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Abstract

Given a model family and a set of unla-
beled examples, one could either label specific
examples or state general constraints—both
provide information about the desired model.
In general, what is the most cost-effective
way to learn? To address this question, we
introduce measurements, a general class of
mechanisms for providing information about
a target model. We present a Bayesian
decision-theoretic framework, which allows
us to both integrate diverse measurements
and choose new measurements to make. We
use a variational inference algorithm, which
exploits exponential family duality. The mer-
its of our approach are demonstrated on two
sequence labeling tasks.

1. Introduction

Suppose we are faced with a prediction problem and
a set of unlabeled examples. The traditional approach
in machine learning is to label some of these exam-
ples and then fit a model to that labeled data. How-
ever, recent work has shown that specifying general
constraints on model predictions can be more efficient
for identifying the desired model (Chang et al., 2007;
Mann & McCallum, 2008). In practice, one might
want to use both labels and constraints, though previ-
ously these two sources have been handled in different
ways. In this paper, we adopt a unified statistical view
in which both labels and constraints are seen as ways
of providing information about an unknown model.
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feat feat feat feat feat ...

View of Los Gatos Foothills ...
avail avail avail ... size size size size ...

Available July 1 ... 2 bedroom 1 bath ...

Figure 1. A sequence labeling task: Given a sequence of
words from a Craigslist housing ad, label each word accord-
ing to the type of information it provides: address, avail-
ability, contact, features, size, etc.

To this end, we introduce measurements, which sub-
sume the notions of labels, partial labels, and general
constraints on model predictions. Formally, a mea-
surement is the expectation of a function (called a
measurement feature) over the outputs of the unla-
beled examples. A measurement provides a glimpse of
the hidden outputs, thus providing partial information
about the underlying model.

As a motivating application, consider the sequence la-
beling task shown in Figure 1. Given a Craigslist ad
(a sequence of words) as input, the task is to output
a label for each word indicating the semantic field to
which it belongs (e.g., address, size, availability,
etc.). Past research on this task has shown that in
addition to obtaining labels of full sequences, it is par-
ticularly efficient to directly impose soft, cross-cutting
constraints on the predictions of the model—for exam-
ple, “the word bedroom is labeled as size at least 90%
of the time.” Given both labels and constraints, how
do we integrate them in a coherent manner? Addition-
ally, how do we compare the value of information of
various labelings and constraints?

To address these questions, we present a Bayesian
decision-theoretic framework. Our setup follows
the principles of Bayesian experimental design (see
Chaloner and Verdinelli (1995) for an overview) but
generalizes traditional designs in that we receive infor-
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mation not directly, via labeled data, but indirectly,
via measurements.

In order to scale up to large datasets, we present a
variational approximation which exploits properties of
Fenchel duality for exponential families. Our approx-
imation is similar to the framework of Graça et al.
(2008) for handling constraints on model predictions
in a generative setting. Our variational objective can
be optimized by solving a saddle point problem.

Empirically, we tested our method on a synthetic
dataset and two natural language datasets (Craigslist
ads and part-of-speech tagging), showing that we can
integrate various types of measurements in a coherent
way and also improve performance by actively select-
ing the measurements.

2. Measurements

Consider a prediction task, where X denotes the set
of possible inputs and Y denotes the set of possi-
ble outputs. We start with a sequence of inputs
X = (X1, . . . , Xn), but unlike supervised learning,
we do not observe the corresponding hidden outputs
Y = (Y1, . . . , Yn). Instead, we propose making k mea-
surements on the data as follows:

τ =
n∑
i=1

σ(Xi, Yi) +Wσ, (1)

where σ(x, y) ∈ Rk is a vector of measurement features,
τ ∈ Rk is a vector of (observed) measurement values,
and Wσ is some measurement noise.

The purpose of measurements is to provide a unified
language for specifying partial information about Y .
Traditional methods do deal with missing data, but
the setting there is usually that of partial labels on
individual examples. In contrast, we consider a more
general space of mechanisms for partial supervision.
Importantly, a measurement is an aggregate statistic
that can span multiple examples.

