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Abstract

We present an extension of the classic A* search
procedure to tabular PCFG parsing. The use of A*
search can dramatically reduce the time required to
find a best parse by conservatively estimating the
probabilities of parse completions. We discuss vari-
ous estimates and give efficient algorithms for com-
puting them. On average-length Penn treebank sen-
tences, our most detailed estimate reduces the to-
tal number of edges processed to less than 3% of
that required by exhaustive parsing, and a simpler
estimate, which requires less than a minute of pre-
computation, reduces the work to less than 5%. Un-
like best-first and finite-beam methods for achieving
this kind of speed-up, an A* method is guaranteed to
find the most likely parse, not just an approximation.
Our parser, which is simpler to implement than an
upward-propagating best-first parser, is correct for a
wide range of parser control strategies and maintains
worst-case cubic time.

1 Introduction

PCFG parsing algorithms with worst-case cubic-time
bounds are well-known. However, when dealing with
wide-coverage grammars and long sentences, even cu-
bic algorithms can be far too expensive in practice. Two
primary types of methods for accelerating parse selec-
tion have been proposed. Roark (2001) and Ratnaparkhi
(1999) use a beam-search strategy, in which only the best
n parses are tracked at any moment. Parsing time is lin-
ear and can be made arbitrarily fast by reducingn. This
is a greedy strategy, and the actual Viterbi (highest proba-
bility) parse can be pruned from the beam because, while
it is globally optimal, it may not be locally optimal at ev-
ery parse stage. Chitrao and Grishman (1990), Caraballo
and Charniak (1998), Charniak et al. (1998), and Collins
(1999) describe best-first parsing, which is intended for
a tabular item-based framework. In best-first parsing,
one builds afigure-of-merit(FOM) over parser items,
and uses the FOM to decide the order in which agenda
items should be processed. This approach also dramat-
ically reduces the work done during parsing, though it,

too, gives no guarantee that the first parse returned is the
actual Viterbi parse (nor does it maintain a worst-case cu-
bic time bound). We discuss best-first parsing further in
section 3.3.

Both of these speed-up techniques are based on greedy
models of parser actions. The beam search greedily
prunes partial parses at each beam stage, and a best-first
FOM greedily orders parse item exploration. If we wish
to maintain optimality in a search procedure, the obvious
thing to try is A* methods (see for example Russell and
Norvig, 1995). We apply A* search to a tabular item-
based parser, ordering the parse items based on a com-
bination of their known internal cost of construction and
a conservative estimate of their cost of completion (see
figure 1). A* search has been proposed and used for
speech applications (Goel and Byrne, 1999, Corazza et
al., 1994); however, it has been little used, certainly in the
recent statistical parsing literature, apparently because of
difficulty in conceptualizing and computing effective ad-
missible estimates. The contribution of this paper is to
demonstrate effective ways of doing this, by precomput-
ing grammar statistics which can be used as effective A*
estimates.

The A* formulation provides three benefits. First, it
substantially reduces the work required to parse a sen-
tence, without sacrificing either the optimality of the an-
swer or the worst-case cubic time bounds on the parser.
Second, the resulting parser is structurally simpler than a
FOM-driven best-first parser. Finally, it allows us to eas-
ily prove the correctness of our algorithm, over a broad
range of control strategies and grammar encodings.

In this paper, we describe two methods of construct-
ing A* bounds for PCFGs. One involves context sum-
marization, which uses estimates of the sort proposed in
Corazza et al. (1994), but considering richer summaries.
The other involves grammar summarization, which, to
our knowledge, is entirely novel. We present the esti-
mates that we use, along with algorithms to efficiently
calculate them, and illustrate their effectiveness in a tab-
ular PCFG parsing algorithm, applied to Penn Treebank
sentences.
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Figure 1: A* edge costs. (a) The cost of an edgeX is a com-
bination of the cost to build the edge (the Viterbi inside score
β) and the cost to incorporate it into a root parse (the Viterbi
outside scoreα). (b) In the corresponding hypergraph, we have
exact values for the inside score from the explored hyperedges
(solid lines), and use upper bounds on the outside score, which
estimate the dashed hyperedges.

