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Abstract

While O(n?) methodsfor parsingprobabilis-
tic context-free grammars(PCFGs)are well

known, a takular parsingframework for arbi-
trary PCFGswhich allows for botton-up,top-
down, andotherparsingstratayies, hasnotyet
beenprovided. This papermpresentsuchanal-

gorithm,andshaows its correctnesandadvan-
tagesover prior work. The paperfinishesby

bringingouttheconnectionbetweerthealgo-
rithm andwork on hypegraphswhich permits
usto extendthe presented/iterbi (bestparse)
algorithmto aninside (total probability) algo-
rithm.

1 Intr oduction and RelatedWork

Agenda-basedictive chart parsing (Kay, 1973; Kay,
1980; Pereiraand Shiebey 1987) provides an elegant
unification of the centralideasof takular methodsfor
contet-free grammarparsing. Earley (1970)-styledot-
teditemsin the chartare specifiedto combinevia “the
fundamentatule” in anorderindependentnannersuch
that the samebasic algorithm supportstop-davn and
bottom-upparsing,and the parserdealscorrectly with
thedifficult case®f left-recursverules,emptyelements,
andunaryrules,in anaturalway.

However, while O(n?) methodsfor parsing proba-
bilistic context-free grammarqgPCFGs)arewell known
(Baker, 1979; Jelineket al., 1992; Stolcke, 1995), an
elegant generaltatular parsingframework for PCFGs,
correspondindo active chartparsingfor CFGs,hasnot
yet beenprovided. Producinga probabilisticversionof
an agenda-dsien chart parseris not trivial. A central
ideaof suchparserss that the algorithmis correctand
completeregardlessof the orderin which itemson the
agendaare processedAchieving this is straightforward
for cateorical parsers,but problematicfor probabilis-
tic parsershecausewhenan edgeis first discovered,it
may or may not be correctlyscored.For example,con-
siderextendingan active edgevpP—V.NP PP;[1,2] with
anNP:[2,5] to form anedgevpP—V NP.PP over[1,5]. In
a categorical chartparser(CCP),we canasserthe exis-
tenceof this edgeassoonasboth componenedgesare

found. Any NP will do; it neednot be a bestNP over
thatspan.However, if we wish to scoreedgesaswe go
along,thereis a problem.In a Viterbi chartparseyif we
later find a betterway to form the NP, we will have to
updatenot only the scoreof that NP, but alsothe score
of ary edgewhosecurrentscoredependson that NP’s
score. This can potentially lead to an extremely inef-
ficient upward propagationof scoresevery time a new
traversalis explored. The agenda-basechart parserof
CaraballoandCharniak(1998)(usedfor determiningn-
side probabilities)suffers from exactly this problem: In
Appendix A, they notethat suchupdates‘can be quite
expensve in termsof CPU time”, but merely suggesta
methodof thresholdingwhich delaysprobability propa-
gationuntil theamountof unpropagategdrobabilitymass
hasbecomesignificant,andsuggesthatthis allowsthem
to keepthe performancef the parseras O(n?®) empiri-
cally” Goodman(1998)providesaninsightful presenta-
tion unifying mary cateyoricalandprobabilisticparsing
algorithmsin termsof the problems semiringstructure,
but he merelynotes(p. 172) the above problem,andon
this basisputs probabilisticagenda-basedhart parsers
aside.

Most PCFG parsingwork has used the bottom-up
CKY algorithm (Kasami, 1965; Younger 1967) with
Chomsky Normal Form Grammars(Baker, 1979; Je-
linek et al., 1992) or extendedCKY parsersthat work
with n-ary branchinggrammarsbut still notwith empty
constituents(Kupiec, 1991; Chappelierand Rajman,
1998). Suchbottom-upparsersstraightforvardly avoid
the above problem, by always building all edgesover
shorterspansbefore building edgesover longer spans
which make useof them.However, suchmethodsdo not
allow top-dovn grammaffiltering, andoftendo nothan-
dle empty elementsgyclic unary productions,or n-ary
rules. Stolcke (1995) presentsa top-davn parserfor ar-
bitrary PCFGs which incorporateslementsof the con-
trol stratgjiesof Earley’s (1970)parserandthe Graham-
Harrison-Russ@arser(Grahamet al., 1980). Stolcke
providesa correctandefficient solutionfor parsingarbi-
trary PCFGsavoiding the problemof left-recursve pre-
dictions and unary rule completionsthroughthe useof
precomputednatricesgiving valuesfor the closureof
theseoperations. However, the add-onsfor grammars



with suchrulesmake theresultingparserathercomple,
andagainwe haveamethodonly for asingleparsingreg-
imen, ratherthana generatatular parsingframework.

In this paperwe shav how to do agenda-basedc-
tive chartparsingof arbitraryPCFGsin O(n?) time, es-
sentially by extendingthe key ideaof Dijkstra’s (1959)
shortespathalgorithmto chartparsing.Theresultingal-
gorithmhandlesarbitraryPCFGsanda rangeof parsing
stratgiesin a simplerand moreintuitive way thanpre-
viously presentedalgorithms. For preciselythe reason
mentionedabove, our parsemwill necessariljjose some
of the agendaprocessinglexibility of a standardchart
parser however we presere the flexibility with regard
to selectionof parsingintroductionstratejies(e.g. top-
down, bottom-up.etc.)! We alsodescribenow to extend
this algorithmto calculateinsideprobabilities.

