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Abstract Our conversion assigns a set of bracket instruc-

tions to each word based on it£G category, then

. A follows the ccaG derivation, applying and combin-
for convertingccaG derivations intoPTB-style o . . .
phrase structure trees. In contrast with past ing instructions at each Cpmblna_ltory step_ Fo _bu'ld a
work (Clark and Curran, 2009), which used phrase structure tree. This requires specific instruc-
simple transductions on category pairs, ourap-  tions for each category (not all pairs), and generic
proach uses richer transductions attached to  operations for each combinator. We cover all cate-
single categories. Our conversion preserves  gories in the development set and correctly convert
more sentences under round-trip conversion 53 194 of sentences. Unlike Clark and Curran’s ap-
(51.1% vs. 39.6%) and is more robust. In par-  rq4ch, we require no rules that consider non-local
ticular, unlike past methods, ours does not re- . . L
quire ad-hoc rules over non-local features, and feature_s of c_onstltue_nts, V.VhICh enables the possibil-
so can be easily integrated into a parser. ity of simple integration with a&KY-based parser.

The most common errors our approach makes in-
volve nodes for clauses and rare spans such as QPs,
NXs, and NACs. Many of these errors are inconsis-
Converting the Penn TreebankT®, Marcus et al., tencies in the originabTB annotations that are not
1993) to other formalisms, such a®sc (Miyao recoverable. These issues make evaluating parser
et al., 2004),LFG (Cahill et al., 2008),L.TAG (Xia, output difficult, but our method does enable an im-
1999), andccc (Hockenmaier, 2003), is a com- proved comparison afCG andPTB parsers.
plex process that renders linguistic phenomena in
formalism-specific ways. Tools for reversing thesu2 Background
conversions are desirable for downstream parser Us@ere has been extensive work on converting parser
and parser comparison. However, reversing convesutput for evaluation, e.g. Lin (1998) and Briscoe et
sions is difficult, as corpus conversions may lose inal. (2002) proposed using underlying dependencies
formation or smooth ovepTB inconsistencies. for evaluation. There has also been work on conver-

Clark and Curran (2009) developedaGto PTB  sjon to phrase structure, from dependencies (Xia and
conversion that treats thecG derivation as a phrase Palmer, 2001; Xia et al., 2009) and from lexicalised
structure tree and applies hand-crafted rules to eformalisms, e.gHPsG(Matsuzaki and Tsuijii, 2008)
ery pair of categories that combine in the derivationandtac (Chiang, 2000; Sarkar, 2001). Our focus is
Because their approach does not exploit the gen&incccto PTB conversion (Clark and Curran, 2009).
alisations inherent in thecc formalism, they must ) _
resort to ad-hoc rules over non-local features of thé1 Combinatory Categorial Grammar (CCG)
CccGconstituents being combined (when a fixed pailhe lower half of Figure 1 shows @CcG derivation
of ccG categories correspond to multijes struc-  (Steedman, 2000) in which each word is assigned a
tures). Even with such rules, they correctly convertategory andcombinatory rulesare applied to ad-
only 39.6% of gold CCGbank derivations. jacent categories until only one remains. Categories

We propose an improved, bottom-up method

1 Introduction



- bine the trees by placing one under the other at each

S step, and finally create an S node at the root.
JJ NNS VBD S _ i iri
P C&C-CONV has _spars!ty problems,_ requiring
/NP\ NP schemas for all valid pairs of categories — at a
PRP$ NN DT NN  Mminimum, the unigue category combinations
‘ | | | the 2853 uniq tegory binat
Italian magistrates labeled his  death a suicidefound in CCGbank. Clark and Curran (2009) Create
N/N_ N ((S[del]\NP)/NP)/NP NP[nb]/N N NP[mbl/N N schemas for only 776 of these, handling the remain-
N NP ne der with approximate catch-all rules.
NP (S[dcl]\NP)/NP e .
STac\ NP > C&C-CONv_onIy specme_s one S|_mple schema for
S[del] each rule (pair of categories). This appears reason-
Figure 1: A crossing constituents exampiés . .. suicide  able at first, but frequently causes problems, e.g.:
(pTB) crossedabeled . .. deattiCCGbank). (N/N)/(N/N)+N/N
Categories [ Schema ‘more than” + 30" 1)
i create an NP relatively” + “small (2)
((S[dcl]\NP)/NP)/NP create a VP _ Here either a QP bracket (1) or an ADJP bracket
]]\\;I/D][\’ ;]/A]fv N P:ace :92 U“ger r!gm (2) should be created. Since both examples involve
n + place left under rig .
((Sdcl]\NP)/NP)/NP + NP | place right under left the same rule S.CherTG&C—CONV would incorrectly
(S[del]\NP)/NP + NP place right under left process them in the same way. To combat the most
NP + S[dcl)\NP place both under S glaring errorsC&C-CONV manipulates theTB tree

with ad-hoc rules based on non-local features over
_ _ _ the ccc nodes being combined — an approach that

can be atomic, e.g. th& assigned tanagistrates  cannot be easily integrated into a parser.