2 An A* Algorithm

An agenda-based PCFG parser operates on parse items
callededges, such asNP:[0,2], which denote a grammar
symbol over a span. The parser maintains two data struc-
tures: a chart or table, which records edges for which
(best) parses have already been found, and an agenda of
newly-formed edges waiting to be processed. The core
loop involves removing an edge from the agenda and
combining that edge with edges already in the chart to
create new edges. For example,NP:[0,2] might be re-
moved from the agenda, and, if there were a ruleS→ NP

VP and VP:[2,8] was already entered into the chart, the
edgeS:[0,8] would be formed, and added to the agenda if
it were not in the chart already.

The way an A* parser differs from a classic chart
parser is that, like a best-first parser, agenda edges are
processed according to a priority. In best-first parsing,
this priority is called afigure-of-merit (FOM), and is
based on various approximations toP (e|s), the frac-
tion of parses of a sentences which include an edgee
(though see Goodman (1997) for an alternative notion of
FOM). Edges which seem promising are explored first;
others can wait on the agenda indefinitely. Note that
even if we did knowP (e|s) exactly, we still would not
know whethere occurs in anybestparse ofs. Nonethe-
less, good FOMs empirically lead quickly to good parses.
Best-first parsing aims to find a (hopefully good) parse
quickly, but gives no guarantee that the first parse discov-
ered is the Viterbi parse, nor does it allow one to recog-
nize the Viterbi parse when it is found.

In A* parsing, we wish to construct priorities which
will speed up parsing, yet still guaranteeoptimality(that
the first parse returned is indeed a best parse). With a
categorical CFG chart parser run to exhaustion, it does
not matter in what order one removes edges from the
agenda; all edges involved in full parses of the sentence

will be constructed at some point. A cubic time bound
follows straightforwardly by simply testing for edge exis-
tence, ensuring that we never process an edge twice. With
PCFG parsing, there is a subtlety involved. In addition to
knowing whether edges can be constructed, we also want
to know the scores of edges’ best parses. Therefore, we
record estimates of best-parse scores, updating them as
better parses are found. If, during parsing, we find a new,
better way to construct some edgee that has previously
been entered into the chart, we may also have found a bet-
ter way to construct any edges which have already been
built usinge. Best-first parsers deal with this by allowing
an upward propagation, which updates such edges’ scores
(Caraballo and Charniak, 1998). If run to exhaustion, all
edges’ Viterbi scores will be correct, but the propagation
destroys the cubic time bound of the parser, since in effect
each edge can be processed many times.

In order to ensure optimality, it is sufficient that, for
any edgee, all edgesf which are contained in a best
parse ofe get removed from the agenda beforee itself
does. If we have an edge priority which ensures this or-
dering, we can avoid upward propagation entirely (and
omit the data structures involved in it) and still be sure
that each edge leaves the agenda scored correctly. If the
grammar happens to be in CNF, one way to do this is to
give shorter spans higher priority than longer ones; this
priority essentially gives the CKY algorithm.

Formally, assume we have a PCFGG and a sentence
s = 0wn (we place indices as fenceposts between words).
An inside parseof an edgee = X :[i, j] is a derivation in
G fromX to iwj . LetβG(e, s) denote the log-probability
of a best inside parse ofe (its Viterbi inside score).1 We
will drop theG, s, and evene when context permits. Our
parser, like a best-first parser, maintains estimatesb(e, s)
of β(e, s) which begin at−∞, only increase over time,
and always represent the score of the best parses of their
edgese discovered so far. Optimality means that for any
e, b(e, s) will equalβG(e, s) whene is removed from the
agenda.