2 Viterbi Parsing Algorithm

Our algorithmhasmary of the samedatastructuresof
a standardactive CCP. The fundamentaldatastructure
is the chart, which is composedof nodes placedbe-
tweenwords, and edges. Edges are labeled spansof
nodes.Therearetwo varietiesof edgesactive andpas-
sive. Passiveedgesareidentifiedby a spananda label,
suchasnP:[2,5], andrepresenthatthereis someparse
of that catgyory over the span. Active edges are iden-
tified by a span,a label, and a grammarstate,suchas
VP—V.NP PP:[1,2], andindicateghatthegrammarstate
is reachableover that span. In the casewheregrammar
rulesareencodedaslists, this stateis simply an Earley-
styledottedrule, andto reachit onemusthave beenable
to parsethe sequencef catgyorieswhich occurto the
left of the dot. However, grammarrules canin gen-
eralbeencodedy ary deterministidinite stateautoma-
ton and so the label of the active edgesis in generala
DFSA state with thelist rulesdenotingparticularlysim-
ple, linear DFSAs. The “fundamentalrule” statesthat
new edgesareproducedoy combiningactive edgeswith
compatiblepassie edges,adwancingthe active edgein
the procesdo createa new edge. For example,the two
edgesdescribedabove can combineto form the active
edgevpP—Vv NP.PP:[1,5]. Edgesthemselesdo not de-
clare what active and passve edgescombinedto form
that edge;ratherthis informationis recordedin traver
sals which aresimply an (active edge passve edge re-
sultedge)riple.? As eachedgecanpotentiallybeformed
by mary differenttraversals this distinctionbetweenan
edgeitself andatraversalof anedgeis a crucialone,al-
thoughoftenlostin pedagogicapresentationge.g.,Gaz-
darandMellish (1989)).

The corecycle of a CCPis to procesdraversalsinto
edgesandto combinenew edgeswith existing edgesto

INotethatagendaselectionstratgiesin anexhaustve chartparser
merelyre-orderthe work done,while differing introductionstratgies
canactuallyimpactthetotal work done.

2Theresultedgeis primarily to simplify proofsandpseudocodsi
neednotever bestoredin atraversal.

notraversalof e explored
score(e) doesnotchange
score(e) = —co

sometraversalexplored
score(e) onlygoesup
score(e) < o(e)

anoptimaltraversalexplored
score(e) canneverchange
score(e) = o(e)

Figurel: ThelLife Cycleof anEdgee

createnew traversals.Edgeswhich arenot formedfrom
other edgesvia traversalsare introductionedges Pas-
siveintroductionedgesarethewordsandareoftenall in-
troducedduringinitialization. Activeintroductionedges
arethe initial statesof rules and are introducedin ac-
cordancewith the grammarstrateyy (top-davn, bottom-
up, etc.). To hold the traversalsor edgeswhich have not
yet beenprocesseda CCPhasa datastructurecalledan
agenda which holdsboth traversalsand edgeintroduc-
tions. Itemsfrom this agendacanbe processedn ary
orderwhatsoeer, even arbitrarily or randomly without
affectingthefinal chartcontents.

In a probabilisticchartparser(PCP),the centraldata
structuresare augmentedvith scores. Grammarrules,
which werepreviously encodedassymbolicDFSAsare
weightedDFSAs with a weight for enteringthe initial
state aweighton eachtransition,and,for eachaccepting
state,aweighton acceptingn thatstate.

Edgesarealsoscoredthoughwith theexceptionof in-
troductoryedgeswhosescoresareknown a priori, edge
scoresaremerelycurrentbestestimatesEachedgee is
augmentedvith a field score(e). This score,score(e)
(or score(e, t) atatime t) is the bestestimateto dateof
thatedges true (best)probability score,g(e). In oural-
gorithm, this estimatewill alwaysbe lessthanor equal
to o(e), andwill alwaysin factbeequalfor introductory
edges.

Thefull algorithmis shavn in pseudocode figure 2.
It is broadlysimilarto thestandaratateyoricalchartpars-
ing algorithm.However, in orderto solve the problemof
enteringedgesinto the chartbeforetheir correctscore
is known, we have a more articulatededgelife cycle
(shawnin figure1).3 We distinguishedgediscoveryfrom
edgefinishing A non-introductoryedgeis discovered
the first time we explore a traversalwhich forms that
edge(in exploreTraversal).An introductoryedgeis dis-
coveredwhenever our parsingstratgy indicates(during
initialize or someother edges finishEdge). Discovery
is the point whenwe know thatthe edgecan be parsed.
An edgeis finishedwhenit is insertedinto the chartand
actedupon(in finishEdge).The primary significanceof
anedges finishingtime is that, aswe will shaw, our al-
gorithmmaintaingthe propertythatwhenanedgeis fin-
ished,it is correctlyscoredj.e., score(e) = o(e).