or complex functions of the formesult/ arg where  1neqe gisadvantages are a consequence of failing
resultandarg are categories and the slash indicateg, exploit the generalisations thatc combinators

the argument's directionality. Combinators defingefine. We return to this example below to show how
how adjacent categories can combine. Figure 1 usgg, approach handles both cases correctly.
function applicationwhere a complex category con-

sumes an adjacent argument to form its result, e.3. OQur Approach

S[dcl]\ NP combines with theVP to its left to form

an S[dcl]. More powerful combinators allow cate- Our conversion assigns a set of instructions to each

gories to combine with greater flexibility. lexical category and defines generic operations for
We cannot form @TB tree by simply relabeling each combinator that combine instructions. Figure 2

the categories in acc derivation because the map-Shows a typical instruction, which specifies the node
ping to phrase labels is many-to-may;G deriva- {0 create and where to place thes trees associated

tions contain extra brackets due to binarisation, angith the two categories combining. More complex
there are cases where the constituents ipttetree  OPerations are shown in Table 2. Categories with

Table 1: Example C&Gz0NV lexical and rule schemas.

and thecc derivation cross (e.g. in Figure 1). multiple arguments are assigned one instruction per
argument, e.gabeledhas three. These are applied

2.2 Clark and Curran (2009) one at a time, as each combinatory step occurs.

Clark and Curran (2009), hereafte&C-CONV, as- For the example from the previous section we be-

sign aschemdo each leaf (lexical category) and ruledin by assigning the instructions shown in Table 3.
(pair of combining categories) in tlec G derivation.  SO0me of these can apply immediately as they do not
The PTB tree is constructed from thec bottom-  iNvolve an argument, e.gagistrateshas (NP ).
up, creating leaves with lexical schemas, then merg- One of the more complex cases in the example is
ing/adding sub-trees using rule schemas at each stéiglian, which is assigned (NP fa}). This creates
The schemas for Figure 1 are shown in Table 2 New bracket, inserts the functor’s tree, and flattens
These apply to create NPs oveagistrates death and inserts the argument’s tree, producing:
andsuicide and a VP oveflabeled and then com- (NP (JJ Italian) (NNS magistrates))



((S\NP)/NP)/NP NP —> (S\NP)/NP Category Instruction set

ve N (NP )
VANV AN N/N, (NP 1 {a))
Figure 2: An example function application. Top row: N];[Zbl]/]]\iflP NP.)/NP (\N/:; I {a)
ccaGrule. Bottom row: applying instruction (VP f a). ((S[del]\NP3)/NP2)/ NPy ( 3)
(VP {f} a)
Symbol Meaning Example (S af)
(Xfa) Addan X bracketaround (VP f a) Table 3: Instruction sets for the categories in Figure 1.
functor and argument
System Data P R F Sent.
{} Flatten enclosed node (N fa})
X* Use same label as arg. (s* fa}) 00 (all) 95.37 93.67 94.51 39.6
or default to X C&C 00 (len< 40) 95.85 94.39 95.12 42.1
. CONV 23 (all) 95.33 93.95 94.64 39.7
fi = bT'azc_eTS”btre?S : .(F.’R’tf(s t_fl"’“ 2) 23 (len< 40) 95.44 94.04 94.73 41.9
able 2: Types of operations in instructions. 00 (all) 9669 9658 9663 511
For the complete example the final tree is almostThis 00 (len< 40) 96.98 96.77 96.87 53.6
correct but omits the S bracket around the final twoWork 23 (all) 96.49 96.1196.30 514

NPs. To fix our example we could have modified our 23 (len< 40) . 96'57 96.21 96.39 538
instructions to use the final symbol in Table 2. Thd2ple 4:PARSEVAL Precision, Recall, F-Score, and exact
subscripts indicate which subtrees to place whergentence match for converted galde derivations.
However, for this particular construction thgB an- unannotated categories, we use the instructions of
notations are inconsistent, and so we cannot recovéle result category with an added instruction.
without introducing more errors elsewhere. Table 4 compares our approach withC-conv

For combinators other than function applicationpn gold ccc derivations. The results shown are as
we combine the instructions in various ways. Adreported byevALB (Abney et al., 1991) using the
ditionally, we vary the instructions assigned baseollins (1997) parameters. Our approach leads to in-
on thepostag in 32 cases, and for the wombt, creases on all metrics of at least 1.1%, and increases
to recover distinctions not captured by CCGbankxact sentence match by over 11% (both absolute).
categories alone. In 52 cases the later instruc- Many of the remaining errors relate to missing
tions depend on the structure of the argument beingnhd extra clause nodes and a range of rare structures,
picked up. We have sixteen special cases for noBuch as QPs, NACs, and NXs. The only other promi-
combinatory binary rules and twelve special casesent errors are single word spans, e.g. extra or miss-
for non-combinatory unary rules. ing ADVPs. Many of these errors are unrecover-