If one usesb(e, s) to prioritize edges, we show in Klein
and Manning (2001a), that the parser is optimal over ar-
bitrary PCFGs, and a wide range of control strategies.
This is proved using an extension of Dijkstra’s algorithm
to a certain kind of hypergraph associated with parsing,
shown in figure 1(b): parse items are nodes in the hyper-
graph, hyperarcs take sets of parse items to their result
item, and hyperpaths map to parses. Reachability from
start corresponds to parseability, and shortest paths to
Viterbi parses.

1Our use ofinside scoreandoutside scoreevokes the same
picture as talk about inside and outside probabilities, butnote
that in this paper inside and outside scores always refer to (a
bound on) the maximum (Viterbi) probability parse inside or
outside some edge, rather than to the sum for all such parses.
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Figure 2: Best outside parses given richer summaries of edgecontext. (a –SX) Knowing only the edge state (NP) and the left and
right outside spans, (b –SXL) also knowing the left tag, (c –SXLR) left and right tags, and (d –TRUE) the entire outside context.

The hypergraph shown in figure 1(b) shows a parse of
the goalS:[0,3] which includesNP:[0,2].2 This parse can
be split into an inside portion (solid lines) and an outside
portion (dashed lines), as indicated in figure 1(a). The
outside portion is anoutside parse: formally, an outside
parse of an edgeX :[i, j] in sentences = 0wn is a deriva-
tion fromG’s root symbol tow0iXwjn. We useαG(e, s)
to denote the score of a best outside parse ofe.

Usingb(e, s) as the edge priority corresponds to a gen-
eralization of uniform cost search on graphs (Russell and
Norvig, 1995). In the analogous generalization of A*
search, we add tob(e, s) an estimatea(e, s) of the com-
petion costαG(e, s) (the cost of the dashed outside parse)
to focus exploration on regions of the graph which appear
to have goodtotal cost.

A* search is correct as long as the estimatea satis-
fies two conditions. First, it must beadmissible, meaning
that it must not underestimate the actual log-probability
required to complete the parse. Second, it must be mono-
tonic, meaning that as one builds up a tree, the combined
log-probabilityβ + a never increases. The proof of this
is very similar to the proof of the uniform-cost case in
Klein and Manning (2001a), and so we omit it for space
reasons (it can be found in Klein and Manning, 2002).

Concretely, we can useb + a as the edge priority, pro-
videda is an admissible, monotonic estimate ofα. We
will still have a correct algorithm, and even rough heuris-
tics can dramatically cut down the number of edges pro-
cessed (and therefore total work). We next discuss several
estimates, describe how to compute them efficiently, and
show the edge savings when parsing Penn treebank WSJ
sentences.

3 A* Estimates for Parsing

When parsing with a PCFGG, each edgee = X :[i, j]
spans some interval[i, j] of the sentence and is labeled

2The example here shows a bottom-up construction of a
parse tree. However, the present algorithm and estimates work
just as well for top-down chart parsing, given suitable active
items as nodes; see (Klein and Manning, 2001a).

by some grammar symbol (orstate) X . Our presentation
assumes thatG is a binarized grammar, and so in gen-
eral X may be either acompletestate likeNP that was
in an originaln-ary grammar, or an intermediate state,
like an Earley dotted rule, that is the result of implicit or
explicit grammar binarization. For the edgee, its yield
in s = 0wn is the sequence of terminals that it spans
(iwj). Its contextis its stateX along with the rest of
the terminals of sentence (0wiXjwn). Scores are log-
probabilities; lower cost is higher log-probability. So, ‘>’
or ‘better’ will mean higher log-probability.

3.1 Context Summary Estimates

One way to construct an admissible estimate is to sum-
marize the context in some way, and to find the score of
the best parse ofanycontext that fits that summary. Let
c(e, s) be the context ofe in s. Letσ be a summary func-
tion of contexts. We can then use thecontext summary
estimate:

aσ(e, s) = max
(e′,s′):σ(c(e′,s′))=

σ(c(e,s))

αG(e′, s′) ≥ αG(e, s)

That is, we return the exact Viterbi outside score forsome
context, generally not the actual context, whose summary
matches the actual one’s summary. If the number of sum-
maries is reasonable, we can precompute and store the
estimate for each summary once and for all, then retrieve
them in constant time per edge at parse time.