A CCP storesall outstandingcomputationtasksin a
single agendawhetherthe tasksare unexploredtraver-

3Note that the commentsin the figure apply to non-introductory
edgesthoughthetimelineappliesto all edges.



salsor uninsertedntroductoryedgesWe havetwo agen-
dasandourtypingis stronger To storeedgeswhichhave
beendiscoreredbut not yet finished,we have afinishing
agenda To storetraversalswhich have beengenerated
but not explored,we have anexploration agenda

Thealgorithmworksasfollows. During initialization,
all terminalpassive edgeqoneperword in the sentence
or lattice) are discovered, along with ary initial active
edgegfor example,all ROOT—.* edgesf weareusinga
top-down stratgly andour goal categyory is ROOT). Note
thatall of theseintroductoryedgesarealreadycorrectly
scored’

The coreloop of the algorithmis shawn in figure 3.
If thereareary traversalsto explore, a traversalt is re-
moved from the explorationagendaand processedvith
exploreTraversal. Any removal orderis allowed. In ex-
ploreTraversalt’s resultedgee is checledagainst (re-
laxEdge). If ¢ forms e with a betterscorethan previ-
ously known for e, e's score(andnew besttraversal)is
updated.If e is anundiscaoerednon-introductionedge,
thenit becomesliscovered.

If the exploration agendais empty the finishing
agendds checled. If it is non-emptythe edgewith the
bestcurrentscoreestimatds finished-removedandpro-
cessedwith finishEdge. This is the point at which the
fundamentalrule is applied (doFundamentalRulednd
new active edgesareintroduced(in accordancevith the
active edgeintroductionstrateyy).>

3 Analysis

We outlinethecompletenessf thealgorithm:thatit will
discover and finish all edgesand traversalswhich the
grammay goal, and words presentallow. Thenwe ar-
guecorrectnessthatevery edgee whichis finishedis, at
its finishingtime, labeledwith the correctscore.Finally,
we givetight worst-caséoundsonthetime andmemory
usageof thealgorithm.

3.1 Completeness

For spaceeasonsywe simply sketchaproofof complete-
ness.For thefull proof, see(Self,in preparation)In or-
derto aguecompletenestor a variety of word andrule
introductionstratayies, it is importantto have a concrete
notion of what suchstratgjies are. Constraintson the
word introductionstrateyy are only neededor correct-
nessandsowe deferdiscussioruntil then.Let E bethe
setof edges P thesetof introductorypassie edgeqi.e.,
word edges)and A the setof introductoryactive edges
(i.e.,ruleintroductions).

40therword introductionstratgjies are trivially possible,suchas
scanninghewordsincrementallyin anouterloop from left-to-right. A
sufficient constrainton scanningstratgiesis presentedh section3.

5In theapplicationof thefundamentatule, an (active, passie) pair
canpotentially createtwo traversals.In cateorical DFSA chartpars-
ing, edgesmay be actve, passve, or both. However, the passie and
active versionsof whatwould have beena single active/passie edge
in a catgorical parsemwill notin generahave the samescore,andso
thealgorithmintroducesseparatedges.Thereasorthescoreswill not
generallybethe sameis discussedh section3.

parse(Lattice sentenceCategory goal)
initialize(sentencegoal)
while finishingAgendas non-empty
while explorationAgendas non-empty
getatraversalt from theexplorationAgenda
exploreTraversalg)
getabestedgee from thefinishingAgenda
finishEdge¢)

initialize(Lattice sentenceCategory goal)
createanew chartandnew agendas
for eachword w:[start,end]in the sentence
discoverEdge(w:[start,end])
for eachnodex in thesentence
if allow-empties
discorerEdge(empty:[x,x])
if top-dawvn
for eachinitial active edgea which canleadto thegoal
discoverEdged)

exploreTraversal(Traversal t)
e=t.result
if notYetDiscorered(e)
discoverEdge(e)
relaxEdge(et)

relaxEdge(Edgee, Traversal t)
newScore= combineScores(t)
if (newScoreis betterthane.score)
updatee.score
updatee.bestTaversal

discoverEdge(Edgee)
addeto thefinishingAgenda

finishEdge(Edgee)
addeto thechart
doFundamentalRule(e)
if top-dawvn
doTopDavnRule(e)
if bottom-up
doBottomUpRule(e)

doFundamentalRule(Edgee)
if eis passie
for all active edgesawhich endate.start
for active and/orpassie resultedges
createthetraversalt = (a, e,r)
addt to the explorationAgenda
if eisactive
for all passve edgesp which startate.end
for active and/orpassve resultedges
createthetraversalt = (e, p, )
addt to the explorationAgenda

doTopDownRule(Edgee)
if eisactive
for all transitionsr thate cantake
for all introductoryactive edges: with LHS r.label
if notDiscaovered@) thendiscorerEdgeé)

doBottomUpRule(Edgee)
if eis passie
for all introductoryactive edges: whoserulescanbegin
with e.label
if notDiscaveredg) thendiscorerEdged)

Figure2: Our ProbabilisticChartParser



Finishingedgegeneratdraversalswhich
areinsertednto the ExplorationAgenda

Finishing D Finishingedges Exploration
Agenda generateew active Agenda
of edgesaccordingo of
Edges theparsingstratgy. | Traversals

Exploredtraversalscauseedgeso bediscovered
andpossiblyimprove their scoreestimates,
adwancingthemto the FinishingAgenda

Figure3: The CoreLoop of the Parser

Definition 1 An edge-diven rule introduction strategy
isamappingR: E — 24 which takesanedge e to aset]
of introductoryactiveedgeswhich are to beimmediately
discorered whene is finished. By I~ (a) we meanthe
setof edgese witha € I(e).