In practice, measurement values τ can arise in two
ways. The first is via real measurements obtained from
the data; examples include labels of individual exam-
ples or aggregate values from a real experiment (e.g.,
pooling in genetics or census-taking). The second is
via pseudo-measurements, which are set by hand to
reflect prior knowledge, perhaps by “measuring” in a
thought experiment. In binary classification, declaring
that the fraction of positive examples is at least 95% is
an example of a pseudo-measurement. The difference
between pseudo- and real measurements is purely a
conceptual one, as the two types are handled the same
way inferentially.

We now give examples of measurements more formally:

Fully-Labeled Example To represent the output
of some input Xi ∈ X , let the components of σ in-
clude (x, y) 7→ I[x = Xi, y = b] for all b ∈ Y.1 Then
the corresponding components of τ entirely determine
Yi. While these measurements are sums over all n ex-
amples, τ can be computed by just inspecting Xi.

Partially-Labeled Example Suppose that we only
observe f(Yi), a partial version of Yi; for example, let
Yi be a sequence and f(Yi) a subsequence. If σ includes
(x, y) 7→ I[x = Xi, f(y) = b] for all b ∈ f(Y), then τ
reveals Yi up to f(Yi).

Labeled Predicate We can determine the outputs
of all inputs x for which f(x) = 1 by measuring
(x, y) 7→ I[f(x) = 1, y = b] for all b ∈ Y. An example of
a labeled predicate2 in document classification occurs
when x is a document and f(x) = 1 if x contains the
word “market.” Druck et al. (2008) showed that la-
beling these predicates can be more cost-effective than
labeling full examples.

For sequence labeling tasks, we typically want to pro-
vide the frequency of some label b over all positions
where the input sequence is some a (Mann & McCal-
lum, 2008). For this, make measurements of the form
(x, y) 7→

∑`
i=1 I[xi = a, yi = b], where ` is the length

of the sequence.

In Quadrianto et al. (2008), examples are partitioned
into sets, and all (x, y) 7→ I[f(x) = a, y = b] are mea-
sured, where f(x) is the set to which x belongs.

Label Proportions Measuring (x, y) 7→ I[y = b] for
all b ∈ Y yields the proportions of each output label.
This is the information used in expectation regulariza-
tion (Mann & McCallum, 2007).

Structured Label Constraints Sometimes we
have structural constraints on the outputs. In the
Craigslist task, for instance, the output is a sequence
y = (y1, . . . , y`). Domain knowledge tells us that
each label either appears in a contiguous block or not
at all. To capture this constraint, we use pseudo-
measurement features (x, y) 7→

∑`−1
i=1 I[x = a, yi =

b, yi+1 = c] for each a ∈ X and labels b 6= c. We set
the measurement values to τ = 0 and their measure-

1The indicator function is I[a] =

(
1 if a = true

0 otherwise.
2Druck et al. (2008) uses the term feature instead of

predicate. We use predicate to denote an indicator function
of the input x, reserving feature for functions on (x, y).
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ment noises to independent −U [0, 1]. These quantities
ensure that transitions into b, which mark the begin-
ning of a new block for b, happen between 0 and 1
times (i.e., at most once). See Graça et al. (2008) for
other types of constraints on structured outputs.

Label Preferences Suppose we don’t know the ex-
act proportions but strongly believe that b∗ is the most
common label. This information can be encoded by
the pseudo-measurement (x, y) 7→ I[y = b∗] − I[y = b]
for b ∈ Y and setting τ = 0 with noise −U [0, n]. These
quantities ensure that

∑n
i=1 I[y = b∗] ≥

∑n
i=1 I[y = b]

for all b ∈ Y. These preferences can also be adapted
to operate conditioned on predicates.