If we give no information in the summary, the estimate
will be constantly 0. This is the trivial estimateNULL ,
and corresponds to simply using inside estimatesb alone
as priorities. On the other extreme, if each context had
a unique summary, thena(e, s) would beαG(e, s) itself.
This is the ideal estimate, which we callTRUE. In prac-
tice, of course, precomputingTRUE would not be feasi-
ble.3

3Note that our ideal estimate is notP (e|s) like the ideal
FOM, rather it isP (Tg,e)/P (Te) (whereTg,e is a best parse of
the goalg among those which containe, andTe is a best parse
of e over the yield ofe). That is, we are not estimatingparser
choiceprobabilities, butparse tree probabilities.



We used various intermediate summaries, some illus-
trated in figure 2.S1 specifies only the total number of
words outsidee, while S specifies separately the number
to the left and right.SX also specifiese’s label. SXL and
SXR add the tags adjacent toe on the left and right re-
spectively. S1XLR includes both the left and right tags,
but merges the number of words to the left and right.4

As the summaries become richer, the estimates become
sharper. As an example, consider anNP in the context
“ VBZ NP , PRP VBZ DT NN .” shown in figure 2.5 The
summarySX reveals only that there is anNP with 1 word
to the left and 6 the right, and gives an estimate of−11.3.
This score is backed by the concrete parse shown in fig-
ure 2(a). This is a best parse of a context compatible with
what little we specified, but very optimistic. It assumes
very common tags in very common patterns.SXL adds
that the tag to the left isVBZ, and the hypothesis that the
NP is part of a sentence-initialPP must be abandoned;
the best score drops to−13.9, backed by the parse in fig-
ure 2(b). Specifying the right tag to be “,” drops the score
further to−15.1, given by figure 2(c). The actual best
parse is figure 2(d), with a score of−18.1.

These estimates are similar to quantities calculated in
Corazza et al. (1994); in that work, they are interested
in the related problem of finding best completions for
strings which contain gaps. For theSX estimate, for
example, the string would be the edge’s label and two
(fixed-length) gaps. They introduce quantities essentially
the same as ourSX estimate to fill gaps, and their one-
word update algorithms are similarly related to those we
use here. The primary difference here is in the application
of these quantities, not their calculation.

3.2 Grammar Projection Estimates

The context summary estimates described above use local
information, combined with span sizes. This gives the
effect that, for larger contexts, the best parses which back
the estimates will have less and less to do with the actual
contexts (and hence will become increasingly optimistic).
Context summary estimates do not pin down the exact
context, but do use the original grammarG. Forgrammar
projection estimates, we use the exact context, but project
the grammar to someG′ which is so much simpler that it
is feasible to first exhaustively parse withG′ and then use
the result to guide the search in the full grammarG.

Formally, we have a projectionπ which maps gram-
mar states ofG (that is, the dotted rules of an Earley-style
parser) to some reduced set. This projection of states in-
duces a projection of rules. If a setR = {r} of rules in
G collide as the ruler′ in G′, we giver′ the probability

4Merging the left and right outside span sizes inS1XLR was
done solely to reduce memory usage.

5Our examples, and our experiments, use delexicalized sen-
tences from the Penn treebank.

Grammar State
Projection NP CC NP→ · CC NP CC NP
NULL X X X
SX NP X NP→ · X NP X NP
XBAR NP CC NP′

F X CC X → · CC X CC X
TRUE NP CC NP→ · CC NP CC NP

Figure 3: Examples of grammar state images under several
grammar projections.