Thestandardop-davn andbottom-upstratgiesareboth
edge-drven$

Theorem1 For anyrule-drivenactiveedgeintroduction
strategy R, anyDFSAgrammarG, andanyinputlattice

L, and goal edee g, there exists someagendaselection
function S for which the sequencef edge insertions]

madeby a categorical chart parserand the sequencef

edgefinishingsF madeby our probabilisticchart parser
arethesame

Completenessneansthat the edgesfound (i.e., fin-
isheg by both parserswill be the same. This doesnot
meanthat the PCPwill scorethem correctly just that
every edgewhich hasa parseallowed by the grammay
words,andgoalwill befound.

The generalidea behindthis proof is to run the two
parsersin parallel, shoving by induction over corre-
spondingpointsin the algorithmsthatI = F so far
and that for every edgein the PCPs finishing agenda,
thatedgeis backedby someedgeor traversalwhich can
formit from the CCP5agendaTheselectiorfunctionis
theonewhich alwaysmakesthe CCPprocesgheagenda
itemswhich will causethe insertionof whichever edge
thePCPwill selecfromits finishingagendatthatpoint.

Oneimportantcorollary of the full proof is that the
parsabilityis constructve. Not only is every edgeeach
parserdiscoversparsableput thereis somesetof intro-
ductory edgesand traversalsprocessedy both which
canbe usedto form a parseof thatedge. We will need
this corollaryfor our correctnesgroof.

6An exampleof a non-edge-dvien stratgy would be if we intro-
ducedan arbitrary undiscoered edgefrom A into an arbitrary zero-
spanwheneer the finishing agendavasempty It appearsvery diffi-
cult to statea criterionfor non-edge-dvien stratgieswhich guarantees
boththeir completenesandcorrectness.

Given this theorem,we inherit the completenesse-
sultsfrom the literatureon categorical chartparsing,in-
cluding, in particular the completenessf the top-dovn
andbottom-upintroductionstrateyies.

3.2 Correctness

We now shaw thatarny edgewhichis finishedis correctly
scoredat finishing.

First,we needsomenotionsaboutparserees.A parse
tree P is a binary tree of edgetokens . A leafin this
tree is a token of eithera word (if passie) or a rule
introduction (if actve). A non-leafz is a token of a
non-introductoryedgeandit hastwo children,a, andp
which aretokensof an active edgeanda passie edge,
respectiely, forming a token of sometraversal(a, p, x)
of thatedgetype. Thereasorwe mustmake atype/token
distinction is that a given edgemay appearmore than
oncein aparsetree. For example,consideremptywords
which may be usedseveral times over the samezero-
span,or anintroductoryactive edgefor a left-recursve
rule. In this proof we usetype(x) to meanthe edgetype
of a parsetreenodez. We will saythingslike “active
leaf’ for “active introductoryedgetoken” and“discov-
erednode” for “node whoseedgetype hasbeendiscov-
ered!

The basicideais to avoid finishingincorrectlyscored
edgedy alwaysfinishingthe highest-scoregdgeavail-
able. This will causeusto work in aninside-outvards
fashionwhennecessaryo ensurehatscorepropagation
is never needed. The chief difficulties thereforeoccur
whenwhat might have beena high-scoringedgeis un-
availablefor somereason.

The subtlestway this canoccuris whenanintroduc-
tory edgeis discoveredtoo late. If this happensve may
have alreadymistalenly finished someother edge, as-
signing it the bestscorethatit could have had without
thatintroductoryedges presencen the grammaror in-
put. Becausef this, we needtighterconstraintonword
andrule introductionstrateiesto prove correctnesshan
thoseneededor completeness.

Theconditionon word introductionis simple.

Definition 2 The Word IntroductionCondition (or “no

internal insertion”): If someedge e spanninga spansS

is beingfinishedat time f. thenall wordsin S havebeen
discoveredat f,.

Thisis satisfiedby ary reasonabldattice scanningal-
gorithm and ary sentencescanningalgorithm whatso-
ever. Theonly disallovedstratayy is to insertwordsfrom
alatticeinto asparnwhichhasalreadyhadsomespanning
setof wordsdiscoreredandhasalreadybeenparsed.It
shouldbe fairly clearthatthis kind of internal-insertion
stratgy will leadto problems.

"Notethatthe binarytreecorrespondso boththe underlyingn-ary
parseandto anactualparsen aleft-binarizedversionof theunderlying
n-ary grammarn(moduloactive introductions).



Now we supplysometheoreticaimachineryfor acon-
dition onruleintroductions.

Definition 3 A possiblypartial ordering <p of nodes
(edce tokens)in a parsetree P allows descenif when-
ever a nodez dominatesa setof children C, for any
ceC,c=pux.

Definition 4 The Rule Introduction Condition (or “no
rule blocking”): In any parse P of an edee e, there is
someordering <p of nodeswhich allows descentand
sud thatfor anyactiveintroductionedge a, EITHER

(1) there is someedge x with a tokenz’ in P which
doesnotdominateanytokena’ of a andwhosefinishing
will causethe introductionof a, thatis a € I(z), and
z' <pa, OR

(2) a mustappearin anyparseofe if e is passiveand
anyedge which canextendfrome if e is active

This is wordy, but the key ideais that active intro-
ductionedgesmust“depend”on someotheredgein the
parsan suchawaythatif anactive edgeis undiscoered,
we cantrackbackto find anotheredgeearlierin theparse
which mustalsobe undiscwered.