It is often natural to obtain measurements of differ-
ent types. We want to combine all the diverse mea-
surements in a coherent way. This is important since
there will naturally be varying amounts of redundancy
across measurements. Furthermore, we would like a
mechanism for determining which measurements to
make next, accounting for both their costs and pos-
sible benefits. How to achieve these two goals in a
principled way is the focus of the next section.

3. A Bayesian Framework

In this section, we present a Bayesian framework
for measurements, which provides a unified way of
both estimating model parameters given fixed mea-
surements (Section 3.1) and optimally choosing new
measurements (Section 3.2).

3.1. From Measurements to Model

Our goal is learn a predictor based on observed mea-
surements. For the predictor, we use conditional expo-
nential families, which include a broad class of predic-
tion models, e.g., linear regression, logistic regression,
and conditional random fields (Lafferty et al., 2001). A
conditional exponential family distribution is defined
as follows:

pθ(y | x) def= exp{〈φ(x, y), θ〉 −A(θ;x)} (2)

for x ∈ X , y ∈ Y, where φ(x, y) ∈ Rd is a vector
of model features, θ ∈ Rd is a vector of model pa-
rameters, and A(θ;x) = log

∫
e〈φ(x,y),θ〉dy is the log-

partition function.

Specifically, we would like to infer the model parame-
ters θ from measurement values τ and inputs X. Re-
call that the outputs Y are hidden. For guidance on
how to perform this inference, we define the following

Bayesian model (Figure 2(b)):

p(θ, Y, τ | X,σ) def= p(θ)
n∏
i=1

pθ(Yi | Xi)p(τ | X,Y, σ).

(3)
For computational reasons, we assume the parame-
ter prior and the noise distribution have log-concave
densities: log p(θ) = −hφ(θ) + constant and log p(τ |
X,Y, σ) = −hσ(τ − σX(Y )) + constant, where g

and h are even convex functions, and σX(Y ) def=∑n
i=1 σ(Xi, Yi). For example, we could use a Gaus-

sian prior on θ (hφ(θ) = λ
2 ||θ||

2) and independent box
noise (hσ(u) = W[∀j, |uj | ≤ εj ]).3

Given (3), we can obtain the posterior p(θ | τ,X, σ)
by marginalization. It is conceptually useful to de-
compose this marginalization into two steps: We first
combine pseudo-measurements τpseudo ⊂ τ with a
preliminary prior p(θ) to obtain a new prior p(θ |
τpseudo, X, σ). Then we combine this prior with real
measurements to obtain the final posterior p(θ |
τ,X, σ). This situation is analogous to multinomial
estimation with a conjugate Dirichlet prior: pseu-
docounts (concentration parameters) determine the
prior, which combines with real counts to form the
posterior.

We make one conceptual point regarding the relation-
ship between measurement features and model fea-
tures. While the two are the same type of mathe-
matical object, they play different roles. Consider fea-
tures fb(x, y) =

∑`
i=1 I[word xi ends in -room, yi = b]

for all labels b. As measurement features, f would
indicate that words ending in -room are likely to be
labeled according to τ . As model features, f would
indicate that words ending in -room are only labeled
similarly. In this way, measurement features (along
with τ) provide direct information whereas model fea-
tures provide indirect information. In general, mea-
surement features should be finer-grained than model
features, since finer features are easier to measure but
coarser features generalize better.4

3.2. Active Measurement Selection

We now have a handle on how to learn from measure-
ments, but how do we choose the optimal measure-
ments σ to make in the first place? To talk about
optimality, we must define a utility function. For us,
this involves predictive accuracy. First, define r(y, ŷ)

3W[a] =

(
0 if a = true

∞ otherwise.
4A feature f1 is finer than another feature f2 if

f2(x, y) = 0 implies f1(x, y) = 0.



Learning From Measurements in Exponential Families

to be the reward (e.g., label accuracy, or equivalently,
negative Hamming loss) if the actual output is y and
we predict ŷ. If we use the Bayes-optimal predictor
to make predictions on a new example X ′ with true
output Y ′, the expected reward is as follows:

R(σ, τ) def= Ep∗(X′) max
Ŷ ′

Ep(Y ′,θ|X′,τ,X,σ)[r(Y ′, Ŷ ′)].

