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Abstract
Coreference resolution metrics quantify errors
but do not analyze them. Here, we consider
an automated method of categorizing errors in
the output of a coreference system into intu-
itive underlying error types. Using this tool,
we first compare the error distributions across
a large set of systems, then analyze common
errors across the top ten systems, empirically
characterizing the major unsolved challenges
of the coreference resolution task.

1 Introduction

Metrics produce measurements that concisely sum-
marize performance on the full range of error types,
and for coreference resolution there has been ex-
tensive work on developing effective metrics (Luo,
2005; Recasens and Hovy, 2011). However, it is also
valuable to tease apart the errors to understand their
relative importance.

Previous investigations of coreference errors have
focused on quantifying the importance of subtasks
such as named entity recognition and anaphoricity
detection, typically by measuring accuracy improve-
ments when partial gold annotations are provided
(Stoyanov et al., 2009; Pradhan et al., 2011; Prad-
han et al., 2012). For coreference resolution the
drawback of this approach is that decisions are often
interdependent, and so even partial gold information
is extremely informative. Also, previous work only
considered errors by counting links, which does not
capture certain errors in a natural way, e.g. when
a system incorrectly divides a large entity into two
parts, each with multiple mentions. Recent work has
considered some of these issues, but only with small
scale manual analysis (Holen, 2013).

We present a new tool that automatically classifies
errors in the standard output of any coreference res-
olution system. Our approach is to identify changes
that convert the system output into the gold annota-
tions, and map the steps in the conversion onto lin-
guistically intuitive error types. Since our tool uses
only system output, we are able to classify errors
made by systems of any architecture, including both
systems that use link-based inference and systems
that use global inference methods.

Using our tool we perform two studies to un-
derstand similarities and differences between sys-
tems. First, we compare the error distributions on
coreference resolution of all of the systems from the
CoNLL 2011 shared task plus several publicly avail-
able systems. This comparison adds to the analy-
sis from the shared task by illustrating the substan-
tial variation in the types of errors different systems
make. Second, we investigate the aggregate behav-
ior of ten state-of-the-art systems, providing a de-
tailed characterization of each error type. This in-
vestigation identifies key outstanding challenges and
presents the impact that solving each of them would
have in terms of changes in the standard coreference
resolution metrics.

We find that the best systems are not best across
all error types, that a large proportion of span errors
are due to superficial parse differences, and that the
biggest performance loss is on missed entities that
contain a small number of mentions.

This work presents a comprehensive investiga-
tion of common errors in coreference resolution,
identifying particular issues worth focusing on in
future research. Our analysis tool is available at
code.google.com/p/berkeley-coreference-analyser/.



2 Background

Most coreference work focuses on accuracy im-
provements, as measured by metrics such as MUC
(Vilain et al., 1995), B3 (Bagga and Baldwin, 1998),
CEAF (Luo, 2005), and BLANC (Recasens and
Hovy, 2011). The only common forms of further
analysis are results for anaphoricity detection and
scores for each mention type (nominal, pronoun,
proper). Two exceptions are: the detailed analysis of
the Reconcile system by Stoyanov et al. (2009), and
the multi-system comparisons in the CoNLL shared
task reports (Pradhan et al., 2011, 2012).

A common approach to performance analysis is to
calculate scores for nominals, pronouns and proper
names separately, but this is a very coarse division
(Ng and Cardie, 2002; Haghighi and Klein, 2009).
More fine consideration of some subtasks does oc-
cur, for example, anaphoricity detection, which has
been recognized as a key challenge in coreference
resolution for decades and regularly has separate re-
sults reported (Paice and Husk, 1987; Sobha et al.,
2011; Yuan et al., 2012; Björkelund and Farkas,
2012; Zhekova et al., 2012). Some work has also
included anecdotal discussion of specific error types
or manual classification of a small set of errors, but
these approaches do not effectively quantify the rel-
ative impact of different errors (Chen and Ng, 2012;
Martschat et al., 2012; Haghighi and Klein, 2009).
In a recent paper, Holen (2013) presented a detailed
manual analysis that considered a more comprehen-
sive set of error types, but their focus was on explor-
ing the shortcomings of current metrics, rather than
understanding the behavior of current systems.

