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Current methods:
Structured models: accurate but slow

% % % % conditional random fields (CRFs) with loopy graphs, large tag sets

Independent models: less accurate but fast
% % % % independent logistic regressions (ILRs)
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Our goal:

transfer ]
m %x%x%x% accurate and fast at test time

predictive power

Questions: are independent models...

e ...expressive enough (approximation error)?
e ...easy to learn (estimation error)?
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Structure compilation: reduces the gap between the ILR and CRF
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Analysis of structure compilation
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Goal: analyze risk of final compiled ILR( f>)

Decomposition of errors:

Approximation error: best loss of model (with infinite data)

Estimation error: suboptimality due to finite data
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Approximation/estimation errors for ILR

% % % % * | auto-labeled g m
data

CRF(f1) ILR(/2)

pc: CRF(f1) trained on labeled data
pi: ILR(f2) trained on m auto-labeled examples

pr+: ILR( f2) trained on infinite auto-labeled data

KL (pc || p1) = KL (pc || pr) + (KL (pc || p1) — KL (pe || pr+) )

approx. error estimation error

Estimation error:
Expected value = 22 4 4 (L),  [Liang & Jordan, 2008]

m

Structured compilation can eliminate this error
Approximation error: next...
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Decomposition of approximation error

marginalized CRF(f1): puc m

O 0.0 0

coherence

nonlinearities

ILR(foo): Par

global information

iy e 300
Theorem:

KL (pc || prr) = KL (pc || pac) + KL (puc | pax) + KL (pa || pre)
Proof:
Generalized Pythagorean identity for KL-divergence
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Approximation error: coherence

CRF: pc giggﬁ@i%
marginalized CRF: pyc m

Coherence = KL (pc || puc):
importance of making joint predictions

For a chain CRF:
coherence = sum of mutual information along the edges

POS NER
Coherence 0.003 0.009
Change in accuracy 95.0% = 95.0% 76.3% = 76.0%

Coherence is not a huge concern (for these applications)



Approximation error: nonlinearities

marginalized CRF: pyc m

ILR(foc): pax DL ©

Nonlinearities = KL (puc || pa*):
importance of combining features in a nonlinear way



Approximation error: nonlinearities

marginalized CRF: pyc m

ILR(foc): pax AL O

Nonlinearities = KL (puc || pa*):
importance of combining features in a nonlinear way

NER experiment:

Train a truncated CRF, so that both the truncated CRF
(nonlinear) and the ILR (linear) use the same features



Approximation error: nonlinearities

marginalized CRF: pyc m

ILR(foc): pax DL ©

Nonlinearities = KL (puc || pa*):
importance of combining features in a nonlinear way

NER experiment:
Train a truncated CRF, so that both the truncated CRF
(nonlinear) and the ILR (linear) use the same features
Truncated CRF  ILR(f5)
Accuracy 76.0% 72.7%



Approximation error: nonlinearities

marginalized CRF: pyc m

ILR(foc): pax DL ©

Nonlinearities = KL (puc || pa*):
importance of combining features in a nonlinear way

NER experiment:
Train a truncated CRF, so that both the truncated CRF
(nonlinear) and the ILR (linear) use the same features
Truncated CRF  ILR(f5)
Accuracy 76.0% 72.7%

Nonlinearities play an important role
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Approximation error: global information

LR() P 20
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Global information = KL (p* || pr+):
Importance of using features on distant parts of the input

NER experiment:

Compare truncated CRF with marginalized CRF (they differ
only in the features used)

Marginalized CRF Truncated CRF
Accuracy 76.0% 76.0%

Distant information is not essential (for these applications)
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Structure compilation for parsing
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DmN VBD/\NP Sentence length: /¢
- | | DTA— Number of grammar symbols: K
¢ cat ate U ﬁ Number of grammar rules: G > ¢, K
a JJ NN
tasty fish
Parse time/sentence
Structured model: O((°G)
Standard dynamic program for context-free grammars
Independent model: O(0° + K2

For each of O(¢?) spans:
Make a soft prediction of whether it's a constituent
(features: words/tags/prefixes/suffixes on entire span)
Run a dynamic program to choose the best tree
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Parsing results
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e Structure is important in parsing

e Need richer features or nonlinearities for the independent
model to catch up
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Summary of structure compilation

Motivation: want fast CRF-level accuracy at test time

labeled
/ data
% % % % > | auto-labeled —’W
data

CRF(//) ILR( f2)
computationally complex computationally simple
statistically simple statistically complex
very expressive not as expressive

Estimation error: structure compilation can easily drive it to 0
Approximation error: advantages of CRF over ILR

e |ILR needs rich features to compensate

e CRF’s nonlinearities are important .