Our approach naturally handles our QP vs. ADJBble from CCGbank, either because inconsistencies
example because the two cases have different lexidalthe pT8 have been smoothed over or because they
categories: ((N/N)/(N/N))\(S[adj]\NP) on than are genuine but rare constructions that were lost.
and(N/N)/(N/N) on relatively. This lexical dif-
ference means we can assign different instructions #o1  Parser Comparison

correctly recover the QP and ADJP nqdes, whereg§nhen we convert the output ok G parser, theTs
C&C-conv applies the same schema in both casgfges that are produced will contain errors created by
as the categories combining are the same. our conversion as well as by the parser. In this sec-
tion we are interested in comparing parsers, so we
need to factor out errors created by our conversion.
Using sections 00-21 of the treebanks, we hand- One way to do this is to calculate a projected score
crafted instructions for 527 lexical categories, a profPR0OJ, as the parser result over the oracle result, but
cess that took under 100 hours, and includes all thhis is a very rough approximation. Another way is
categories used by the&C parser. There are 647 to evaluate only on the 51% of sentences for which
further categories and 35 non-combinatory binargur conversion from gold cc derivations is perfect
rules in sections 00-21 that we did not annotate. FQCLEAN). However, even on this set our conversion

4 Evaluation
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Figure 3: For each sentence in the treebank, we plotlein and Manning (2003) 89.8 858 -

the converted parser output against gold conversion (left) Petrov and Klein (2007) 93.6 9041 -

and the original parser evaluation against gold conversiorCharniak and Johnson (2005) 94.8 915 -

(right). Left: Most points lie below the diagonal, |nd|cat-Table 5: F-scores on section 23 fers parsers and

ing that the quality of converted parser output (y) is UPPEL parsers with their output converted by our method.

b(.)un(.jed by the quality .Of conversion on QOId. parses (X%LEAN is only on sentences that are converted perfectly
Right: No clear correlation is present, indicating that th? om goldcc (51%). ALL is over all sentenceeROJis

set of sentences that are converted best (on the far righa{)pro'ected F-score(L result/ CCGbankLL result)
are not necessarily easy to parse. ) '

) the cca parser of Fowler and Penn (2010), which
introduces errors, as the parser output may Contajle the same underlying parser. The performance
categories that are harder to convert. gap is partly due to structures in thes that are not
Parser F-scores are generally higher@m®AN,  recoverable from CCGbank, but probably also indi-
which could mean that this setis easier to parse, ofdheg that the split-merge model is less effective in
could mean that these sentences don’t contain ann®z, which has far more symbols than thes.
tation inconsistencies, and so the parsers aren't in-; is difficult to make conclusive claims about
correct for returning the true parse (as opposed Qe performance of the parsers. As shown earlier,
the one in the>TB). To test this distinction we l0ok | £ does not completely factor out the errors in-
for correlation between conversion quality and parsgqsq,ced by our conversion, as the parser output may
difficulty on another metric. In particular, Figure 3pe more difficult to convert, and the calculation of
(right) showsccc labeled dependency performance, g ;only roughly factors out the errors. However,
for theC&C parser vs. CCGbank conversieARSE  he results do suggest that the performance of the

VAL scores. The lack of a strong correlation, and the - s parsers is approaching that of the Petrov parser.
spread on the line = 100, supports the theory that

these sentences are not necessarily easier to parse, Conclusion

but rather have fewer annotation inconsistencies. . . .
By exploiting the generalised combinators of the

In the left plot, the y-axis iPARSEVAL on con- .
. . cca formalism, we have developed a new method
vertedC&C parser output. Conversion quality essen-

: of convertingcca derivations intoPTe-style trees.
tially bounds the performance of the parser. The fe gece de : S-S

. . ur system, which is publicly availadleis more
points above the diagonal are mostly short sentence

on which theC&C parser uses categories that Iea@ ective than previous work, increasing exact sen-
P 9 ence match by more than 11% (absolute), and can

to one extra correct node. The main constructiong . . .

. e directly integrated with acc parser.
on which parse errors occur, e.g. PP attachment, are
rarely converted incorrectly, and so we expect tha cknowledgments
number of errors to be cumulative. Some sentences _ _
are higher in the right plot than the left because therd/e would like to thank the anonymous reviewers

are distinctions irccGthat are not always present infor their helpful suggestions. — This research was
the PTB, e.g. the argument-adjunct distinction. supported by a General Sir John Monash Fellow-

Table 5 presents F-scores for threes parsers ship, the Office of Naval Research_ under MURI
and threecca parsers (with their output converted Srant No. N000140911081, ARC Discovery grant

by our method). One interesting comparison is bd?P1097291, and the Capital Markets CRC.
tween therTB parser of Petrov and Klein (2007) and  ‘*http://code.google.com/p/berkeley-ccg2pst/
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