The detailed investigation presented by Stoyanov
et al. (2009) is the closest to the work we present
here. First, they measured accuracy improvements
when their system was given gold annotations for
three subtasks of coreference resolution: mention
detection, named entity recognition, and anaphoric-
ity detection. To isolate other types of errors they de-
fined resolution classes, based on both the type of a
mention, and properties of possible antecedents (for
example, nominals that have a possible antecedent
that is an exact string match). For each resolution
class they measured performance while giving the
system gold annotations for all other classes. While
this approach is effective at characterizing variations

President Clinton1 is questioning the legitimacy
of George W. Bush’s election victory. Speaking
last night to Democratic supporters in Chicago,
he said Bush won the election only because Re-
publicans stopped the vote-counting in Florida,
and Mr. Clinton1 praised Al Gore’s campaign
manager, Bill Daley, for the way he handled the
election. “I2 want to thank Bill Daley for his ex-
emplary service as Secretary of Commerce. He
was brilliant. I2 think he did a brilliant job in
leading Vice President Gore to victory myself2.”

Figure 1: Two coreference errors. Mentions are under-
lined and subscripts indicate entities. One error is a men-
tion missing from the system output, he. The other is the
division of references to Bill Clinton into two entities.

between the nine classes they defined, it misses the
cascade effect of errors that only occur when all
mentions are being resolved at once.

The only multi-system comparisons are the
CoNLL task reports (Pradhan et al., 2011, 2012),
which explored the impact of mention detection and
anaphoricity detection through subtasks with differ-
ent types of gold annotation. With a large set of sys-
tems, and well controlled experimental conditions,
the tasks provided a great snapshot of progress in the
field, which we aim to supplement by characterizing
the major outstanding sources of error.

This work adds to previous investigations by pro-
viding a comprehensive and detailed analysis of er-
rors. Our tool can automatically analyze any sys-
tem’s output, giving a reliable estimate of the rela-
tive importance of different error types.

3 Error Classification

When inspecting the output of coreference resolu-
tion systems, several types of errors become imme-
diately apparent: entities that have been divided into
pieces, spurious entities, non-referential pronouns
that have been assigned antecedents, and so on. Our
goal in this work is to automatically assign intuitive
labels like these to errors in system output.

A simple approach, refining results by measur-
ing the accuracy of subsets of the mentions, can be
misleading. For example, in Figure 1, we can in-
tuitively see two pronoun related mistakes: a miss-
ing mention (he), and a divided entity where the two
pieces are the blue pronouns (I2, I2, myself2) and the
red proper names (President Clinton1, Mr. Clinton1).



Simply counting the number of incorrect pronoun
links would miss the distinction between the two
types of mistakes present.

One question in designing an error analysis tool
like ours is whether to operate on just system output,
or to also consider intermediate system decisions.
We focused on using system output because other
methods cannot uniformly apply to the full range of
coreference resolution decoding methods, from link
based methods to global inference methods.

Our overall approach is to transform the sys-
tem output into the gold annotations, then map
the changes made in the conversion process to er-
rors. The transformation process is presented in Sec-
tion 3.1 and Figure 2, and the mapping process is
described in Section 3.2 and Figure 3.

3.1 Transformations

The first part of our error classification process de-
termines the changes needed to transform the system
output into the gold annotations. This five stage pro-
cess is described below, and an abstract example is
presented in Figure 2.

1. Alter Span transforms an incorrect system
mention into a gold mention that has the same
head token. In Figure 2 this stage is demon-
strated by a mention in the leftmost entity,
which has its span altered, indicated by the
change from an X to a light blue circle.

2. Split breaks the system entities into pieces,
each containing mentions from a single gold
entity. In Figure 2 there are three changes in
this stage: the leftmost entity is split into a red
piece and a light blue piece, the middle entity
is split into a dark red piece and an X, and the
rightmost entity is split into singletons.

3. Remove deletes every mention that is not
present in the gold annotations. In Figure 2 this
means the four singleton X’s are removed.

4. Introduce creates a singleton entity for each
mention that is missing from the system output.
In Figure 2 this stage involves the introduction
of a light blue mention and two white mentions.