(4)
In short, R(σ, τ) measures our satisfaction with having
made measurements (σ, τ). We also introduce C(σ),
the cost of measuring σ. Then the net (expected) util-
ity is the difference:

U(σ, τ) def= R(σ, τ)− C(σ). (5)

In practice, we choose measurements in a sequential
fashion. Suppose we have already made measurements
(σ0, τ0) and want to choose the next σ yielding the
highest expected utility. However, since we do not
know what measurement value τ we will obtain, we
must integrate over τ . Thus, the best subsequent mea-
surement (feature) is given by the following:

σ∗
def= argmax

σ∈Σ
U(σ), (6)

U(σ) def= Ep(τ |X,σ,σ0,τ0)[U((σ0, σ), (τ0, τ))],

where Σ is the set of candidate measurement features.
Note that σ∗ is obtained via one-step lookahead, so it
is only Bayes-optimal if σ∗ is the final measurement.

This completes the description of our measurement
framework. Most of the computations above are in-
tractable, so the remainder of this paper will focus on
designing practical approximations.

We pause briefly to compare our framework with tradi-
tional experimental design (active learning). In both,
there is an unknown parameter θ which governs pθ(y |
x). However, in traditional design, one chooses a set of
inputs X1, . . . , Xn, whereupon the outputs Y1, . . . , Yn
are revealed, and inference is then made on θ. In our
measurement framework, we choose measurement fea-
tures σ, whereupon the measurement values τ are re-
vealed, and inference is then made on θ through the
latent variable Y , which must be integrated out. Fig-
ure 2 illustrates the distinction.

4. Approximation Methods

We now present methods for making the Bayesian
principles described in the previous section practical.
We first present an approximate inference algorithm
for computing the posterior given fixed measurements
(Section 4.1). We then present a method for actively
choosing measurements (Section 4.2).

θ Y

X

θ Y τ

X σ

(a) Traditional design (b) Measurement design

Figure 2. In traditional experimental design (a), one se-
lects X and observes Y . In our measurement framework
(b), one selects σ and observes τ .

4.1. Approximate Inference

Our approximate computation of the true posterior
p(Y, θ | τ,X, σ) proceeds in three steps. First, we ap-
ply a standard mean-field factorization (Section 4.1.1).
Next, we relax the contribution of the measurements
and apply Fenchel duality to obtain a workable ob-
jective function (Section 4.1.2). Finally, we present a
strategy to optimize this function (Section 4.1.3).

4.1.1. Mean-field factorization

Following standard variational principles, we turn (ap-
proximate) posterior computation into an optimiza-
tion problem over a tractable set of distributions Q:

min
q∈Q

KL (q(Y, θ) || p(Y, θ | τ,X, σ)) . (7)

We use a mean-field approximation with a degenerate
distribution over θ:

Q def= {q(Y, θ) : q(Y, θ) = q(Y )δθ̃(θ)}. (8)

One could imagine using a normal approximation of
q(θ) (Jaakkola and Jordan (1997); Seeger and Nickisch
(2008)), but we chose a degenerate one for tractability.

Now let us expand the original optimization problem
(7) using (8) and (3):

min
q(Y ),θ

−H(q(Y )) + Eq(Y )[hσ(τ − σX(Y ))] (9)

−
n∑
i=1

Eq(Y ) log pθ(Yi | Xi) + hφ(θ).

4.1.2. Relaxation and Fenchel duality

One problem is that the contribution of the measure-
ments to the posterior (the second term of (9)) cou-
ples all the outputs Y1, . . . , Yn. To progress towards
tractability, we replace Eq(Y )[hσ(τ − σX(Y ))] in (9)
with hσ(τ −Eq(Y )[σX(Y )]), which is a lower bound by
Jensen’s inequality. In doing so, we no longer guaran-
tee a lower bound on the marginal likelihood.

