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Abstract

Despite the convexity of structured max-
margin objectives (Taskar et al., 2004;
Tsochantaridis et al., 2004), the many
ways to optimize them are not equally ef-
fective in practice. We compare a range of
online optimization methods over a vari-
ety of structured NLP tasks (coreference,
summarization, parsing, etc) and find sev-
eral broad trends. First, margin methods
do tend to outperform both likelihood and
the perceptron. Second, for max-margin
objectives, primal optimization methods
are often more robust and progress faster
than dual methods. This advantage is
most pronounced for tasks with dense or
continuous-valued features. Overall, we
argue for a particularly simple online pri-
mal subgradient descent method that, de-
spite being rarely mentioned in the litera-
ture, is surprisingly effective in relation to
its alternatives.

1 Introduction

Structured discriminative models have proven ef-
fective across a range of tasks in NLP includ-
ing tagging (Lafferty et al., 2001; Collins, 2002),
reranking parses (Charniak and Johnson, 2005),
and many more (Taskar, 2004; Smith, 2011).
Common approaches to training such models in-
clude margin methods, likelihood methods, and
mistake-driven procedures like the averaged per-
ceptron algorithm. In this paper, we primarily con-
sider the relative empirical behavior of several on-
line optimization methods for margin-based objec-
tives, with secondary attention to other approaches
for calibration.

It is increasingly common to train structured
models using a max-margin objective that incor-
porates a loss function that decomposes in the

same way as the dynamic program used for in-
ference (Taskar, 2004). Fortunately, most struc-
tured margin objectives are convex, so a range
of optimization methods with similar theoretical
properties are available – in short, any of these
methods will work in the end. However, in prac-
tice, how fast each method converges varies across
tasks. Moreover, some of the most popular meth-
ods more loosely associated with the margin ob-
jective, such as the MIRA algorithm (Crammer
and Singer, 2003) or even the averaged perceptron
(Freund and Schapire, 1999) are not global opti-
mizations and can have different properties.

We analyze a range of methods empirically, to
understand on which tasks and with which fea-
ture types, they are most effective. We modified
six existing, high-performance, systems to enable
loss-augmented decoding, and trained these mod-
els with six different methods. We have released
our learning code as a Java library.1 Our results
provide support for the conventional wisdom that
margin-based optimization is broadly effective,
frequently outperforming likelihood optimization
and the perceptron algorithm. We also found that
directly optimizing the primal structured margin
objective based on subgradients calculated from
single training instances is surprisingly effective,
performing consistently well across all tasks.

2 Learning Algorithms

We implemented a range of optimization methods
that are widely used in NLP; below we categorize
them into margin, likelihood, and perceptron-like
methods. In each case, we used a structured loss
function, modified to suit each task. In general,
we focus on online methods because of their sub-
stantial speed advantages, rather than algorithms
such as LBFGS (Liu and Nocedal, 1989) or batch
Exponentiated Gradient (Collins et al., 2008).

1http://nlp.cs.berkeley.edu/software.shtml



Algorithm 1 The Online Primal Subgradient Algorithm with `1 or `2 regularization, and sparse updates
Parameters: g
iters Number of iterations
C Regularization constant (10−1 to 10−8)
η Learning rate (100 to 10−4)
δ Initializer for q (10−6)

w = 0 Weight vector
q = δ Cumulative squared gradient
u = 0 Time of last update for each weight
n = 0 Number of updates so far
for iter ∈ [1, iters] do

for batch ∈ data do
Sum gradients from loss-aug. decodes
g = 0
for (xi, yi) ∈ batch do
for y = argmax

y′∈Y (xi)
[SCORE(y′) + L(y′, yi)]

for g += (f(y)− f(yi))
Update the active features
q += g2......Element-wise square
n += 1
for f ∈ nonzero features in g do

wf = UPDATE-ACTIVE(wf , gf , qf )
uf = n

The AdaGrad update
function UPDATE-ACTIVE(w, g, q)

return
w
√
q−ηg

ηC+
√
q [`2]

d = |w − η√
qg| −

η√
qC [`1]

return sign(w − η√
qg) ·max(0, d) [`1]

Functions only needed for sparse updates
A single update equivalent to a series of AdaGrad
updates where the weight’s subgradient was zero
function UPDATE-CATCHUP(w, q, t)

return w
( √

q
ηC+

√
q

)t
[`2]

return sign(w) ·max(0, |w| − ηC√
q t) [`1]

Compute w>f(y′), but for each weight, apply an
update to catch up on the steps in which the gra-
dient for that weight was zero
function SCORE(y′)

s = 0
for f ∈ f(y′) do
forwf = UPDATE-CATCHUP(wf , qf , n−uf )
for uf = n
for s += wf
return s

Note: To implement without the sparse update, use SCORE = w>f(y′), and run the update loop on the left over all features.
Also, for comparison, to implement perceptron, remove the sparse update and use UPDATE-ACTIVE = return w + g.

