measurements shape Q Find model in \mathcal{P} with best fit

(assume zero measurement noise)

Interpretation:

Measurements shape Q Find model in \mathcal{P} with best fit

Two ways to recover supervised learning:

1. Measure $\sigma = \phi$: $\mathcal{P} \cap \mathcal{Q}$ is the unique solution

(assume zero measurement noise)

Interpretation:

Measurements shape Q Find model in \mathcal{P} with best fit

Two ways to recover supervised learning:

1. Measure $\sigma = \phi$: $\mathcal{P} \cap \mathcal{Q}$ is the unique solution

2. Measure
$$\sigma = \{\mathbb{I}[x = a, y = b]\}$$
:
 $Q = \{\text{empirical distribution}\}, \text{ project onto } P$

Guidelines:

To set σ , consider human (e.g., full labels)

Guidelines:

To set σ , consider human (e.g., full labels)

To set ϕ , consider statistical generalization (e.g., word suffixes)

Guidelines:

To set σ , consider human (e.g., full labels)

To set ϕ , consider statistical generalization (e.g., word suffixes) Intuition: consider feature $f(x, y) = \mathbb{I}[x \in A, y = 1]$

Guidelines:

To set σ , consider human (e.g., full labels)

To set ϕ , consider statistical generalization (e.g., word suffixes)

Intuition: consider feature $f(x, y) = \mathbb{I}[x \in A, y = 1]$

If f is a measurement feature (direct): "inputs in A should be labeled according to τ "

Guidelines:

To set σ , consider human (e.g., full labels)

To set ϕ , consider statistical generalization (e.g., word suffixes)

Intuition: consider feature $f(x, y) = \mathbb{I}[x \in A, y = 1]$

If f is a measurement feature (direct): "inputs in A should be labeled according to τ " If f is a model feature (indirect): "inputs in A should be labeled similarly"

n = 1000 total examples (ads), 11 possible labels Model:

Conditional random field with standard NLP features

n = 1000 total examples (ads), 11 possible labels Model:

Conditional random field with standard NLP features Measurements:

- fully-labeled examples
- 33 labeled predicates (e.g., $\sum_{i} \mathbb{I}[x_i = View, y_i = FEAT]$)

n = 1000 total examples (ads), 11 possible labels Model:

Conditional random field with standard NLP features Measurements:

- fully-labeled examples
- 33 labeled predicates (e.g., $\sum_{i} \mathbb{I}[x_i = View, y_i = FEAT]$)

Per-position test accuracy (on 100 examples):

# labeled examples	10	25	100
General Expectation Criteria	74.6	77.2	80.5
Constraint-Driven Learning	74.7	78.5	81.7
Measurements	71.4	76.5	82.5

n = 1000 total examples (ads), 11 possible labels Model:

Conditional random field with standard NLP features Measurements:

- fully-labeled examples
- 33 labeled predicates (e.g., $\sum_{i} \mathbb{I}[x_i = View, y_i = FEAT]$)

Per-position test accuracy (on 100 examples):

# labeled examples	10	25	100
General Expectation Criteria	74.6	77.2	80.5
Constraint-Driven Learning	74.7	78.5	81.7
Measurements	71.4	76.5	82.5

Able to integrate labeled examples and predicates gracefully

So far: given measurements, how to learn

Next: how to choose measurements?

Bayesian decision theory

What do we do with an (approximate) posterior $p(\theta, Y \mid X, \tau)$?

Bayesian decision theory

What do we do with an (approximate) posterior $p(\theta, Y \mid X, \tau)$?

Bayes-optimal predictor:

average over X', max over \hat{Y}' , average over Y' of reward

Bayesian decision theory

What do we do with an (approximate) posterior $p(\theta, Y \mid X, \tau)$? Bayes-optimal predictor:

average over X', max over \hat{Y}' , average over Y' of reward

 $R(\sigma, \tau) =$ expected reward of Bayes-optimal predictor (i.e., how happy we are with the given situation)

Utility of measurement (σ, τ) :

$$U(\sigma,\tau) = \underbrace{R(\sigma,\tau)}_{\text{reward}} - \underbrace{C(\sigma)}_{\text{cost}}$$

Utility of measurement (σ, τ) :

$$U(\sigma,\tau) = \underbrace{R(\sigma,\tau)}_{\text{reward}} - \underbrace{C(\sigma)}_{\text{cost}}$$

When considering σ , don't know τ , so integrate out: $U(\sigma) = E_{p(\tau|X)}[U(\sigma,\tau)]$

Utility of measurement (σ, τ) :

$$U(\sigma,\tau) = \underbrace{R(\sigma,\tau)}_{\text{reward}} - \underbrace{C(\sigma)}_{\text{cost}}$$

When considering σ , don't know τ , so integrate out: $U(\sigma) = E_{p(\tau|X)}[U(\sigma,\tau)]$

Utility of measurement (σ, τ) :

$$U(\sigma,\tau) = \underbrace{R(\sigma,\tau)}_{\text{reward}} - \underbrace{C(\sigma)}_{\text{cost}}$$

When considering σ , don't know τ , so integrate out:

$$U(\sigma) = E_{p(\tau|X)}[U(\sigma,\tau)]$$

Choose best measurement feature σ :

$$\sigma^* = \operatorname{argmax}_\sigma U(\sigma)$$

n = 1000 total examples (sentences), 45 possible labels Model: Indep. logistic regression with standard NLP features

n = 1000 total examples (sentences), 45 possible labels Model: Indep. logistic regression with standard NLP features Measurements:

- fully-labeled examples
- labeled predicates (e.g., $\sum_{i} \mathbb{I}[x_i = the, y_i = DT]$)

Use label entropy as surrogate for assessing measurements

n = 1000 total examples (sentences), 45 possible labels Model: Indep. logistic regression with standard NLP features Measurements:

- fully-labeled examples
- labeled predicates (e.g., $\sum_{i} \mathbb{I}[x_i = the, y_i = DT]$)

Use label entropy as surrogate for assessing measurements Test accuracy (on 100 examples):

(a) Labeling examples

n = 1000 total examples (sentences), 45 possible labels Model: Indep. logistic regression with standard NLP features Measurements:

- fully-labeled examples
- labeled predicates (e.g., $\sum_{i} \mathbb{I}[x_i = the, y_i = DT]$)

Use label entropy as surrogate for assessing measurements Test accuracy (on 100 examples):

n = 1000 total examples (sentences), 45 possible labels Model: Indep. logistic regression with standard NLP features Measurements:

- fully-labeled examples
- labeled predicates (e.g., $\sum_{i} \mathbb{I}[x_i = the, y_i = DT]$)

Use label entropy as surrogate for assessing measurements Test accuracy (on 100 examples):