However, this relaxation does let us rewrite (9) us-
ing Fenchel duality, which allows us to optimize over
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a vector β ∈ Rk rather than over an entire distribu-
tion q(Y ). Note that optimizing q(Y ) while holding
θ fixed is exactly a maximum (cross-)entropy problem
subject to approximate moment-matching constraints.
By Fenchel duality, the optimal q(Y ) belongs to an ex-
ponential family (cf. Dud́ık et al. (2007); Graça et al.
(2008)):

q(Y ) =
n∏
i=1

qβ,θ(Yi | Xi) (10)

qβ,θ(y | x) = exp{〈σ(x, y), β〉+ (11)
〈φ(x, y), θ〉 −B(β, θ;x)},

where B(β, θ;x) = log
∫
e〈σ(x,y),β〉+〈φ(x,y),θ〉dy is the

associated log-partition function for qβ,θ(y | x). See
Appendix A for the derivation. We can now reformu-
late (9) as the following saddle point problem:

min
θ∈Rd

max
β∈Rk

L(β, θ), (12)

L(β, θ) = 〈τ, β〉 −
n∑
i=1

B(β, θ;Xi) +
n∑
i=1

A(θ;Xi)−

h∗σ(β) + hφ(θ),

where h∗σ(β) = supu∈Rk{〈u, β〉 − hσ(u)} is the Fenchel
conjugate of hσ. If we assume independent box noise,
h∗σ(β) =

∑
j εj |βj |.

Let (β̃, θ̃) be the solution to this saddle point problem.
This pair specifies the approximate posterior q(Y, θ)
via (10), (11), and (8).

4.1.3. Optimization

We use a gradient-based approach to optimize L(β, θ)
in (12). The gradients can be computed using standard
moment-generating properties of log-partition func-
tions:

∂L(β, θ)
∂β

= τ − (13)

n∑
i=1

Eqβ,θ(Y |Xi)[σ(Xi, Y )]−∇h∗σ(β),

∂L(β, θ)
∂θ

=
n∑
i=1

Epθ(Y |Xi)[φ(Xi, Y )]− (14)

n∑
i=1

Eqβ,θ(Y |Xi)[φ(Xi, Y )] +∇hφ(θ).

Note that at (β̃, θ̃), both sets of moment-matching con-
straints (approximately) hold: (1) the measurement
feature expectations under qβ,θ are close to the ob-
served values τ , indicating that we have represented

the measurements faithfully; and (2) the model fea-
ture expectations under qβ,θ are close to those of pθ,
indicating that we have learned a good model.

Because n is typically large, we use stochastic approx-
imations to the gradient. In particular, we take alter-
nating stochastic gradient steps in β and θ. At the end,
we return an average of the parameter values obtained
along the way to provide stability.

The alternating quality of our algorithm is similar in
spirit to Chang et al. (2007). However, they maintain
a list of candidate Y s instead of a distribution q(Y ).
They also use a penalty for violating constraints (the
analog of our β), which must be manually set. We
only require specifying the form of the measurement
noise, which is more natural; from this, β is learned
automatically.

Note that the only computations we need are expected
feature vectors, which are standard quantities needed
in any case for gradient-based optimization proce-
dures. In contrast, the use of Generalized Expectation
Criteria requires computing the covariance between σ
and φ, which is more complex and expensive for graph-
ical models (Mann & McCallum, 2008).

4.1.4. Intuitions

For simplicity, assume zero measurement noise and a
flat improper prior on θ. Let P = {pθ(y | x) : θ ∈ Rd}
denote our model family. Let Q (different from before)
be the set of all distributions which are consistent with
our measurements (σ, τ). Our variational approxima-
tion can be interpreted as finding a qβ,θ(y | x) ∈ Q and
a pθ(y | x) ∈ P such that KL (q || p) is minimized.5 In-
tuitively, all external information is fed into Q, a stag-
ing area, which ensures we work with coherent distri-
butions. This information is then transferred to our
model family P, which allows us to generalize beyond
our observations.