Thelastconstrainive needs oneontheweightsof the
DFSArules.If aprefixof aruleis bad,its continuations
mustbeasbador worse.Otherwisewe mayincorrectly
delayextendinga low scoringprefix.

Definition 5 The Grammar Weighting Condition (or
“no scoe gain”): No transition canimprove the scoe
of a trajectorythrougha DFSArule, including starting
statecosts transitioncosts,andacceptingstatecosts.

Now we arereadyto statethetheorem.

Theorem2 Given any DFSA grammar G and intro-
duction strategies obeying the conditions above, for
any input lattice L, any edge e which is finished by
the algorithm at sometime f, has the property that
score(e, f) = o(e).

The proof is by contradiction. Take the first edgee
whichis selectedrom thefinishingagendaandfinished
with anincorrectscoreestimate.Thereforeat e’s finish-
ingtime fe, score(e, fe) < o(e). Sincee hasa parse(by
completeness)if hasat leastone (unfound)bestparse.
Chooseoneandcall it BP. By virtue of beinga best
parseg(BP) = o(e). 8

We claim that thereis someedgez in BP which,
at f., has beendiscovered, is correctly scored,i.e.,
score(z, f.) = o(x), yethasnotbeenfinished. Assume
suchanz exists. Sincex is discoveredbut not finished
at f., it wasin thefinishingagendawith its currentscore

8We definethe scorefunction o for a traversalt of an edgee to
meanthe scoreof the highestscoring parseof e which containsan
instanceof ¢ atits root, andwe defineit for a parseP to bethe score
of thatspecificparse.

just beforee waschoserto befinished. But e wascho-
senfrom the finishing agendanot z, soit mustbe that
score(x, f.) < scorele, fe).

Ontheotherhand,sincez is containedn B P, by “no
scoregain” it mustbe thato(e) = o(BP) < o(x).
Thus, if we find suchan edgex theno(e) < o(z) =
score(z, f.) < score(e, f.) < o(e), acontradiction.

Therestof the proofinvolvesshowing theexistenceof
suchanz. Considerthe nodesin BP. Sincee is unfin-
ished,thereis a non-emptysetof unfinishednodes call
it U. Wewantsomeu € U which bothhasno unfinished
childrenandwhichis minimalby < p. Clearlysomeele-
mentsareminimal sinceU is non-emptyandfinite. Call
the setof minimal elementsM. For ary u € M which
hasan unfinishedchild, that child mustalsobe minimal
since<p allows descent. Therefore,removing all ele-
mentsfrom M which have an unfinishedchild leavesa
non-emptyset. Chooseary « from this set.

If 4 dominategwo finishedchildren(call thema and
p), thensincee is thefirstincorrectlyfinishededgea and
p’'s edgetypeshadtheir correctscoresat their finishing
times. Becauseonly relaxationcan changescoreesti-
matesandit canonly raisethem, their scoreestimates
have not changedsincethen. Therefore,whenever the
later of type(a) andtype(p) wasfinished,the traversal
t = (type(a), type(p), type(u)) wasgeneratedAnd be-
fore anything else could have beenfinished,¢ was ex-
plored. Thus,type(u) hasbeendiscoreredandhasbeen
relaxed by ¢, sayattime r;. Thereforeatr;, andthere-
fore still at f., score(type(u)) canbe no worsethanits
scorein BP, which of coursemeansts scorehasbeen
correctsincer;. But recallthatu is unfinishedsowe are
done.

If w dominateshofinishednodesthenit is aleaf. If u
is aword introduction,thenby “no internalinsertion”«
hasbeendiscovered.Sincewordsarecorrectlyscoredat
discovery, we aredone.If « is anrule introduction,then
we mustonly show thatu hasbeendiscovered sincerule
introductionsare correctly scoredon discovery. To be
sureof this, we mustappealto “no rule blocking? It is
possiblethatw is atokenof anedgewhich mustappeain
ary parseof ary passve edgeequalto or extendabldrom
e. If so,by condition(1) we aredone. If not, thenlet z
betheedgewhosefinishingwill guarantee’sdiscovery.
If z is unfinished thensomeinstanceof z is <p v and
unfinished,contradictingu’s minimality. Thuswe are
done.

We have now proventhe correctnessf the algorithm
for stratgiesmeetingthe given criteria. Both the tradi-
tional bottom-upandtop-down strat@ies meetthe “no
rule blocking” criterion. We prove this for only the top-
down strat@y here.

Theorem3 The top-down rule introduction strategy
meetghe“no rule blocking” criterion.

Assignto eachnodee in P the numberof nodesin
P which would be completedbeforee in a top-dovn



stackparseof P. Sinceno nodeis completedbefore
its childrenin sucha parse,this allows descent. In a
top-dowvn parse,for every introductionnodethereis a
c-commandingactive edgenodeto the left of it which
will introduceit, andthereforg(1) holdsunlesgheactive
edgeintroductionin questionis thevery leftmostoneof

P. Call this leftmostactive nodea. SinceP is a parse
of someedgee with label L, a alsohaslabel L. Thus,if

ary parseR whatsoeer of e is found, its leftmostactive
leaf is a token of someactive edgeb with label L. But
then,wheneerb wasdiscovered sowasa, sincethetop-
down introductionstrateyy alwaysintroducesall rulesof

thesamelabelatonce.