5. Merge combines entities to form the final,
completely correct, set of entities. In Figure 2
the two red entities are merged, the singleton
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Figure 2: Abstract example of the transformation process
that converts system output (at the top) to gold annota-
tions (at the bottom).

blue entity is merged with the rest of the blue
entity, and the two white mentions are merged.



Operation(s) Error System Gold
i) Alter Span Span error Gorbachev Soviet leader Gorbachev

ii) Multiple Introduces Missing Entity - the pills
and Merges - the tranquilizing pills

iii) Multiple Splits Extra Entity human rights -
and Removes Human Rights -

Introduce
and Merge

the Arab region the Arab region
iv) Missing Mention the region the region

- it

Split and
Remove

her story her story
v) Extra Mention this this

it -

vi) Merge Divided Entity

Iraq1 Iraq1

this nation2 this nation1

the nation2 the nation1

its1 its1

vii) Split Conflated Entities

Mohammed Rashid1 Mohammed Rashid1

the Rashid case1 the Rashid case2
Rashid1 Rashid1
the case1 the case2

Figure 3: Examples of the error types. In examples (i) - (iv) and (vi) the system output contains a single entity. When
multiple entities are involved, they are marked with subscripts. Mentions are in the order in which they appear in the
text. All examples are from system output on the dev set of the CoNLL task.

One subtle point in the split stage is how to record
an entity being split into several pieces. This could
either be a single operation, one entity being split
into N pieces, or N −1 operations, each involving a
single piece being split off from the rest of the entity.
We use the second approach, as it fits more naturally
with the error mapping we describe in the follow-
ing section. Similarly, for the merge operation, we
record N entities being merged as N−1 operations.

3.2 Mapping

The operations in Section 3.1 are mapped onto seven
error types. In some cases, a single change maps
onto a single error, while in others a single error rep-
resents several closely related operations from adja-
cent stages in the error correction process. The map-
ping is described below and in Figure 3.

1. Span Error. Each Alter Span operation is
mapped to a Span Error, e.g. in Figure 3(i), the
system mention Gorbachev is replaced by the
annotated mention Soviet leader Gorbachev.

2. Missing Entity. A set of Introduce and Merge
operations that forms an entirely new entity,
e.g. the white entity in Figure 2, and the pills
in Figure 3(ii). This error is still assigned if

the new entity includes pronouns that were al-
ready present in the system output. The rea-
soning for this is that most pronouns in the cor-
pus are coreferent, so including just the pro-
nouns from an entity is not meaningfully dif-
ferent from missing the entity entirely.

3. Extra Entity. A set of Split and Remove oper-
ations that completely remove an entity, e.g. the
rightmost entity in Figure 2, and Figure 3(iii).
As for the Missing Entity error type, this error
is still assigned if the original entity contained
pronouns that were valid.

4. Missing Mention. An Introduce and a Merge
that apply to the same mention, e.g. it in Fig-
ure 3(iv), and the blue mention in Figure 2.

5. Extra Mention. A Split and a Remove that ap-
ply to the same mention, e.g. it in Figure 3(v),
and the X in the red entity in Figure 2.

6. Divided Entity. Each remaining Merge oper-
ation is mapped to a Divided Entity error, e.g.
Figure 3(vi), and the red entity in Figure 2.

7. Conflated Entities. Each remaining Split op-
eration is mapped to a Conflated Entity error,
e.g. Figure 3(vii), and the blue and red entities
in Figure 2.



4 Methodology

Our tool processes the CoNLL task output, with no
other information required. During development,
and when choosing examples for this paper, we
used the development set of the CoNLL shared task
(Hovy et al., 2006; Pradhan et al., 2007; Pradhan et
al., 2011). The results we present in the rest of the
paper are all for the test set. Using the development
set would have been misleading, as the entrants in
the shared task used it to tune their systems.

4.1 Systems

We analyzed all of the 2011 CoNLL task systems, as
well as several publicly available systems. For the
shared task systems we used the output data from
the task itself, provided by the organizers. For the
publicly available systems we used the default con-
figurations. Finally, we included another run of the
Stanford system, with their OntoNotes-tuned param-
eters (STANFORD-T).