When the measurement features are the same as the
model features (σ ≡ φ), the problem reduces to stan-
dard supervised learning by maximum entropy duality.
In particular, Q∩P contains the unique solution. An-
other way to obtain supervised learning is to measure
(x, y) 7→ I[x = a, y = b] for all a ∈ X , b ∈ Y (cf. Sec-
tion 2). Then Q is a single point which typically lies
outside P.

Druck et al. (2008) incorporate measurements using
Generalized Expectation Criteria, an objective func-
tion that penalizes some notion of distance (e.g., KL-

5In the language of information geometry, optimizing q
with p fixed is an I-projection; optimizing p with q fixed is
an M-projection.
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divergence) between Epθ(Y |X)[σ(X,Y )] and the mea-
surement values τ . Even when σ ≡ φ, their objective
function does not reduce to supervised learning and
thus does not resolve redundant measurements in a
coherent way.

4.2. Approximate Active Measurement
Selection

In traditional design, if pθ(y | x) is a linear regression
model and p(θ) is Gaussian, then U(σ) has a closed-
form expression. If a non-conjugate p(θ) is employed,
for example, a sparsity prior for compressed sensing,
one must resort to approximations such as expectation
propagation (Seeger & Nickisch, 2008).

In our measurement setting, inference is further com-
plicated by marginalization over Y , so let us apply
our posterior approximations to measurement selec-
tion (Section 3.2). First, consider the expected reward
(4). Since we do not have access to the true test dis-
tribution p∗(x), we use a heldout set of unlabeled ex-
amples X̃1, . . . , X̃m. Define p̃(x) = 1

m

∑m
i=1 δX̃i(x) to

be the corresponding empirical distribution.

Second, we replace the true posterior p(θ | τ,X, σ)
with a point estimate θ̃(σ, τ), thereby obtaining an ap-
proximate utility:

Ũ(σ, τ) def= Ep̃(X′) max
Ŷ ′

Epθ̃(Y ′|X′)[r(Y ′, Ŷ ′)]− C(σ).

(15)

The final step is to marginalize out τ . Suppose we
have already made measurements (σ0, τ0). The true
posterior p(Y, θ | X,σ0, τ0) is currently approximated
by q0(Y, θ) (represented by (β̃0, θ̃0)). Using this ap-
proximation leads to q0(τ) def= Eq0(Y )[p(τ | X,Y, σ)] as
a substitute for p(τ | X,σ, σ0, τ0).

Though we can compute Ũ((σ0, σ), (τ0, τ)) for a fixed
τ , we cannot integrate Ũ over τ . Thus, we use a Monte
Carlo approximation: Draw t samples from q0(τ) by
first drawing Y from q0(Y ) and then sampling τ ac-
cording to (1). Let q̃0(τ) be the empirical distribution
formed from these samples. Now U(σ) from (6) can
be then approximated with the following:

Ũ(σ) = Eq̃0(τ)[Ũ((σ0, σ), (τ0, τ))]. (16)

The pseudocode for our algorithm is given in Figure 3.
This procedure is similar in spirit to the active learn-
ing algorithm proposed by Roy and McCallum (2001),
where examples were chosen iteratively to minimize
expected loss on heldout data under a Näıve Bayes
model.

One potential weakness with our approach is that we

Algorithm for Active Measurement Selection

σ0 ← ∅ τ0 ← ∅ β̃0 ← ∅ θ̃0 ← 0
while more measurements are desired:
−for each candidate measurement feature σ ∈ Σ:
−−draw t samples from q0(τ) specified by (β̃0, θ̃0)
−−for each sampled measurement value τ :
−−−(β̃, θ̃)← ApproxInference((σ0, σ), (τ0, τ))

−−−uσ,τ ← Ẽp̃(X′) maxŶ ′ Epθ̃(Y ′|X′)[r(Y
′, Ŷ ′)]−C(σ)