3.3 Asymptotic Boundsand Performance

We briefly motivateandstatethecomplexity bounds Let
n bethenumberof nodesn theinputlattice,C thenum-
ber of cateyoriesin the grammay and S the numberof
statesin the grammar C' < S sinceeachstateis con-
tainedin arule for somecateory. The maximumnum-
berof edgesE is (C + S)n?, andthe maximumnumber
of traversalsl” is 2SCn?®. Timeis dominatedy thework
pertraversal which canbemadeamortizedO(1) (with a
Fibonacciheap-backdpriority queue) sothetotal time
is O(T) = O(SCn?). For memory thereare several
O(E) datastructuresholding edges.The concernis the
exploration agendawhich holds traversals. But every-
thing on this agendaat ary onetime resultedfrom a sin-
gle call to doFundamentalRulgndsoits sizeis O(E).
Thereforethetotal memoryis O(E) = O(Sn?).

Much work in probabilisticparsinghasconcentrated
on“bestfirst” or beamparsing(Collins, 1997;Caraballo
and Charniak,1998). Thereare ohbvious good reasons
for exploring suchmethodshut suchwork hasoftenpar
tially beenjustified on the groundsof the impossibility
of doingexhaustie parsingfor large probabilisticgram-
mars(e.g, Caraballoand Charniak(1998, 292) suggest
thatfor acoveringgrammarderivedfrom the PennTree-
bankthat “it wasimpracticalto parsesentences$o ex-
haustionusing our existing hardware”). It is thus per
hapsof interestto notethat,usingatrie DFSArule rep-
resentationpur parsercando exhaustve parsingwith a
PennTreebankWSJ covering grammarof sentencesf
the usuallyconsideredengths(up to 100 words)in rea-
sonableime on a Pentiumlll workstationwith 1 Gb of
memory— evenwith a Javaimplementation.

4 Parsing and Hypergraphs

Oneview of parsingis asa procesf logical deduction
(PereiraandWarren,1983; Shieberet al., 1995). There
is alsoa well-known, deepconnectiorbetweerlogic, in
particularsatisfiability anddirectedhypegraphqBerge,
1973; Gallo et al., 1993). In this section,we draw the
third line in thetriangleto connectparsingwith directed
hypegraphalgorithms. The advantageof this view is
that, while thereis no clearway to generalizethe logi-
cal view of parsingto probabilisticparsing,directedhy-

pemgraphshave animmediateandwell-studiednotion of
weighting. We usethis connectionto describethe pre-
cedingalgorithm in hypegraph-theoretiderms and to
outline a more complex algorithmfor computinginside
probabilitieswithin a cubictime bound.
First we give somepreliminary definitionsaboutdi-

rectedhypegraphs. For a more detailedtreatment,see
for example(Bermge,1973).

Definition 6 A directedhypegraphG is a pair (V, E)
wheee V is a setof nodesand F is a setof directedhy-
perarcs A directedhypeiarc is a pair (T, H) where the
tail T'andheadH are disjointsubsetof V.

Definition 7 A B-(hyper)graphs a directedhypegraph
whele the hypeiarcs are B-arcs A B-arc is a hypeiarc
for which H is a singletonset.

It is easyto seethe constructionwhich will provide
the link betweenhypegraphsand deduction. Nodesp
will correspondo propositions,and directedhyperarcs
{t1...tm} — {hi...hp} will correspondto a rule
ti A ...tmm = h1V ...h,. In thecaseof B-arcs,the
correspondinguleswill beHornclauses.

Definition 8 A simplepathp = s ~ ¢ is a sequence
(s = vo,€1,v1,-..€n,v,) Of alternatingnodesand hy-
perarcswhee

(1) eadh hypeiarc is distinct

(2 Vie {1,...,n},v; € head(e;)

(3)Vie {0,...,n—1},v; € tail(e;iy1)

Definition 9 A B-path P in a B-graph G from a node
s to a nodet is a minimal subgaph (Vp, Ep) < G in
which:

s,t € Vp

Yv € Vp — {s},3p = s~ t, p asimplepathin P

We cannow statethe hypegraphicalview of parsing.
We view the edgesand traversalsin our grammaras a
B-graphG. Edgesarethe nodesin G, while traversals
are B-arcswith the active and passve edgesin the tail
andtheresultedgeasthe head.We call this theinduced
binarizedB-graphof agrammaiG.° This B-graphcorre-
spondsgo thesatisfiabilitygraphof theHorn clauseform
of thebinarizedgrammar

For satisfiabilitygraphs.onealsoneedso addspecial
nodesfor true andfalse and arcsto representruth as-
signments Similarly, we will wantto adda specialnode
s for asourceandarcs(s, w : [z,y]) for ary word span-
ning [z,y] in our input lattice. We alsomustaddarcsto
eachintroductoryactive edge. Oncewe have donethis,
we call the resultthe inducedbinarizedB-graphof the
grammarG andinputlattice L.

We now equateB-reachabilitywith parseexistence.

9Note that onecanstraightforvardly view n-ary grammanulesas
B-arcswith tails of sizen, but we restrictour attentionto the view
which mostcloselyparallelsthe parsingdonein this paper



Definition 10 Anodet in a B-graphis B-reacdablefrom
asoures iff there existsa B-pathfroms to ¢.