P (r′) = maxr∈R P (r). Note that the resulting grammar
G′ will not generally be a proper PCFG; it may assign
more than probability 1 to the set of trees it generates. In
fact, it will usually assign infinite mass. However, all that
matters for our purposes is that every tree inG projects
underπ to a tree inG′ with the same or higher probabil-
ity, which is true because every rule inG does. There-
fore, we know thatαG(e, s) ≤ αG′(e, s). If G′ is much
more compact thanG, for each new sentences, we can
first rapidly calculateaπ = αG′ for all edges, then parse
with G.

The identity projectionι returnsG and thereforeaι is
TRUE. On the other extreme, a constant projection gives
NULL (if any rewrite has probability 1). In between, we
tried three other grammar projection estimates (examples
in figure 3). First, consider mapping all terminal states to
a single terminal token, but not altering the grammar in
any other way. If we do this projection, then we get the
SX estimate from the last section (collapsing the termi-
nals together effectively hides which terminals are in the
context, but not their number). However, the resulting
grammar is nearly as large asG, and therefore it is much
more efficient to use the precomputed context summary
formulation. Second, for the projectionXBAR, we tried
collapsing all the incomplete states of each complete state
to a single state (soNP→ · CC NP andNP→ · PP would
both becomeNP′). This turned out to be ineffective, since
most productions then had merged probability 1.

For our current grammar, the best estimate of this type
was one we calledF, for filter, which collapsed all com-
plete (passive) symbols together, but did not collapse any
terminal symbols. So, for example, a state likeNP→ · CC

NP CC NPwould becomeX→ · CC X CC X (see section 3.3
for a description of our grammar encodings). This esti-
mate has an interesting behavior which is complementary
to the context summary estimates. It does not indicate
well when an edge would be moderately expensive to in-
tegrate into a sentence, but it is able to completely elimi-
nate certain edges which are impossible to integrate into
a full parse (for example in this case maybe the twoCC

tags required to complete theNP are not present in the
future context).

A close approximation to theF estimate can also be
computed online especially quickly during parsing. Since
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we are parsing with the Penn treebank covering gram-
mar, almost any (phrasal) non-terminal can be built over
almost any span. As discussed in Klein and Manning
(2001b), the only source of constraint on what edges can
be built where is the tags in the rules. Therefore, an edge
with a label likeNP→ · CC NP CC NPcan essentially be
built whenever (and only whenever) twoCC tags are in
the edge’s right context, one of them being immediately
to the right. To the extent that this is true,F can be ap-
proximated by simply scanning for the tag configuration
required by a state’s local rule, and returning 0 if it is
present and−∞ otherwise. This is the method we used
to implementF; exactly parsing with the projected gram-
mar was much slower and did not result in substantial
improvement.

It is worth explicitly discussing how theF estimate dif-
fers from top-down grammar-driven filtering standardly
used by top-down chart parsers; in the treebank grammar,
there is virtually no top-down filtering to be exploited
(again, see Klein and Manning (2001b)). In a left-to-right
parse, top-down filtering is a prefix licensing condition;F

is more of a sophisticated lookahead condition on suf-
fixes.

The relationships between all of these estimates are
shown in figure 4. The estimates form a join lattice (fig-
ure 4(a)): adding context information to a merged con-
text estimate can only sharpen the individual outside es-
timates. In this sense, for exampleS ≺ SX. The lattice
top is TRUE and the bottom isNULL . In addition, the
minimum (t) of a set of admissible estimates is still an
admissible estimate. We can use this to combine our ba-
sic estimates into composite estimates:SXMLR = t (SXL,
SXR) will be valid, and a better estimate than eitherSXL

or SXR individually. Similarly,B ist (SXMLR, S1XLR).
There are other useful grammar projections, which are

beyond the scope of this paper. First, much recent statisti-
cal parsing work has gotten value from splitting grammar

Original Rules Outside-Trie Rules Inside-Trie Rules
NP→ DT JJ NN 0.3 NP→ XNP→ · NN NN 0.4 NP→ XDT JJ NN 0.3
NP→ DT NN NN 0.1 XNP→ · NN → DT JJ 0.75 NP→ XDT NN NN 0.1

