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Abstract

While �������� methodsfor parsingprobabilis-
tic context-free grammars(PCFGs)are well
known, a tabular parsingframework for arbi-
trary PCFGswhich allows for botton-up,top-
down, andotherparsingstrategies, hasnotyet
beenprovided.Thispaperpresentssuchanal-
gorithm,andshows its correctnessandadvan-
tagesover prior work. The paperfinishesby
bringingout theconnectionsbetweenthealgo-
rithm andwork onhypergraphs,whichpermits
us to extendthepresentedViterbi (bestparse)
algorithmto an inside(total probability)algo-
rithm.

1 Intr oduction and RelatedWork
Agenda-basedactive chart parsing (Kay, 1973; Kay,
1980; Pereiraand Shieber, 1987) provides an elegant
unification of the central ideasof tabular methodsfor
context-free grammarparsing. Earley (1970)-styledot-
ted itemsin the chartarespecifiedto combinevia “the
fundamentalrule” in anorder-independentmanner, such
that the samebasic algorithm supportstop-down and
bottom-upparsing,and the parserdealscorrectly with
thedifficult casesof left-recursiverules,emptyelements,
andunaryrules,in anaturalway.

However, while �������� methodsfor parsingproba-
bilistic context-freegrammars(PCFGs)arewell known
(Baker, 1979; Jelineket al., 1992; Stolcke, 1995), an
elegant generaltabular parsingframework for PCFGs,
correspondingto active chartparsingfor CFGs,hasnot
yet beenprovided. Producinga probabilisticversionof
an agenda-driven chart parseris not trivial. A central
ideaof suchparsersis that the algorithmis correctand
completeregardlessof the order in which itemson the
agendaareprocessed.Achieving this is straightforward
for categorical parsers,but problematicfor probabilis-
tic parsers,because,whenanedgeis first discovered,it
mayor maynot becorrectlyscored.For example,con-
siderextendingan active edgeVP� V.NP PP:[1,2] with
anNP:[2,5] to form anedgeVP� V NP.PP over [1,5]. In
a categoricalchartparser(CCP),we canasserttheexis-
tenceof this edgeassoonasbothcomponentedgesare

found. Any NP will do; it neednot be a bestNP over
thatspan.However, if we wish to scoreedgesaswe go
along,thereis a problem.In a Viterbi chartparser, if we
later find a betterway to form the NP, we will have to
updatenot only the scoreof that NP, but alsothe score
of any edgewhosecurrentscoredependson that NP’s
score. This can potentially lead to an extremely inef-
ficient upward propagationof scoresevery time a new
traversalis explored. The agenda-basedchartparserof
CaraballoandCharniak(1998)(usedfor determiningin-
sideprobabilities)suffers from exactly this problem: In
AppendixA, they notethat suchupdates“can be quite
expensive in termsof CPU time”, but merelysuggesta
methodof thresholdingwhich delaysprobabilitypropa-
gationuntil theamountof unpropagatedprobabilitymass
hasbecomesignificant,andsuggestthatthisallowsthem
to keeptheperformanceof theparser“as �������� empiri-
cally.” Goodman(1998)providesaninsightful presenta-
tion unifying many categoricalandprobabilisticparsing
algorithmsin termsof theproblem’ssemiringstructure,
but hemerelynotes(p. 172) theabove problem,andon
this basisputs probabilisticagenda-basedchart parsers
aside.

Most PCFG parsing work has used the bottom-up
CKY algorithm (Kasami, 1965; Younger, 1967) with
Chomsky Normal Form Grammars(Baker, 1979; Je-
linek et al., 1992) or extendedCKY parsersthat work
with � -arybranchinggrammars,but still not with empty
constituents(Kupiec, 1991; Chappelierand Rajman,
1998). Suchbottom-upparsersstraightforwardly avoid
the above problem, by always building all edgesover
shorterspansbefore building edgesover longer spans
whichmakeuseof them.However, suchmethodsdonot
allow top-down grammarfiltering, andoftendo nothan-
dle emptyelements,cyclic unaryproductions,or � -ary
rules. Stolcke (1995)presentsa top-down parserfor ar-
bitrary PCFGs,which incorporateselementsof thecon-
trol strategiesof Earley’s (1970)parserandtheGraham-
Harrison-Russoparser(Grahamet al., 1980). Stolcke
providesacorrectandefficient solutionfor parsingarbi-
trary PCFGsavoiding theproblemof left-recursive pre-
dictionsandunary rule completionsthroughthe useof
precomputedmatricesgiving valuesfor the closureof
theseoperations. However, the add-onsfor grammars



with suchrulesmaketheresultingparserrathercomplex,
andagainwehaveamethodonly for asingleparsingreg-
imen,ratherthanageneraltabular parsingframework.