The publicly available systems we used are:
BERKELEY (Durrett and Klein, 2013), IMS
(Björkelund and Farkas, 2012), STANFORD (Lee
et al., 2013), RECONCILE (Stoyanov et al., 2010),
BART (Versley et al., 2008), UIUC (Bengtson and
Roth, 2008), and CHERRYPICKER (Rahman and
Ng, 2009). The systems from the shared task are
listed in Table 1 and in the references.

5 Broad System Comparison

Table 1 presents the frequency of errors for each sys-
tem and F-Scores for standard metrics1 on the test
set of the 2011 CoNLL shared task. Each bar is
filled in proportion to the number of errors the sys-
tem made, with a full bar corresponding to the num-
ber of errors listed in the bottom row.

The metrics provide an effective overall rank-
ing, as the systems with high scores generally make
fewer errors. However, the metrics do not convey
the significant variation in the types of errors sys-
tems make. For example, YANG and CHARTON are
assigned almost the same scores, but YANG makes
more than twice as many Extra Mention errors.

1CEAF and BLANC are not included as the most recent ver-
sion of the CoNLL scorer (v5) is incorrect, and there are no
standard implementations available.

The most frequent error across all systems is Di-
vided Entity. Unlike parsing errors (Kummerfeld et
al., 2012), improvements are not monotonic, with
better systems often making more errors of one type
when decreasing the frequency of another type.

One outlier is the Irwin et al. (2011) system,
which makes very few mistakes in five categories,
but many in the last two. This reflects a high pre-
cision, low recall approach, where clusters are only
formed when there is high confidence.

The third section of Table 1 shows results for sys-
tems that were run with gold noun phrase span in-
formation. This reduces all errors slightly, though
most noticeably Extra Mention, Missing Mention,
and Span Error. On inspection of the remaining
Span Errors we found that many are due to incon-
sistencies regarding the inclusion of the possessive.

The final section of the table shows results for sys-
tems that were provided with the set of mentions that
are coreferent. In this setting, three of the error types
are not present, but there are still Missing Mentions
and Missing Entities because systems do not always
choose an antecedent, leaving a mention as a single-
ton, which is then ignored.

While this broad comparison gives a complete
view of the range of errors present, it is still a coarse
representation. In the next section, we characterize
the common errors on a finer level by breaking down
each error type by a range of properties.

6 Common Errors

To investigate the aggregate state of the art, in this
section we consider results averaged over the top
ten systems: CAI, CHANG, IMS, NUGUES, SAN-
TOS, SAPENA, SONG, STANFORD-T, STOYANOV,
URYUPINA-OPEN.2 These systems represent a broad
range of approaches, all of which are effective.

In each section below, we focus on one or two
error types, characterizing the mistakes by a range
of properties. We then consider a few questions that
apply across multiple error types.

6.1 Span Errors
To characterize the Span Errors, we considered the
text that is in the gold mention, but not the system

2For systems that occur multiple times in Table 1, we only
use the best instance. The BERKELEY system was not included
as it had not been published at submission time.



Metric F-Scores Span Conflated Extra Extra Divided Missing Missing
System Mention MUC B3 Error Entities Mention Entity Entity Mention Entity

PUBLICLY AVAILABLE SYSTEMS

BERKELEY 75.57 66.43 66.17
IMS 72.96 64.71 64.73
STANFORD-T 71.21 61.40 63.06
STANFORD 58.56 48.37 56.42
RECONCILE 46.45 49.40 54.90
BART 56.61 46.00 52.56
UIUC 50.60 45.21 52.88
CHERRYPICKER 41.10 40.71 51.39

CONLL, PREDICTED MENTIONS

LEE-OPEN 70.94 61.03 62.96
LEE 70.70 59.56 61.88
SAPENA 43.20 59.54 61.28
SONG 67.26 59.95 60.08
CHANG 64.86 57.13 61.75
CAI-OPEN 67.45 57.86 60.89
NUGUES 68.96 58.61 59.75
URYUPINA-OPEN 68.39 57.63 58.74
SANTOS 65.45 56.65 59.48
STOYANOV 67.78 58.43 57.35
HAO 64.30 54.46 55.82
YANG 63.93 52.31 55.85
CHARTON 64.36 52.49 55.61
KLENNER-OPEN 62.28 49.86 55.62
SOBHA 64.83 50.48 54.85
ZHOU 62.31 48.96 53.42
KOBDANI 61.03 48.62 53.00
ZHANG 61.13 47.88 52.76
XINXIN 61.92 46.62 51.50
KUMMERFELD 62.72 42.70 50.05
IRWIN-OPEN 35.27 27.21 44.29
ZHEKOVA 48.29 24.08 41.42
IRWIN 26.67 19.98 42.73