XNP→ · NN → DT NN 0.25 XDT JJ→ DT JJ 1.0
XDT NN → DT NN 1.0

Figure 5: Two trie encodings of rules.
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pushed left (Mohri, 1997).I-TRIE is a non-deterministic left-
branching trie with weights on rule entry as in Charniak et al.
(1998).

states, such as by annotating nodes with their parent and
even grandparent categories (Johnson, 1998). This anno-
tation multiplies out the state space, giving a much larger
grammar, and projecting back to the unannotated state set
can be used as an outside estimate. Second, and perhaps
more importantly, this technique can be applied to lexical
parsing, where the state projections are onto the delex-
icalized PCFG symbols and/or onto the word-word de-
pendency structures. This is particularly effective when
the tree model takes a certain factored form; see Klein
and Manning (2003) for details.

3.3 Parsing Performance

Following (Charniak et al., 1998), we parsed unseen sen-
tences of length 18–26 from the Penn Treebank, using the
grammar induced from the remainder of the treebank.6

We tried all estimates described above.
Rules were encoded as both inside (I) and outside (O)

tries, shown in figure 5. Such an encoding binarizes the
grammar, and compacts it. I-tries are as in Charniak et
al. (1998), whereNP→ DT JJ NN becomesNP → XDT JJ

NN andXDT JJ → DT JJ, and correspond to dropping the
portion of an Earley dotted rule after the dot.7 O-tries,
as in Leermakers (1992), turnNP→ DT JJ NN into NP →
XNP→ · NN NN andXNP→ · NN → DT JJ, and correspond to

6We chose the data set used by Charniak and coauthors, so
as to facilitate comparison with previous work. We do however
acknowledge that many of our current local estimates are less
effective on longer spans, and so would work less well on 40–
50 word sentences. This is an area of future research.

7In Charniak et al. (1998), the binarization is in the reverse
direction; we binarize into a left chain because it is the standard
direction implicit in chart parsers’ dotted rules, and the direction
makes little difference in edge counts.
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dropping the portion which precedes the dot. Figure 6
shows the overall savings for several estimates of each
type. The I-tries were superior for the coarser estimates,
while O-tries were superior for the finer estimates. In
addition, only O-tries permit the accelerated version of
F, since they explicitly declare their right requirements.
Additionally, with I-tries, only the top-level intermedi-
ate rules have probability less than 1, while for O-tries,
one can back-weight probability as in (Mohri, 1997), also
shown in figure 5, enabling sub-parts of rare rules to be
penalized even before they are completed.8 For all sub-
sequent results, we discuss only the O-trie numbers.

Figure 8 lists the overall savings for each context sum-
mary estimate, with and withoutF joined in. We see that
the NULL estimate (i.e., uniform cost search) is not very
effective – alone it only blocks 11% of the edges. But it
is still better than exhaustive parsing: with it, one stops
parsing when the best parse is found, while in exhaustive
parsing one continues until no edges remain. Even the
simplest non-trivial estimate,S, blocks 40% of the edges,
and the best estimateBF blocks over 97% of the edges, a
speed-up of over 35 times, without sacrificing optimality
or algorithmic complexity.

For comparison to previous FOM work, figure 7
shows, for an edge count and an estimate, the propor-
tion of sentences for which a first parse was found us-
ing at most that many edges. To situate our results, the
FOMs used by (Caraballo and Charniak, 1998) require
10K edges to parse 96% of these sentences, whileBF re-
quires only 6K edges. On the other hand, the more com-
plex, tuned FOM in (Charniak et al., 1998) is able to parse
all of these sentences using around 2K edges, whileBF

requires 7K edges. Our estimates do not reduce the to-
tal edge count quite as much as the best FOMs can, but
they are in the same range. This is as much as one could
possibly expect, since, crucially, our first parses are al-

8However, context summary estimates which include the
state compensate for this automatically.