In this paperwe show how to do agenda-basedac-
tive chartparsingof arbitraryPCFGsin �������� time,es-
sentiallyby extendingthe key ideaof Dijkstra’s (1959)
shortestpathalgorithmto chartparsing.Theresultingal-
gorithmhandlesarbitraryPCFGsanda rangeof parsing
strategiesin a simplerandmoreintuitive way thanpre-
viously presentedalgorithms. For preciselythe reason
mentionedabove, our parserwill necessarilylosesome
of the agendaprocessingflexibility of a standardchart
parser, however we preserve the flexibility with regard
to selectionof parsingintroductionstrategies(e.g. top-
down, bottom-up,etc.).1 Wealsodescribehow to extend
this algorithmto calculateinsideprobabilities.

2 Viterbi Parsing Algorithm

Our algorithmhasmany of the samedatastructuresof
a standardactive CCP. The fundamentaldatastructure
is the chart, which is composedof nodes, placedbe-
tween words, and edges. Edges are labeledspansof
nodes.Therearetwo varietiesof edges,active andpas-
sive. Passiveedgesareidentifiedby a spananda label,
suchasNP:[2,5], andrepresentthat thereis someparse
of that category over the span. Active edges are iden-
tified by a span,a label, anda grammarstate,suchas
VP� V.NP PP:[1,2], andindicatesthatthegrammarstate
is reachableover that span. In the casewheregrammar
rulesareencodedaslists, this stateis simply anEarley-
styledottedrule,andto reachit onemusthavebeenable
to parsethe sequenceof categorieswhich occur to the
left of the dot. However, grammarrules can in gen-
eralbeencodedby any deterministicfinite stateautoma-
ton andso the label of the active edgesis in generala
DFSAstate,with thelist rulesdenotingparticularlysim-
ple, linear DFSAs. The “fundamentalrule” statesthat
new edgesareproducedby combiningactiveedgeswith
compatiblepassive edges,advancingthe active edgein
the processto createa new edge.For example,the two
edgesdescribedabove can combineto form the active
edgeVP� V NP.PP:[1,5]. Edgesthemselvesdo not de-
clare what active and passive edgescombinedto form
that edge;ratherthis information is recordedin traver-
sals, which aresimply an(active edge,passive edge,re-
sultedge)triple.2 Aseachedgecanpotentiallybeformed
by many differenttraversals,this distinctionbetweenan
edgeitself anda traversalof anedgeis a crucialone,al-
thoughoftenlost in pedagogicalpresentations(e.g.,Gaz-
darandMellish (1989)).

The corecycle of a CCPis to processtraversalsinto
edgesandto combinenew edgeswith existing edgesto

1Notethatagendaselectionstrategiesin anexhaustive chartparser
merelyre-orderthe work done,while differing introductionstrategies
canactuallyimpactthetotal work done.

2Theresultedgeis primarily to simplify proofsandpseudocode;it
neednotever bestoredin a traversal.

��� � �
� is discovered � is finished

no traversalof � explored���� �! �#"$��% doesnotchange���� �! �#"$��%'&)(�* sometraversalexplored�+�+ �! �#"$��% only goesup�+�+ �! �#"$��%�,.-/"$��% anoptimaltraversalexplored���� �! ��"0�+% cannever change���� �! ��"0�+%1&2-/"0�+%
Figure1: TheLife Cycleof anEdge�

createnew traversals.Edgeswhich arenot formedfrom
other edgesvia traversalsare introductionedges. Pas-
siveintroductionedgesarethewordsandareoftenall in-
troducedduringinitialization. Activeintroductionedges
are the initial statesof rules and are introducedin ac-
cordancewith thegrammarstrategy (top-down, bottom-
up, etc.). To hold thetraversalsor edgeswhich have not
yet beenprocessed,a CCPhasa datastructurecalledan
agenda, which holdsboth traversalsandedgeintroduc-
tions. Items from this agendacanbe processedin any
orderwhatsoever, even arbitrarily or randomly, without
affectingthefinal chartcontents.