CONLL, GOLD NP SPANS

LEE-OPEN 75.39 65.39 65.88
LEE 75.16 63.90 64.70
NUGUES 72.42 62.12 61.67
CHANG 67.91 59.77 62.97
SANTOS 67.80 59.52 61.35
STOYANOV 70.29 61.53 59.07
SONG 66.68 55.48 58.04
KOBDANI 66.08 53.94 55.82
ZHANG 64.89 51.64 54.77
ZHEKOVA 62.67 35.22 45.80

CONLL, GOLD MENTIONS

LEE-OPEN 90.93 81.56 75.95
CHANG 99.97 82.52 73.68
Most Errors 2410 3849 2744 5290 4789 2026 3237

Table 1: Counts for each error type on the test set of the 2011 CoNLL task. Bars indicate the number of errors, with
white as zero and fully filled as the number in the Most Errors row. -OPEN indicates a system using external resources.



Type Missing Extra
NP 65.8 45.0
POS 12.4 96.9
, 71.2 22.4
SBAR 55.9 1.9
PP 46.2 10.3
DT 17.0 35.9
Total 271.1 224.6

Table 2: Counts of Span Errors grouped by the label over
the extra/missing part of the mention.

mention (missing text), and vice versa (extra text).
We then found nodes in the gold parse that cov-
ered just this extra/missing text, e.g. in Figure 3(i)
we would consider the node over Soviet leader. In
Table 2 we show the most frequent parse nodes.

Some of these differences are superficial, such as
the possessive and the punctuation. Others, such as
the missing PP and SBAR cases, may be due to parse
errors. Of the system mentions involved in span er-
rors, 27.0% do not correspond to a node in the gold
parse. The frequency of punctuation errors could
also be parse related, because punctuation is not con-
sidered in the standard parser evaluation.

Overall it seems that span errors can best be dealt
with by improving parsing, though it is not possi-
ble to completely eliminate these errors because of
inconsistent annotations.

6.2 Extra Mention and Missing Mention

We consider Extra and Missing Mentions together
as they mirror each other, forming a precision-recall
tradeoff, where a high precision system will have
fewer Extra Mentions and more Missing Mentions,
and a high recall system will have the opposite.

Table 3 divides these errors by the type of men-
tion involved and presents some of the most fre-
quent Extra Mentions and Missing Mentions. For
the corpus statistics we count as mentions all NP
spans in the gold parse plus any word tagged with
PRP, WP, WDT, or WRB (following the definition
of gold mention boundaries for the CoNLL tasks).

The mentions it and you are the most common
errors, matching observations from several of the
papers cited in Section 2. However, there is a sur-
prising imbalance between Extra and Missing cases,
e.g. it accounts for a third of the extra errors, but
only 12% of the Missing errors. This imbalance may

Av. Errors Corpus Stats
Mention Extra Missing Count % Coref.
Proper Name 281.6 297.7 6915 59.0
Nominal 484.2 516.5 33328 15.9
Pronoun 390.7 323.3 9926 69.7
it 130.4 38.9 1211 57.1
you 85.2 55.9 1028 44.9
we 39.6 19.6 691 64.7
us 23.2 3.2 242 23.6
that 13.8 13.4 2010 11.5
they 9.6 39.5 738 94.3
their 8.6 21.5 410 95.1
Total 1156.5 1137.5 50169 32.5

Table 3: Counts of Missing and Extra Mention errors by
mention type, and the most common mentions.