−−uσ ← 1
t

P
τ uσ,τ

−σ∗ ← argmaxσ uσ
−obtain measurement value τ∗ = σX(σ∗) +Wσ∗

−σ0 ← (σ0, σ
∗) τ0 ← (τ0, τ

∗)

−(β̃0, θ̃0)← ApproxInference(σ0, τ0)

Output θ̃0

Figure 3. Pseudocode for choosing measurements in a se-
quential manner based on our variational approximation.

do not maintain any uncertainty in θ in the variational
approximation. If we were doing parameter estima-
tion, this approximation would be entirely useless since
what drives experimental design in that case is the re-
duction of uncertainty in θ. However, our utility func-
tion is predictive accuracy. Intuitively, what drives
our method is reduction of uncertainty in predictions
based on θ̃. For this, the magnitude of θ̃ does provide
some guidance.

5. Experiments

We now present empirical results. In Section 5.1, we
show how the measurement framework can effectively
integrate both labeled data and labeled predicates. In
Section 5.2, we actively choose the measurements.

5.1. Learning from Measurements

For the Craigslist task introduced in Section 1, we
use a linear-chain conditional random field (CRF),
which is a conditional exponential family where the
input x = (x1, . . . , x`) is a sequence of words, the
output y = (y1, . . . , y`) is a sequence of labels, and
the model features are φ(x, y) =

∑`
i=1 φ

1(yi, x, i) +∑`−1
i=1 φ

2(yi, yi+1). The components of the node fea-
tures φ1(yi, x, i) are indicator functions of the form
I[yi = a, s(xi) = b], where a ranges over the 11 possi-
ble labels, and s(·) is either the identity function or a
function mapping each word to one of 100 clusters. To
create these clusters, we ran the Brown word clustering
algorithm (Brown et al., 1992).6

6In order to capture topical similarity, three-word se-
quences (xi−d, xi, xi+d) were created for each sequence, po-
sition i = 1, . . . , `, and offset d = 1, 2, 3. The word clusters
obtained from these three-word sequences essentially cap-
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Table 1. CCR07 (Chang et al., 2007) and MM08 (Mann &
McCallum, 2008) outperform our method when there are
few examples, but we achieve the best overall number with
100 examples.

# labeled examples 10 25 100
CCR07 74.7 78.5 81.7
MM08 74.6 77.2 80.5
no labeled predicates 67.7 75.6 81.5
+ 33 labeled predicates 71.4 76.5 82.5

We started n = 1000 unlabeled examples and con-
sidered two types of measurements: fully-labeled ex-
amples and labeled predicates where we provide the
frequency of the most common label for a word type.7

The labeled examples were chosen at random and we
chose three “prototypes” for each of the 11 labels based
on the 100 available labeled training examples (see
Haghighi and Klein (2006) for details).

We optimized L(β, θ) for 50 iterations (50n stochas-
tic steps). Table 1 shows that the performance of our
method (100 examples) improves as we add more la-
beled examples and predicates. To the best of our
knowledge, our 82.5% is the best result published so
far on this task. More interestingly, compared to past
work, we get larger gains as we label more examples,
which suggests that our measurement framework is in-
tegrating the diverse, increasing information more ef-
fectively.

5.2. Active Measurement Selection

5.2.1. Synthetic dataset

Consider the following multiclass classification prob-
lem: the output space is Y = {1, . . . , 4}, and the in-
put space is X = ∪y∈Y{(x1, x2) : i ∈ {1, . . . , 5}, x1 =
(y, i), x2 ∈ {y} × {1, . . . , 2i−1}}. Inputs are generated
uniformly from X and each input x is assigned a la-
bel y which is extracted from x with probability 0.9
and uniformly from Y with probability 0.1. We con-
sider two types of measurements: fully-labeled exam-
ples and labeled x2-predicates. For simplicity, assume
all measurements have the same cost.