In a probabilisticchartparser(PCP),the centraldata
structuresare augmentedwith scores. Grammarrules,
which werepreviously encodedassymbolicDFSAsare
weightedDFSAs with a weight for enteringthe initial
state,aweightoneachtransition,and,for eachaccepting
state,aweighton acceptingin thatstate.

Edgesarealsoscored,thoughwith theexceptionof in-
troductoryedgeswhosescoresareknown a priori , edge
scoresaremerelycurrentbestestimates.Eachedge� is
augmentedwith a field 3�4/5�6 � � � � . This score, 37485�6 � � � �
(or 3�4/5�6 � � ��9;: � at a time : ) is thebestestimateto dateof
thatedge’s true(best)probabilityscore,<=� � � . In our al-
gorithm, this estimatewill alwaysbe lessthanor equal
to <=� � � , andwill alwaysin factbeequalfor introductory
edges.

Thefull algorithmis shown in pseudocodein figure2.
It isbroadlysimilarto thestandardcategoricalchartpars-
ing algorithm.However, in orderto solvetheproblemof
enteringedgesinto the chart beforetheir correctscore
is known, we have a more articulatededgelife cycle
(shown in figure1).3 Wedistinguishedgediscoveryfrom
edgefinishing. A non-introductoryedgeis discovered
the first time we explore a traversalwhich forms that
edge(in exploreTraversal).An introductoryedgeis dis-
coveredwhenever our parsingstrategy indicates(during
initialize or someother edge’s finishEdge). Discovery
is thepoint whenwe know that theedgecanbeparsed.
An edgeis finishedwhenit is insertedinto thechartand
actedupon(in finishEdge).Theprimarysignificanceof
anedge’s finishing time is that,aswe will show, our al-
gorithmmaintainsthepropertythatwhenanedgeis fin-
ished,it is correctlyscored,i.e., 3�4/5�6 � � � � = <=� � � .

A CCPstoresall outstandingcomputationtasksin a
singleagenda,whetherthe tasksareunexploredtraver-

3Note that the commentsin the figure apply to non-introductory
edges,thoughthetimelineappliesto all edges.



salsor uninsertedintroductoryedges.Wehavetwo agen-
dasandour typingis stronger. To storeedgeswhichhave
beendiscoveredbut not yet finished,we havea finishing
agenda. To storetraversalswhich have beengenerated
but not explored,wehaveanexplorationagenda.

Thealgorithmworksasfollows. During initialization,
all terminalpassive edges(oneperword in thesentence
or lattice) are discovered,along with any initial active
edges(for example,all ROOT � .* edgesif weareusinga
top-down strategy andour goalcategory is ROOT). Note
thatall of theseintroductoryedgesarealreadycorrectly
scored.4

The core loop of the algorithmis shown in figure 3.
If thereareany traversalsto explore,a traversal : is re-
movedfrom the explorationagendaandprocessedwith
exploreTraversal.Any removal orderis allowed. In ex-
ploreTraversal,: ’s resultedge� is checkedagainst: (re-
laxEdge). If : forms � with a betterscorethan previ-
ously known for � , � ’s score(andnew besttraversal)is
updated.If � is anundiscoverednon-introductionedge,
thenit becomesdiscovered.

If the exploration agendais empty, the finishing
agendais checked. If it is non-empty, theedgewith the
bestcurrentscoreestimateisfinished– removedandpro-
cessedwith finishEdge. This is the point at which the
fundamentalrule is applied (doFundamentalRule)and
new active edgesareintroduced(in accordancewith the
activeedgeintroductionstrategy).5

3 Analysis
Weoutlinethecompletenessof thealgorithm:thatit will
discover and finish all edgesand traversalswhich the
grammar, goal, andwords presentallow. Then we ar-
guecorrectness:thateveryedge� which is finishedis, at
its finishingtime, labeledwith thecorrectscore.Finally,
wegivetight worst-caseboundsonthetimeandmemory
usageof thealgorithm.