Proper Name Nominal
Extra Missing Extra Missing

Text match 145.2 163.6 171.2 96.1
Head match 56.8 70.7 149.6 166.0
Other 79.6 63.4 163.4 254.4
NER Matches 143.4 174.4 23.0 32.0
NER Differs 6.6 6.1 2.4 0.0
NER Unknown 131.6 117.2 458.8 484.5
Total 281.6 297.7 484.2 516.5

Table 4: Counts of Extra and Missing Mentions, grouped
by properties of the mention and the entity it is in.

be the result of systems being tuned to the metrics,
which seem to penalize Missing Mentions more than
Extra Mentions (shown in Section 6.7).

In Table 4 we consider the Extra Mention er-
rors and Missing Mention errors involving proper
names and nominals. The top section counts errors
in which the mention involved in the error has an
exact string match with a mention in the cluster, or
whether it has just a head match. The second sec-
tion of the table considers the named entity anno-
tations in OntoNotes, counting how often the men-
tion’s type matches the type of the cluster.

In all cases shown in the table it appears that sys-
tems are striking a balance between these two types
of errors. One exception may be the use of exact
string matching for nominals, which seems to be bi-
ased towards Extra Mentions.

For these two error types, our observations agree
with previous work: the most common specific error
is the identification of pleonastic pronouns, named
entity types are of limited use, and head matching is
already being used about as effectively as it can be.



Composition Av. Errors
Name Nom Pro Extra Missing
0 1 1 70.7 271.6
1 0 1 13.2 28.1
1 1 0 26.6 86.2
2 0 0 61.3 89.3
0 2 0 512.0 347.9
0 0 2 110.9 13.6
3+ 0 0 14.7 14.4
0 3+ 0 154.8 65.9
0 0 3+ 91.0 18.1
Other 51.8 216.4
Total 1107.0 1151.5

Table 5: Counts of Extra and Missing Entity errors,
grouped by the composition of the entity (Names, Nomi-
nals, Pronouns).

Match Type Extra Missing
Proper Name 51.4 42.2

Exact Nominal 338.3 49.5
Pronoun 141.9 10.3

Head Proper Name 14.4 27.3
Nominal 234.7 129.0
Proper Name 10.2 34.2

None Nominal 92.8 235.3
Pronoun 60.0 21.4

Table 6: Counts of Extra and Missing Entity errors
grouped by properties of the mentions in the entity.

6.3 Extra Entities and Missing Entities

In this section, we consider the errors that involve an
entire entity that was either missing from the system
output or does not exist in the annotations.

Table 5 counts these errors based on the compo-
sition of the entity. There are several noticeable dif-
ferences between the two error types, e.g. for entities
containing one nominal and one pronoun (row 0 1 1)
there are far more Missing errors than Extra errors,
while entities containing two pronouns (row 0 0 2)
have the opposite trend.

It is clear that entities consisting of a single type
of mention are the primary source of these errors,
accounting for 85.3% of the Extra Entity errors,
and 47.7% of Missing Entity errors. Table 6 shows
counts for these cases divided into three groups:
when all mentions are identical, when all mentions
have the same head, and the rest.

Nominals are the most frequent type in Table 6,
and have the greatest variation across the three sec-

Mention Extra Missing
that 6.9 99.7
it 47.7 47.8
this 0.9 36.2
they 3.8 29.1
their 2.1 23.5
them 0.9 13.8
Any pronoun 83.9 299.7

Table 7: Counts of common Missing and Extra Entity
errors where the entity has just two mentions: a pronoun
and either a nominal or a proper name.

tions of the table. For the Extra column, Exact match
cases are a major challenge, accounting for over half
of the nominal errors. These errors include cases
like the example below, where two mentions are not
considered coreferent because they are generic:

everybody tends to mistake the part for the whole.
Here, mistaking the part for the whole is ...

For missing entities we see the opposite trend,
with Exact match cases accounting for less than 12%
of nominal errors. Instead, cases with no match are
the greatest challenge, such as this example, which
requires semantic knowledge to correctly resolve:

The charges related to her sale of ImClone stock.
She sold the share a day before ...

The other common case in Table 5 is an entity
containing a pronoun and a nominal. In Table 7 we
present the most frequent pronouns for this case and
the similar case involving a pronoun and a name.

One way of interpreting these errors is from
the perspective of the pronoun, which is either
incorrectly coreferent (Extra), or incorrectly non-
coreferent (Missing). From this perspective, these
errors are similar in nature to those described by Ta-
ble 3. However, the distribution of errors is quite dif-
ferent, with it being balanced here where previously
it skewed heavily towards extra mentions, while that
was balanced in Table 3 but is skewed towards being
part of Missing Entities here.