We started with n = 100 unlabeled examples and no
measurements. Following Figure 3, for each candidate
measurement feature, we drew t = 3 samples of τ .

ture the same type of structure in the data as the SVD
features used by Haghighi and Klein (2006) and Mann and
McCallum (2008).

7The frequency was measured on the 100 available la-
beled examples and extrapolated to the rest. We assumed
zero measurement noise.
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Figure 4. Comparison of three methods on the synthetic
dataset: iteratively choosing the next measurement at ran-
dom, based on entropy, or by running our full algorithm.

Given each hypothetical measurement, we ran approx-
imate inference for 10 iterations, warm starting from
the previous parameter setting (β̃, θ̃). Our utility Ũ
was computed on a heldout set of 500 examples. Then
the best measurement feature was added, followed by
10 more iterations of approximate inference. Finally,
we evaluated test accuracy on 1000 fresh examples.

We compared the full algorithm we just described with
two alternatives: (1) choosing the next measurement
at random and (2) choosing the example or predicate
with the highest entropy.8 Figure 4 shows the results,
averaged over 10 trials. We see that both the entropy-
based heuristic and the full algorithm provide substan-
tial gains over random, and moreover, the full algo-
rithm provides a slight edge over entropy. One prop-
erty that entropy fails to capture is the propagation
effect: Two measurements might have the same en-
tropy, but they could have different degrees of impact
on other examples through re-estimating the model.
However, the full algorithm does come with a signifi-
cant computational cost, so for the experiments in the
next section we used entropy.

5.2.2. Part-of-speech tagging

Now we turn to part-of-speech tagging.9 Using stan-
dard capitalization, suffix, word form, and word clus-
ter features applied on the previous, current, and next
words, we seek to predict the tag of the current word.
We considered two types of measurements: (1) tag-
ging a whole sentence and (2) providing the frequency
of the most common tag for a word type, where the
word type is one of the 100 most frequent.

8The entropy of a predicate is the sum over the label
posteriors at words for which the predicate is nonzero.

9We used the Wall-Street Journal (WSJ) portion of the
Penn Treebank— sections 0–21 for training, sections 22–24
for testing.
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Figure 5. On part-of-speech tagging, choosing measure-
ments based on entropy outperforms choosing randomly
and choosing based on frequency.

We started with 1000 unlabeled training examples and
labeled 10 examples at random. Then we went through
candidate measurements, evaluating them using en-
tropy,10 and adding the best five each round, after
which a single iteration of approximate inference was
run. Figure 5 shows the results: On both types of
measurements, entropy outperforms choosing words at
random. A simple baseline which chooses the most fre-
quent words underperforms even random, presumably
due to lack of diversity.

6. Conclusion

Our ultimate goal is “efficient learning”—narrowing in
on the desired model with as little human effort as pos-
sible, whether it be by labeling examples or specifying
constraints. Measurement-based learning allows us to
integrate all of these in a coherent way. Furthermore,
it is the first framework to directly target our ultimate
goal by quantifying what it means to learn efficiently.
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A. Derivation of (12)

Let f(q) = −H(q(Y )) −
〈
Eq(Y )[

∑n
i=1 φ(Xi, Yi)], θ

〉
,

g(u) = hσ(u − τ), and A(q) = Eq(Y )[σX(Y )].11 Min-
imization of (9) with respect to q is equivalent to
minimization of f(q) + g(Aq) + constant. By strong
duality (Theorem 4.4.3 of Borwein and Zhu (2005)),
infq{f(q) + g(Aq)} = supβ{−f∗(A∗β) − g∗(−β)}.
The conjugate functions12 are as follows: f∗(A∗β) =
log
∫
e〈σ

X(y),β〉+〈Pn
i=1 φ(Xi,yi),θ〉dy =

∑n
i=1B(β, θ;Xi)

and −g∗(−β) = 〈τ, β〉 − h∗σ(β). Perform algebra to
obtain (12).

11W[a] =

(
0 if a = true

∞ otherwise.
12The conjugate of g(u) is g∗(β) = supu{〈u, β〉 − g(u)}.