3.1 Completeness

For spacereasons,wesimplysketchaproofof complete-
ness.For thefull proof, see(Self, in preparation).In or-
derto arguecompletenessfor a varietyof word andrule
introductionstrategies,it is importantto have a concrete
notion of what suchstrategies are. Constraintson the
word introductionstrategy areonly neededfor correct-
ness,andsowe deferdiscussionuntil then.Let > bethe
setof edges,? thesetof introductorypassiveedges(i.e.,
word edges),and @ the setof introductoryactive edges
(i.e., rule introductions).

4Otherword introductionstrategies are trivially possible,suchas
scanningthewordsincrementallyin anouterloop from left-to-right. A
sufficient constraintonscanningstrategiesis presentedin section3.

5In theapplicationof thefundamentalrule,an(active, passive) pair
canpotentiallycreatetwo traversals.In categorical DFSA chartpars-
ing, edgesmay beactive, passive, or both. However, the passive and
active versionsof what would have beena singleactive/passive edge
in a categorical parserwill not in generalhave thesamescore,andso
thealgorithmintroducesseparateedges.Thereasonthescoreswill not
generallybethesameis discussedin section3.

parse(Latticesentence,Categorygoal)
initialize(sentence,goal)
while finishingAgendais non-empty

while explorationAgendais non-empty
geta traversalA from theexplorationAgenda
exploreTraversal(A )

geta bestedgeB from thefinishingAgenda
finishEdge(B )

initialize(Lattice sentence,Categorygoal)
createa new chartandnew agendas
for eachword w:[start,end]in thesentence

discoverEdge(w:[start,end])
for eachnodex in thesentence

if allow-empties
discoverEdge(empty:[x,x])

if top-down
for eachinitial active edgeC whichcanleadto thegoal

discoverEdge(C )
exploreTraversal(Traversal t)

e = t.result
if notYetDiscovered(e)

discoverEdge(e)
relaxEdge(e,t)

relaxEdge(Edgee,Traversal t)
newScore= combineScores(t)
if (newScoreis betterthane.score)

updatee.score
updatee.bestTraversal

discoverEdge(Edgee)
adde to thefinishingAgenda

finishEdge(Edgee)
adde to thechart
doFundamentalRule(e)
if top-down

doTopDownRule(e)
if bottom-up

doBottomUpRule(e)

doFundamentalRule(Edgee)
if e is passive

for all active edgesawhich endat e.start
for active and/orpassive resultedgesr

createthetraversalt = (a,e,r)
addt to theexplorationAgenda

if e is active
for all passive edgesp whichstartate.end

for active and/orpassive resultedgesr
createthetraversalt = (e,p, r)
addt to theexplorationAgenda

doTopDownRule(Edgee)
if e is active

for all transitionsr thate cantake
for all introductoryactive edgesC with LHS r.label

if notDiscovered(C ) thendiscoverEdge(C )
doBottomUpRule(Edgee)

if e is passive
for all introductoryactive edgesC whoserulescanbegin

with e.label
if notDiscovered(C ) thendiscoverEdge(C )

Figure2: OurProbabilisticChartParser
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Edges

Exploration
Agenda

of
Traversals

Finishingedgesgeneratetraversalswhich
areinsertedinto theExplorationAgenda

Exploredtraversalscauseedgesto bediscovered
andpossiblyimprovetheir scoreestimates,
advancingthemto theFinishingAgenda

Finishingedges
generatenew active
edgesaccordingto
theparsingstrategy.

Figure3: TheCoreLoopof theParser

Definition 1 An edge-driven rule introductionstrategy
is a mappingDFEG>H�JI1K which takesanedge � to a set L
of introductoryactiveedgeswhich are to beimmediately
discovered when � is finished. By LNMPO1��QR� we meanthe
setof edges � with QTSULV� � � .
Thestandardtop-downandbottom-upstrategiesareboth
edge-driven.6

Theorem1 For anyrule-drivenactiveedgeintroduction
strategy D , anyDFSAgrammar W , andanyinput latticeX

, and goal edge Y , there existssomeagendaselection
function Z for which the sequenceof edge insertions L
madeby a categorical chart parserand thesequenceof
edgefinishings[ madebyour probabilisticchart parser
are thesame.