Extra Entity errors and Missing Entity errors are
particularly challenging because they are dominated
by entities that are either just nominals, or a nominal
and a pronoun, and for these cases the string match-
ing features are often misleading. This implies that
reducing Extra Entity and Missing Entity errors will
require the use of discourse, context, and semantics.



Incorrect Part Rest of Entity Av. Errors
Na No Pr Na No Pr Conflated Divided
- - 1+ - - 1+ 312.7 69.9
- - 1+ - 1+ 1+ 238.5 179.8
- - 1+ - 1+ - 189.6 549.3
- 1+ - - 1+ - 181.5 156.5
- - 1+ 1+ 1+ 1+ 143.6 181.5
- - 1+ 1+ - 1+ 109.7 150.5
- - 1+ 1+ - - 60.0 136.5

Other 454.8 657.7
Total 1690.4 2081.7

Table 8: Counts of Conflated and Divided entities errors
grouped by the Name / Nominal / Pronoun composition
of the parts involved.

6.4 Conflated Entities and Divided Entities

Table 8 breaks down the Conflated Entities errors
and Divided Entity errors by the composition of the
part being split/merged and the rest of the entity in-
volved. Each 1+ indicates that at least one mention
of that type is present (Name / Nominal / Pronoun).

Clearly pronouns being placed incorrectly is the
biggest issue here, with almost all of the common
errors involving a part with just pronouns. It is also
clear that not having proper names in the rest of
the entity presents a challenge. One particularly no-
ticeable issue involves entities composed entirely of
pronouns, which are often created by systems con-
flating the pronouns of two entities together.

Table 8 aggregates errors by the presence of dif-
ferent types of mentions. Aggregating instead by the
exact composition of the incorrect part being con-
flated or divided we found that instances with a part
containing a single pronoun account for 38.9% of
conflated cases and 35.8% of divided cases.

Finally, it is worth noting that in many cases a part
is both conflated with the wrong entity, and divided
from its true entity. Only 12.6% of Conflated Entity
errors led to a complete gold entity with no other er-
rors, and only 21.3% of Divided Entity errors came
from parts that were not involved in another error.

Conflated Entities and Divided Entities are domi-
nated by pronoun link errors: cases where a pronoun
was placed in the wrong entity. Finding finer charac-
terizations of these errors is difficult, as almost any
division produces sparse counts, reflecting the long
tail of mistakes that make up these two error types.

Gold System Decision Count

Cataphoric

Same referent 10.6
Different referent 13.4
Not cataphoric 208.2
Not present 42.8

Not cataphoric Cataphoric 46.2
Not present Cataphoric 186.8

Table 9: Occurrence of mistakes involving cataphora.

6.5 Cataphora

Cataphora (when an anaphor precedes its an-
tecedent) is a pronoun-specific problem that does
not fit easily in the common left-to-right coreference
resolution approach. In the CoNLL test set, 2.8% of
the pronouns are cataphoric. In Table 9 we show
how well systems handle this challenge by counting
mentions based on whether they are cataphoric in
the annotations, are cataphoric in the system output,
and whether the antecedents match.

Systems handle cataphora poorly, missing almost
all of the true instances, and introducing a large
number of extra cases. However, this issue is a fairly
small part of the task, with limited metric impact.

6.6 Entity Properties

Gender, number, person, and named entity type are
properties commonly used in coreference resolution
systems. In some cases, two mentions with differ-
ent properties are placed in the same entity. Some
of these cases are correct, such as variation in per-
son between mentions inside and outside of quotes.
However, many of these cases are errors. In Table 11
we present the percentage of entities that contain
mentions with properties of more than one type. For
named entity types we considered the annotations in
OntoNotes; for the other properties we derive them
from the pronouns in each cluster.

For all of the properties, there are many entities
that we could not assign a value to, either because
no named entity information was available, or be-
cause no pronouns with an unambiguous value for
the property were present. For named entity infor-
mation, OntoNotes only has annotations for 68% of
gold entities, suggesting that named entity taggers
are of limited usefulness, matching observations on
the MUC and ACE corpora (Stoyanov et al., 2009).