2.1 Margin

Cutting Plane (Tsochantaridis et al., 2004)
Solves a sequence of quadratic programs (QP),
each of which is an approximation to the dual
formulation of the margin-based learning prob-
lem. At each iteration, the current QP is refined
by adding additional active constraints. We solve
each approximate QP using Sequential Minimal
Optimization (Platt, 1999; Taskar et al., 2004).

Online Cutting Plane (Chang and Yih, 2013)
A modified form of cutting plane that only par-
tially solves the QP on each iteration, operating in
the dual space and optimizing a single dual vari-
able on each iteration. We use a variant of Chang
and Yih (2013) for the L1 loss margin objective.

Online Primal Subgradient (Ratliff et al., 2007)
Computes the subgradient of the margin objective
on each instance by performing a loss-augmented
decode, then uses these instance-wise subgradi-
ents to optimize the global objective using Ada-
Grad (Duchi et al., 2011) with either L1 or L2 reg-
ularization. The simplest implementation of Ada-
Grad touches every weight when doing the update

for a batch. To save time, we distinguish between
two different types of update. When the subgradi-
ent is nonzero, we apply the usual update. When
the subgradient is zero, we apply a numerically
equivalent update later, at the next time the weight
is queried. This saves time, as we only touch
the weights corresponding to the (usually sparse)
nonzero directions in the current batch’s subgradi-
ent. Algorithm 1 gives pseudocode for our imple-
mentation, which was based on Dyer (2013).

2.2 Likelihood
Stochastic Gradient Descent The built-in train-
ing method for many of the systems was
softmax-margin likelihood optimization (Gimpel
and Smith, 2010) via subgradient descent with ei-
ther AdaGrad or AdaDelta (Duchi et al., 2011;
Zeiler, 2012). We include results with each sys-
tem’s default settings as a point of comparison.

2.3 Mistake Driven
Averaged Perceptron (Freund and Schapire,
1999; Collins, 2002) On a mistake, weights for
features on the system output are decremented and
weights for features on the gold output are incre-



mented. Weights are averaged over the course of
training, and decoding is not loss-augmented.

Margin Infused Relaxed Algorithm (Crammer
and Singer, 2003) A modified form of the per-
ceptron that uses loss-augmented decoding and
makes the smallest update necessary to give a mar-
gin at least as large as the loss of each solution.
MIRA is generally presented as being related to
the perceptron because it does not explicitly op-
timize a global objective, but it also has connec-
tions to margin methods, as explored by Chiang
(2012). We consider one-best decoding, where the
quadratic program for determining the magnitude
of the update has a closed form.

3 Tasks and Systems

We considered tasks covering a range of structured
output spaces, from sequences to non-projective
trees. Most of the corresponding systems use
models designed for likelihood-based structured
prediction. Some use sparse indicator features,
while others use dense continuous-valued features.

Named Entity Recognition This task provides
a case of sequence prediction. We used the NER
component of Durrett and Klein (2014)’s entity
stack, training it independently of the other com-
ponents. We define the loss as the number of in-
correctly labelled words, and train on the CoNLL
2012 division of OntoNotes (Pradhan et al., 2007).

Coreference Resolution This gives an example
of training when there are multiple gold outputs
for each instance. The system we consider uses
latent links between mentions in the same cluster,
marginalizing over the possibilities during learn-
ing (Durrett and Klein, 2013). Since the model
decomposes across mentions, we train by treat-
ing them as independent predictions with multiple
gold outputs, comparing the inferred link with the
gold link that is scored highest under the current
model. We use the system’s weighted loss func-
tion, and the same data as for NER.

Constituency Parsing We considered two dif-
ferent systems. The first uses only sparse indicator
features (Hall et al., 2014), while the second is pa-
rameterized via a neural network and adds dense
features derived from word vectors (Durrett and
Klein, 2015).2 We define the loss as the number

2Our results are slightly lower as we save time by only
using the dense features and a reduced n-gram context.

of incorrect rule productions, and use the standard
Penn Treebank division (Marcus et al., 1993).

Dependency Parsing We used the first-order
MST parser in two modes, Eisner’s algorithm
for projective trees (Eisner, 1996; McDonald et
al., 2005b), and the Chu-Liu-Edmonds algorithm
for non-projective trees (Chu and Liu, 1965; Ed-
monds, 1967; McDonald et al., 2005a). The loss
function was the number of arcs with an incorrect
parent or label, and we used the standard division
of the English Universal Dependencies (Agić et
al., 2015). The built-in training method for MST
parser is averaged, 1-best MIRA, which we in-
clude for comparison purposes.

Summarization With this task, we explore a
case in which there is relatively little training data
and the model uses a small number of dense fea-
tures. The system uses a linear model with fea-
tures considering counts of bigrams in the input
document collection. The system forms the out-
put summary by selecting a subset of the sen-
tences in the input collection that does not exceed
a fixed word-length limit (Berg-Kirkpatrick et al.,
2011). Inference involves solving an integer linear
program, the loss function is bigram recall, and
the data is from the TAC shared tasks (Dang and
Owczarzak, 2008; Dang and Owczarzak, 2009).