Estimate Savings w/ Filter Storage Precomp
NULL 11.2 58.3 0K none

S 40.5 77.8 2.5K 1 min
SX 80.3 95.3 5M 1 min

SXL 83.5 96.1 250M 30 min
S1XLR 93.5 96.5 500M 480 min
SXR 93.8 96.9 250M 30 min

SXMLR 94.3 97.1 500M 60 min
B 94.6 97.3 1G 540 min

Figure 8: The trade-off between online savings and precompu-
tation time.

ways optimal, while the FOM parses need not be (and
indeed sometimes are not).9 Also, our parser never needs
to propagate score changes upwards, and so may be ex-
pected to do less work overall per edge, all else being
equal. This savings is substantial, even if no propaga-
tion is done, because no data structure needs to be cre-
ated to track the edges which are supported by each given
edge (for us, this represents a factor of approximately
2 in memory savings). Moreover, the context summary
estimates require only a single table lookup per edge,
while the accelerated version ofF requires only a rapid
quadratic scan of the input per sentence (less than 1% of
parse time per sentence), followed by a table lookup per
edge. The complex FOMs in (Charniak et al., 1998) re-
quire somewhat more online computation to assemble.

It is interesting thatSXR is so much more effective than
SXL; this is primarily because of the way that the rules
have been encoded. If we factor the rules in the other
direction, we get the opposite effect. Also, when com-
bined with F, the difference in their performance drops
from 10.3% to 0.8%;F is a right-filter and is partially
redundant when added toSXR, but is orthogonal toSXL.

3.4 Estimate Sharpness

A disadvantage of admissibility for the context summary
estimates is that, necessarily, they are overly optimistic
as to the contents of the outside context. The larger the
outside context, the farther the gap between the true cost
and the estimate. Figure 9 shows average outside esti-
mates for Viterbi edges as span size increases. For small
outside spans, all estimates are fairly good approxima-
tions ofTRUE. As the span increases, the approximations
fall behind. Beyond the smallest outside spans, all of the
curves are approximately linear, but the actual value’s
slope is roughly twice that of the estimates. The gap
between our empirical methods and the true cost grows
fairly steadily, but the differences between the empirical
methods themselves stay relatively constant. This reflects

9In fact, the bias from the FOM commonly raises the bracket
accuracy slightly over the Viterbi parses, but that difference nev-
ertheless demonstrates that the first parses are not always the
Viterbi ones. In our experiments, non-optimal pruning some-
times bought slight per-node accuracy gains at the cost of a
slight drop in exact match.
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Figure 9: The average estimate by outside span length for var-
ious methods. For large outside spans, the estimates differby
relatively constant amounts.

the nature of these estimates: they have differing local in-
formation in their summaries, but all are equally ignorant
about the more distant context elements. The various lo-
cal environments can be more or less costly to integrate
into a parse, but, within a few words, the local restric-
tions have been incorporated one way or another, and the
estimates are all free to be equally optimistic about the
remainder of the context. The cost to “package up” the
local restrictions creates their constant differences, and
the shared ignorance about the wider context causes their
same-slope linear drop-off. This suggests that it would
be interesting to explore other, more global, notions of
context. We do not claim that our context estimates are
the best possible – one could hope to find features of the
context, such as number of verbs to the right or number
of unusual tags in the context, which would partition the
contexts more effectively than adjacent tags, especially as
the outside context grows in size.

3.5 Estimate Computation

The amount of work required to (pre)calculate context
summary estimates depends on how easy it is to effi-
ciently take the max over all parses compatible with each
context summary. The benefit provided by an estimate
will depend on how well the restrictions in that summary
nail down the important features of the full context.