The results in the ‘Gold’ column of Table 11 in-



Mentions MUC B3

Error type P R F P R F P R F
Span Error 2.8 2.8 2.7 2.8 2.8 2.8 1.0 2.0 1.6
Conflated Entities 1.7 0.0 0.8 9.9 0.0 4.5 15.9 0.0 6.2
Extra Mention 5.5 0.0 2.6 6.4 0.0 3.0 5.3 0.0 2.2
Extra Entity 15.3 0.0 7.0 11.4 0.0 5.2 6.1 0.0 2.4
Divided Entity 1.8 6.8 4.3 5.7 16.8 10.9 -10.0 21.6 4.5
Missing Mention 1.8 7.0 4.4 3.2 9.2 6.1 -1.3 7.3 3.4
Missing Entity 3.8 16.2 9.8 5.3 13.7 9.3 1.7 11.4 7.0

Table 10: Average accuracy improvement if all errors of a particular type are corrected. Each row in the lower section
is calculated independently, relative to the change after the span errors have been corrected. Some values are negative
because the merge operations involved in fixing the errors are applying to clusters that contain mentions from more
than one gold entity.

Property System Gold
Named Entity 1.7% 0.7%
Gender 0.8% 0.1%
Number 2.1% 0.8%
Person 6.4% 5.1%

Table 11: Percentage of entities that contain mentions
with properties that disagree.

dicate possible errors in the annotations, e.g. in the
0.7% of entities with a mixture of named entity types
there may be mistakes in the coreference annota-
tions, or mistakes in the named entity annotations.3

However, even after taking into consideration cases
where the mixture is valid and cases of annotation
errors, current systems are placing mentions with
different properties in the same clusters.

6.7 Impact of Errors on Metric Scores

Table 10 shows the performance impact of correct-
ing errors of each type. The Span Error row gives
improvements over the original scores, while all
other rows are relative to the scores after Span Er-
rors are corrected.4 By fixing each of the other error
types in isolation, we can get a sense of the gain if
just that error type is addressed. However, it also
means some mentions are incorrectly placed in the
same cluster, causing some negative scores.

Interaction between the error types and the way
the metrics are defined means that the deltas do not

3This kind of cross-annotation analysis may be a useful way
of detecting annotation errors.

4This difference was necessary as the later errors make
changes relative to the state of the entities after the Span Errors
are corrected, e.g. in Figure 2 a blue and red entity is split that
previously contained an X instead of one of the blue mentions.

add up to the overall average gap in performance, but
it is still clear that every error type has a noticeable
impact. Missing Entity errors have the most sub-
stantial impact, which reflects the precision oriented
nature of many coreference resolution systems.

7 Conclusion

While the improvement of metrics and the organiza-
tion of shared tasks have been crucial for progress
in coreference resolution, there is much insight to be
gained by performing a close analysis of errors.

We have presented a new means of automatically
classifying coreference errors that provides an ex-
haustive view of error types. Using our tool we have
analyzed the output of a large set of coreference res-
olution systems and investigated the common chal-
lenges across state-of-the-art systems.

We find that there is considerable variability in
the distribution of errors, and the best systems are
not best across all error types. No single source
of errors stands out as the most substantial chal-
lenge today. However, it is worth noting that
while confidence measures can be used to reduce
precision-related errors, no system has been able to
effectively address the recall-related errors, such as
Missed Entities. Our analysis tool is available at
code.google.com/p/berkeley-coreference-analyser/.

Acknowledgments

We would like to thank the CoNLL task organizers
for providing us with system outputs. This work was
supported by a General Sir John Monash fellowship
to the first author and by BBN under DARPA con-
tract HR0011-12-C-0014.



References
Amit Bagga and Breck Baldwin. 1998. Algorithms

for scoring coreference chains. In Proceedings
of The First International Conference on Language
Resources and Evaluation Workshop on Linguistics
Coreference, pages 563–566.

Eric Bengtson and Dan Roth. 2008. Understanding the
value of features for coreference resolution. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 294–303.

Anders Björkelund and Richárd Farkas. 2012. Data-
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