3.1 Tuning
For each method we tuned hyperparameters by
considering a grid of values and measuring dev
set performance over five training iterations, ex-
cept for constituency parsing, where we took five
measurements, 4k instances apart. For the cutting
plane methods we cached constraints in memory
to save time, but the memory cost was too great
to run batch cutting plane on constituency parsing
(over 60 Gb), and so is not included in the results.

4 Observations

From the results in Figure 1 and during tuning,
we can make several observations about these op-
timization methods’ performance on these tasks.

Observation 1: Margin methods generally per-
form best As expected given prior work, mar-
gin methods equal or surpass the performance
of likelihood and perceptron methods across al-
most all of these tasks. Coreference resolution
is an exception, but that model has latent vari-
ables that likelihood may treat more effectively,



0 3 6 9 12 15 18
0

37

Named Entity Recognition

74

76

78

80

82

0 3 6 9 12 15 18
0

29

Coreference Resolution

58

59

60

61

62

0 3 6 9 12 15 18
0

40

Constituency Parsing

80

82

84

86

88

90

0 3 6 9 12 15 18
0

40

Constituency Parsing, Neural CRF

80

82

84

86

88

90

0 3 6 9 12 15 18
0

38

Dependency Parsing, Projective Decoder

77

78

79

80

81

82

0 3 6 9 12 15 18
0

38

Dependency Parsing, Non-Proj. Decoder

77

78

79

80

81

82

0 5 10 15 20
0

2.5

Summarization

5

6

7

8

Margin

Cutting Plane
Online Cutting Plane
Online Primal Subgradient & L1

Online Primal Subgradient & L2

Mistake
Driven

Averaged Perceptron
MIRA
Averaged MIRA (MST built-in)

Llhood Stochastic Gradient Descent

Figure 1: Variation in dev set performance (y)
across training iterations (x). To show all varia-
tion, the scale of the y-axis changes partway, as
indicated. Lines that stop early had converged.



Time per iteration relative to averaged perceptron
Method NER Coref Span Parser Neural Parser MST Proj. MST Non-Proj. Summ.
AP 1.0 1.0 1.0 - 1.0 1.0 1.0
MIRA 1.9 1.0 1.0 1.0 1.0 1.0 1.0
CP 60.8 2.7 - - 6.8 8.4 0.6
OCP 2.7 1.7 0.9 0.9 1.5 1.6 1.1
OPS 3.9 1.3 1.1 1.0 1.8 2.0 0.9
Decoding 0.6 0.2 0.9 0.7 0.7 0.6 0.7

Table 1: Comparison of time per iteration relative to the perceptron (or MIRA for the Neural Parser).
Decoding shows the time spent on inference. Times were averaged across the entire run. OPS uses batch
size 10 for NER to save time, but performs just as well as with batch size 1 in Figure 1.

and has a weighted loss function tuned for like-
lihood (softmax-margin).

Observation 2: Dual cutting plane methods ap-
pear to learn more slowly Both cutting plane
methods took more iterations to reach peak per-
formance than the other methods. In addition, for
batch cutting plane, accuracy varied so drastically
that we extended tuning to ten iterations, and even
then choosing the best parameters was sometimes
difficult. Table 1 shows that the online cutting
plane method did take slightly less time per iter-
ation than OPS, but not enough to compensate for
the slower learning rate.

Observation 3: Learning with real-valued
features is difficult for perceptron methods
Learning models for tasks such as NER, which are
driven by sparse indicator features, often roughly
amounts to tallying the features that are con-
trastively present in correct hypotheses. In such
cases, most learning methods work fairly well.
However, when models use real-valued features,
learning may involve determining a more delicate
balance between features. In the models we con-
sider that have real-valued features, summariza-
tion and parsing with a neural model, we can see
that perceptron methods indeed have difficulty.3

Observation 4: Online Primal Subgradient is
robust and effective All of the margin based
methods, and gradient descent on likelihood, re-
quire tuning of a regularization constant and a step
size (or convergence requirements for SMO). The
dual methods were particularly sensitive to these
hyperparameters, performing poorly if they were
not chosen carefully. In contrast, performance for
the primal methods remained high over a broad

3For the neural parser, the perceptron took a gradient step
for each mistake, but this had dismal performance.

range of values.
Our implementation of sparse updates for Ada-

Grad was crucial for high-speed performance, de-
creasing time by an order of magnitude on tasks
with many sparse features, such as NER and de-
pendency parsing.

Observation 5: Other minor properties We
found that varying the batch size did not substan-
tially impact performance after a given number of
decodes, but did enable a speed improvement as
decoding of multiple instances can occur in paral-
lel. Increasing batch sizes leads to a further im-
provement to OPS, as overall there are fewer up-
dates per iteration. For some tasks, re-tuning the
step size was necessary when changing batch size.

5 Conclusion

The effectiveness of max-margin optimization
methods is widely known, but the default choice
of learning algorithm in NLP is often a form of the
perceptron (or likelihood) instead. Our results il-
lustrate some of the pitfalls of perceptron methods
and suggest that online optimization of the max-
margin objective via primal subgradients is a sim-
ple, well-behaved alternative.
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