Figure 10 shows recursive pseudocode for theSX es-
timate; the others are similar. To precalculate our A*
estimates efficiently, we used a memoization approach
rather than a dynamic programming approach. This re-
sulted in code comparable in efficiency, but which was
simpler to reason about, and, more importantly, allowed
us to exploit sparseness when present. For example with
left-factored trie encodings, 76% of (state, right tag) com-
binations are simply impossible. Tables which mapped
arguments to returned results were used to memoize each
procedure. In our experiments, we forced these tables to
be filled in a precomputation step, but depending on the
situation it might be advantageous to allow them to fill
as needed, with early parses proceeding slowly while the

outsideSX(state, lspan, rspan)
if (lspan+rspan == 0)

if state is the root then 0 else−∞
score =−∞
% could have a left sibling
for sibsize in [0,lspan-1]

for (x→y state) in grammar
cost = insideSX(y,sibsize)+

outsideSX(x,lspan-sibsize,rspan)+
log P (x→y state)

score = max(score,cost)
% could have a right sibling
for sibsize in [0,rspan-1]

for (x→state y) in grammar
cost = insideSX(y,sibsize)+

outsideSX(x,lspan,rspan-sibsize)+
log P (x→state y)

score = max(score,cost)
return score;

insideSX(state, span)
if (span == 0)

if state is a terminal then 0 else−∞
score =−∞
% choose a split point
for split in [1,span-1]

for (state→x y) in grammar
cost = insideSX(x,split)+

insideSX(y,span-split)+
log P (state→x y)

score = max(score,cost)
return score;

Figure 10: Pseudocode for theSX estimate in the case where
the grammar is in CNF. Other estimates and more general gram-
mars are similar.

tables populate.
With the optimal forward estimateTRUE, the actual

distance to the closest goal, we would never expand edges
other than those in best parses, but computingTRUE is as
hard as parsing the sentence in the first place. On the
other hand, no precomputation is needed forNULL . In
between is a trade off of space/time requirements for pre-
computation and the online savings during the parsing of
new sentences. Figure 8 shows the average savings ver-
sus the precomputation time.10 Where on this curve one
chooses to be depends on many factors; 9 hours may be
too much to spend computingB, but an hour forSXMLR

gives nearly the same performance, and the one minute
required forSX is comparable to the I/O time to read the
Penn treebank in our system.

The grammar projection estimateF had to be recom-
puted for each sentence parsed, but took less than 1% of
the total parse time. Although this method alone was less
effective thanSX (only 58.3% edge savings), it was ex-
tremely effective in combination with the context sum-
mary methods. In practice, the combination ofF andSX

is easy to implement, fast to initialize, and very effective:

10All times are for a Java implementation running on a 2GB
700MHz Intel machine.



one cuts out 95% of the work in parsing at the cost of
one minute of precomputation and 5 Mb of storage for
outside estimates for our grammar.

4 Extension to Other Models

While the A* estimates given here can be used to accel-
erate PCFG parsing, most high-performance parsing has
utilized models over lexicalized trees. These A* methods
can be adapted to the lexicalized case. In Klein and Man-
ning (2003), we apply a pair of grammar projection esti-
mates to a lexicalized parsing model of a certain factored
form. In that model, the score of a lexicalized tree is the
product of the scores of two projections of that tree, one
onto unlexicalized phrase structure, and one onto phrasal-
category-free word-to-word dependency structure. Since
this model has a projection-based form, grammar projec-
tion methods are easy to apply and especially effective,
giving over three orders of magnitude in edge savings.
The total cost per sentence includes the time required for
two exhaustive PCFG parses, after which the A* search
takes only seconds, even for very long sentences. Even
when a lexicalized model is not in this factored form, it
still admits factored grammar projection bounds; we are
currently investigating this case.

5 Conclusions

An A* parser is simpler to build than a best-first parser,
does less work per edge, and provides both an optimality
guarantee and a worst-case cubic time bound. We have
described two general ways of constructing admissible
A* estimates for PCFG parsing and given several specific
estimates. Using these estimates, our parser is capable of
finding the Viterbi parse of an average-length Penn tree-
bank sentence in a few seconds, processing less than 3%
of the edges which would be constructed by an exhaustive
parser.
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