Theorem4 In aninducedbinarizedB-graphof a gram-
mar G anda lattice L, a nodee is B-reacablefrom s iff
a parseof theedge e exists. Furthermoe, ead parseof
e correspondsgo a particular B-path°

We do not provethis here;the statemenitself carriesthe
importantobsenation. Note thata CCP canbe seenas
doingareachabilitysearchover this graph. The key dif-
ferenceis thatin chartparsingwe do not have the entire
graphto begin with, but ratherwe construcit on thefly.
Justasreachabilitycanbe donebreadth-firstdepth-first,
forward, or backwards,cateyorical chartparsingcanbe
donein ary directionwhatsoger — provided the intro-
ductionruleswhich dynamicallycreatethe graphdo so
properly

B-reachabilityalgorithmsgenerallyrunin time linear
in thesizeof thegraph(Galloetal., 1993).Notethatthe
sizeof thegraphis O(V+E) = O(E+T) = O(SCn?),
exactly theboundfor CCPs.

At this point we have closed the triangle. Now
we developthe connectiorbetweenViterbi parsingand
weightedhypegraphalgorithms.

Definition 11 The weight of a B-arc A is a function
w: A — R which assignsa weightto ead arc.

Definition 12 The cost of a B-path P is the sum (or
product)of theweightsof all arcsonthepath.

Notethatif theweightof atraversalB-arcis thetran-
sition costof thattraversalandif theweightof the (s, e)
edgeintroductionarcsis thescoreof theintroducededge,
thenthecostof a pathis thescoreof the(minimal) corre-
spondingparse.Thus,we canview best-parsalgorithms
asshortest-patfalgorithms.In exactly this sensetheal-
gorithmpresentedboveis closelyrelatedto theB-graph
extensionof Dijkstra’s algorithm(Gallo et al., 1993). It
shouldbe no surprisethat our proof of correctnesss,
at the core, parallelto the standardDijkstra’s algorithm
correctnesproofs. It shouldalsobe no surprisethatthe
main reasonour proofs of correctnessvere more chal-
lengingis the“just in time” natureof edgeintroductions.

4.1 Inside Probabilities

Onecanpushthecorrespondendeirther. Calculatingin-
sideprobabilitiesis essentiallythe problemof summing
thecostsof all B-paths.Thereareseveralissueswith this
problemwhich did not arisebefore.

First, dynamic programmingsolutionsto the sum-
pathsproblemeither do not dealwith cycles (meaning
we would have to restrictor transformour grammarto

10The actualpath-parseorrespondencis not one-to-onen general
becausef cyclic same-sparmonstructionshut categorical parsingis

concernedwith parsabilityof edges,not individual parserepresenta-

tion.

make suretherewerent ary in thehypegraph)or donot
runin lineartime (whichis undesirable).

Secondwith sum-pathghe subtlenon-reversibility of
theparseto pathmappingbecomesnissue.While mary
parsesancorrespondo asingleB-path,thereis atmost
one bestparsecorrespondingo a given B-path. The
other non-minimal,parsesdon’t matterfor cateyorical
parsingbecausehey do not createary newv edges,and
they don’t matterfor bestparsingbecauséhey neverim-
prove anedges score.However, for insideprobabilities,
they areimportantto count.

Due to spaceconstraints,we merely sketch an al-
gorithm for computinginside probabilitiesfor arbitrary
PCFGs.The coreissueis thatany edgex which canbe
usedin aparseof anedgee cancontributeto thescoreof
e. If thereareno emptiesor unarytransitionsit is easy
enougho putaconditiononwhenanz cancontributeto
e’'ssum:if span(z) < span(e). In thatcaseonecould
organizethe computatioraroundspansizes finishingall
edgesf agivenspansizebeforemoving on to the next,
accumulatingraversalsasthey areexplored. Thisis ex-
actly the CKY algorithmfor insideprobabilitiesputinto
our framework. It alsocorrespond$o the obviouslinear
time path-sunmdynamicprogramfor agyclic B-graphs.

Oncewe allow anarbitrarygrammaythe B-graphde-
velopscycles. For a normalgraphwith cycles,onecan
modelthe path-sunflow andusematrix mathto solvein
closedform theinfinite sumscausedy cyclic dependen-
cies(Stolcke, 1995). Thisis not a lineartime operation,
andis in fact cubic in the numberof graphnodesasit
involvesamatrixinversion.However, in our B-graphthe
cyclesarenot all acrossthe graph,but ratherexist only
amongedgeswith identicalspans,n regionswhich are
in factisomorphicto normalgraphs.Furthermoregven
in theseregionswe neednot do a matrix closureoverthe
entiresame-sparegion, but ratheronly its stronglycon-
nectedcomponent¢SCCs).The SCCsthemselesform
an agyclic B-graphfor which we canusea linear algo-
rithm.

Our algorithmusestheseideas. In additionto edges
andtraversalsywewill haveanSCCobjectcalledanedge
cluster Edgeswill still have scoreswhich will be their
total sumprobability estimateto date(alwaysan under
estimateor correct). Clusterswill have not scoresbut
tier values(analogoudo spansizesfor CKY but which
alsoorder SCCsinside same-spanegions). The finish-
ing agendawill hold clustersandfinishing a clusterwill
happenwhen all the agyclic inputsto the edgesin the
clusterareknown. Finishingwill involve a matrix clo-
sureovertheclusteratwhich pointall of theedgesn the
clusterwill befinished.