Completenessmeansthat the edgesfound (i.e., fin-
ished) by both parserswill be the same. This doesnot
meanthat the PCPwill scorethem correctly, just that
every edgewhich hasa parseallowed by the grammar,
words,andgoalwill befound.

The generalideabehindthis proof is to run the two
parsersin parallel, showing by induction over corre-
spondingpoints in the algorithmsthat L]\^[ so far
and that for every edgein the PCP’s finishing agenda,
thatedgeis backedby someedgeor traversalwhich can
form it from theCCP’sagenda.Theselectionfunctionis
theonewhichalwaysmakestheCCPprocesstheagenda
itemswhich will causethe insertionof whichever edge
thePCPwill selectfrom its finishingagendaatthatpoint.

One importantcorollary of the full proof is that the
parsabilityis constructive. Not only is every edgeeach
parserdiscoversparsable,but thereis somesetof intro-
ductory edgesand traversalsprocessedby both which
canbe usedto form a parseof thatedge.We will need
this corollaryfor ourcorrectnessproof.

6An exampleof a non-edge-driven strategy would be if we intro-
ducedan arbitrary undiscoverededgefrom A into an arbitrary zero-
spanwhenever the finishing agendawasempty. It appearsvery diffi-
cult to stateacriterionfor non-edge-drivenstrategieswhichguarantees
boththeir completenessandcorrectness.

Given this theorem,we inherit the completenessre-
sultsfrom the literatureon categoricalchartparsing,in-
cluding, in particular, thecompletenessof the top-down
andbottom-upintroductionstrategies.

3.2 Corr ectness

Wenow show thatany edgewhichis finishedis correctly
scoredat finishing.

First,weneedsomenotionsaboutparsetrees.A parse
tree ? is a binary treeof edgetokens7 . A leaf in this
tree is a token of either a word (if passive) or a rule
introduction (if active). A non-leaf _ is a token of a
non-introductoryedgeandit hastwo children, Q , and `
which aretokensof an active edgeanda passive edge,
respectively, forming a tokenof sometraversal ��Q 9 ` 9 _a�
of thatedgetype.Thereasonwemustmakeatype/token
distinction is that a given edgemay appearmore than
oncein aparsetree.For example,consideremptywords
which may be usedseveral times over the samezero-
span,or an introductoryactive edgefor a left-recursive
rule. In this proof weuse :cb ` � ��_V� to meantheedgetype
of a parsetreenode _ . We will say things like “active
leaf” for “active introductoryedgetoken” and“discov-
erednode” for “nodewhoseedgetypehasbeendiscov-
ered.”

Thebasicideais to avoid finishingincorrectlyscored
edgesby alwaysfinishingthehighest-scorededgeavail-
able. This will causeus to work in an inside-outwards
fashionwhennecessaryto ensurethatscorepropagation
is never needed. The chief difficulties thereforeoccur
whenwhat might have beena high-scoringedgeis un-
availablefor somereason.

The subtlestway this canoccuris whenan introduc-
tory edgeis discoveredtoo late. If this happenswe may
have alreadymistakenly finishedsomeother edge,as-
signing it the bestscorethat it could have hadwithout
that introductoryedge’s presencein the grammaror in-
put. Becauseof this,weneedtighterconstraintsonword
andrule introductionstrategiesto provecorrectnessthan
thoseneededfor completeness.

Theconditionon word introductionis simple.

Definition 2 TheWord IntroductionCondition (or “no
internal insertion”): If someedge � spanninga span Z
is beingfinishedat time

� �
thenall wordsin Z havebeen

discoveredat
� �

.

This is satisfiedby any reasonablelatticescanningal-
gorithm and any sentencescanningalgorithm whatso-
ever. Theonly disallowedstrategy is to insertwordsfrom
alatticeintoaspanwhichhasalreadyhadsomespanning
setof wordsdiscoveredandhasalreadybeenparsed.It
shouldbe fairly clearthat this kind of internal-insertion
strategy will leadto problems.

7Notethatthebinarytreecorrespondsto boththeunderlyingd -ary
parseandto anactualparsein aleft-binarizedversionof theunderlyingd -arygrammar(moduloactive introductions).



Now wesupplysometheoreticalmachineryfor acon-
dition onrule introductions.