Thedifficultly is thenonline tier numbering SCCde-
tection,andthe matrix inversions. Of these the matrix
inversioncostsarethelargestpotentialasymptoticslow-
down, totalingup to O(S3n?) time.

Theruntimeof thealgorithmis O(SCn? + S3n?) and
the spacerequirementsare O(S%n?). At first sight,one



might wonderhow this canpossiblybe superiorto sim-
ply transforminghegrammaionceanddoingCKY pars-
ing. $% andS? would bevery largefor ahugegrammay
andonemaywell be doingthe samework overandover
again,in essenceloingthe samegrammartransformfor
every span.

However, there are reasonsto prefer this method.
First, all causesf cycles (left-recursion,empties,and
unaries)aretreateddenticallyandnaturally

Second,for a huge grammay this methodcould be
much faster The S3 term comesfrom the matrix in-
versionswhich areactuallycubic only in the sizeof the
actualSCCs!! For large grammars the total may be
smallcomparedo n® andmay not appreciablyslow the
parserdown. Furthermoreif thosesizesaremuchmuch
lessthan S, the smallinversionscould be cheapereven
donen? times,thana single nave S* transformof the
entiregrammar Notethatthiswin is notbiggestfor, say
standardexicalizedgrammarswheretheinteractionbe-
tweenthe lexical items and cateyoriesis easyto factor
andit is easyenoughto preprocesshe CFG backbone,
but ratherin complex grammarswherethe interactions
betweenconditioning ervironmentsmay be subtleand
difficult to computein advance. In this case,our algo-
rithmwill straightforvardlyanddynamicallydo only the
necessansCCanalysisandinversions.

References

JameK. Baker. 1979. Trainablegrammargor speech
recognition. In D. H. Klatt and J. J. Wolf, editors,
Speeb CommunicatiorPapers for the 97th Meeting
of the AcousticalSocietyof America pp 547-550.

C. Bemge. 1973. Graphsand Hypegraphs North-
Holland, Amsterdam.

SharonA. Caraballoand EugeneCharniak.1998. New
figuresof merit for best-firstprobabilisticchartpars-
ing. Computationalinguistics 24:275—-298.

J.-C. Chappelierand M. Rajman. 1998. A general-
ized CYK algorithmfor parsingstochasticCFG. In
Fir st Workshopon Tabulation in Parsing and Deduc-
tion (TAPD98) pp 133-137 Paris.

Michael JohnCollins. 1997. Three generatie, lexi-
calisedmodelsfor statisticalparsing.In ACL 35/EACL
8, pp 16-23.

E. W. Dijkstra. 1959.A noteontwo problemsn conne-
ion with graphs.Numeristie Mathematik 1:269-271.

JayEarley. 1970. An efficient context-free parsingalgo-
rithm. Communicationsfthe ACM, 6(8):451-455.

G. Gallo, G. Longo, S. Pallottino, and SangNguyen.
1993. Directed hypegraphsand applications. Dis-
creteAppliedMathematics42:177-201.

GeraldGazdarand Chris Mellish. 1989. Natural Lan-
guage Processingn Prolog. Addison-Wésley.

JoshuaGoodman1998.Parsinginside-out Ph.D.thesis,
Harvard University.

11E g.,without unariesthe maxsizeof an SCCis C not S.

SusanL. Graham,Michael A. Harrison,and Walter L.
Ruzzo. 1980. An improved contet-free recognizer
ACM Transactionson ProgrammingLanguagesand
Systems2(3):415-462July.

F. Jelinek,J. D. Lafferty, andR. L. Mercer 1992. Ba-
sic methodf probabilisticcontet freegrammarsin
P. Lafaceand R. De Mori, editors, Speeh Recani-
tion and Undeistanding: RecentAdvances,Trends,
and Applications volume 75 of SeriesF: Computer
and SystemsSciencesSpringerVerlag.

T. Kasami. 1965. An efficient recognitionand syntax
analysisalgorithmfor contet-freelanguagesTechni-
cal ReportAFCRL-65-758,Air ForceCambridgeRe-
searchLaboratory Bedford,MA.

Martin Kay. 1973.TheMIND systemIn RandallRustin,
editor, Natural Languaje Processingpagesl55-188.
AlgorithmicsPressNew York.

Martin Kay. 1980. Algorithm schematanddatastruc-
turesin syntacticprocessing.TechnicalReportCSL-
80-12,Xerox PARC, Palo Alto, CA, October

JulianKupiec. 1991. A trellis-basedalgorithmfor esti-
matingthe parametersf a hiddenstochasticontext-
freegrammar In Proceeding®f the Speeb and Nat-
ural Language Workshop pages241-246 DARPA.

FernandoPereiraand StuartM. Shieber 1987. Pro-
log andNatural-Language Analysis volume10. CSLI
Publications Stanford,CA.

FernandoC.N. Pereiraand David H.D. Warren. 1983.
Parsingasdeduction.In ACL 21, pp 137-144.

Self. in preparationxxx. Ms.

Stuart Shieber Yves Schabes,and FernandoPereira.
1995. Principlesand implementationof deductve
parsing.Journal of Logic Programming 24:3—36.

Andreas Stolcke. 1995. An efficient probabilistic
contet-free parsing algorithm that computesprefix
probabilities.ComputationalLinguistics 21:165-202.

Daniel H. Younger 1967. Recognitionand parsingof
context free languagesn time n. Informationand
Contpol, 10:189-208.