Definition 3 A possiblypartial ordering egf of nodes
(edge tokens)in a parsetreeP allows descentif when-
ever a node _ dominatesa set of children h , for any4iSjh , 4ikgfl_ .

Definition 4 The Rule IntroductionCondition (or “no
rule blocking”): In any parse ? of an edge � , there is
someordering e f of nodeswhich allows descentand
such that for anyactiveintroductionedge Q , EITHER

(1) there is someedge _ with a token _nm in ? which
doesnot dominateanytoken Q m of Q andwhosefinishing
will causethe introductionof Q , that is QoSpLn��_V� , and_nmqe f Q�m , OR

(2) Q mustappearin anyparseof � if � is passiveand
anyedgewhich canextendfrom � if � is active.

This is wordy, but the key idea is that active intro-
ductionedgesmust“depend”on someotheredgein the
parsein suchawaythatif anactiveedgeis undiscovered,
wecantrackbackto find anotheredgeearlierin theparse
which mustalsobeundiscovered.

Thelastconstraintweneedis oneontheweightsof the
DFSA rules.If a prefixof a rule is bad,its continuations
mustbeasbador worse.Otherwise,we mayincorrectly
delayextendinga low scoringprefix.

Definition 5 The Grammar Weighting Condition (or
“no score gain”): No transitioncan improve the score
of a trajectorythrougha DFSArule, including starting
statecosts,transitioncosts,andacceptingstatecosts.

Now we arereadyto statethetheorem.

Theorem2 Given any DFSA grammar W and intro-
duction strategies obeying the conditions above, for
any input lattice

X
, any edge � which is finished by

the algorithm at sometime
� �

has the property that3�4/5�6 � � ��9 � � ��\o<=� � � .
The proof is by contradiction. Take the first edge �

which is selectedfrom thefinishingagendaandfinished
with anincorrectscoreestimate.Thereforeat � ’s finish-
ing time

� �
, 3�4/5�6 � � ��9 � � �2rs<=� � � . Since� hasaparse(by

completeness),it hasat leastone(unfound)bestparse.
Chooseoneandcall it tu? . By virtue of beinga best
parse,<=�+tu?v�w\o<=� � � . 8

We claim that there is someedge _ in tu? which,
at
� �

, has been discovered, is correctly scored, i.e.,3�4/5�6 � ��_ 9 � � �2\x<=��_V� , yet hasnot beenfinished.Assume
suchan _ exists. Since _ is discoveredbut not finished
at
� �

, it wasin thefinishingagendawith its currentscore
8We definethe scorefunction y for a traversal z of an edge { to

meanthe scoreof the highestscoringparseof { which containsan
instanceof z at its root, andwe defineit for a parse| to be thescore
of thatspecificparse.

just before � waschosento befinished. But � wascho-
senfrom the finishing agenda,not _ , so it mustbe that3�4/5�6 � ��_ 9 � � �~}J3�4/5�6 � � ��9 � � � .

On theotherhand,since_ is containedin tu? , by “no
scoregain” it must be that <=� � ��\�<=��t�?v��}�<=��_V� .
Thus, if we find suchan edge _ then <=� � ��}�<=��_V�j\3�4/5�6 � ��_ 9 � � �~}J3�4/5�6 � � ��9 � � �2rs<=� � � , a contradiction.

Therestof theproof involvesshowing theexistenceof
suchan _ . Considerthenodesin tu? . Since � is unfin-
ished,thereis a non-emptysetof unfinishednodes,call
it � . Wewantsome�USl� whichbothhasnounfinished
childrenandwhich is minimalby e f . Clearlysomeele-
mentsareminimal since � is non-emptyandfinite. Call
the setof minimal elements� . For any ��S�� which
hasanunfinishedchild, thatchild mustalsobeminimal
since e f allows descent.Therefore,removing all ele-
mentsfrom � which have an unfinishedchild leavesa
non-emptyset.Chooseany � from this set.

If � dominatestwo finishedchildren(call them Q and` ), thensince� is thefirst incorrectlyfinishededge,Q and` ’s edgetypeshadtheir correctscoresat their finishing
times. Becauseonly relaxationcan changescoreesti-
matesand it canonly raisethem, their scoreestimates
have not changedsincethen. Therefore,whenever the
later of :cb ` � �+Q�� and :cb ` � �$`V� wasfinished,the traversal: \H� :cb ` � ��QR� 9G:cb ` � �$`V� 9;:cb ` � ���a�G� wasgenerated.And be-
fore anything elsecould have beenfinished, : was ex-
plored.Thus, :cb ` � ���P� hasbeendiscoveredandhasbeen
relaxedby : , sayat time 67� . Therefore,at 68� , andthere-
fore still at

� �
, 3�4/5�6 � � :cb ` � ���a�G� canbeno worsethanits

scorein t�? , which of coursemeansits scorehasbeen
correctsince6 � . But recallthat � is unfinished,soweare
done.

If � dominatesno finishednodes,thenit is a leaf. If �
is a word introduction,thenby “no internalinsertion” �
hasbeendiscovered.Sincewordsarecorrectlyscoredat
discovery, we aredone.If � is anrule introduction,then
wemustonly show that � hasbeendiscovered,sincerule
introductionsare correctly scoredon discovery. To be
sureof this, we mustappealto “no rule blocking.” It is
possiblethat � is atokenof anedgewhichmustappearin
any parseof any passiveedgeequalto orextendablefrom� . If so,by condition(1) we aredone. If not, thenlet _
betheedgewhosefinishingwill guarantee� ’sdiscovery.
If _ is unfinished,thensomeinstanceof _ is egf�� and
unfinished,contradicting � ’s minimality. Thus we are
done.

We have now proventhecorrectnessof thealgorithm
for strategiesmeetingthe givencriteria. Both the tradi-
tional bottom-upand top-down strategies meetthe “no
rule blocking” criterion. We prove this for only thetop-
down strategy here.

Theorem3 The top-down rule introduction strategy
meetsthe“no rule blocking” criterion.

Assign to eachnode � in ? the numberof nodesin? which would be completedbefore � in a top-down



stackparseof ? . Sinceno node is completedbefore
its children in sucha parse,this allows descent. In a
top-down parse,for every introductionnodethereis a
c-commandingactive edgenodeto the left of it which
will introduceit, andtherefore(1) holdsunlesstheactive
edgeintroductionin questionis thevery leftmostoneof? . Call this leftmostactive node Q . Since ? is a parse
of someedge� with label

X
, Q alsohaslabel

X
. Thus,if

any parseD whatsoeverof � is found,its leftmostactive
leaf is a token of someactive edge � with label

X
. But

then,whenever � wasdiscovered,sowas Q , sincethetop-
down introductionstrategy alwaysintroducesall rulesof
thesamelabelatonce.

3.3 Asymptotic Boundsand Performance

Webriefly motivateandstatethecomplexity bounds.Let� bethenumberof nodesin theinput lattice, h thenum-
ber of categoriesin the grammar, and Z the numberof
statesin the grammar. hJ}�Z sinceeachstateis con-
tainedin a rule for somecategory. Themaximumnum-
berof edges> is �+h���Z������ , andthemaximumnumber
of traversals� is I�Z�hi��� . Timeis dominatedby thework
pertraversal,whichcanbemadeamortized������ (with a
Fibonacciheap-backedpriority queue),sothetotal time
is ������U\����Z�hi����� . For memory, thereare several���>�� datastructuresholdingedges.Theconcernis the
exploration agendawhich holds traversals. But every-
thing on this agendaat any onetime resultedfrom a sin-
gle call to doFundamentalRule,andso its sizeis ���>u� .
Therefore,thetotalmemoryis ���>u�w\���+Z=����� .

Much work in probabilisticparsinghasconcentrated
on“bestfirst” or beamparsing(Collins,1997;Caraballo
and Charniak,1998). Thereare obvious good reasons
for exploringsuchmethods,but suchwork hasoftenpar-
tially beenjustified on the groundsof the impossibility
of doingexhaustiveparsingfor largeprobabilisticgram-
mars(e.g, CaraballoandCharniak(1998,292) suggest
thatfor acoveringgrammarderivedfrom thePennTree-
bank that “it was impractical to parsesentencesto ex-
haustionusing our existing hardware”). It is thus per-
hapsof interestto notethat,usinga trie DFSA rule rep-
resentation,our parsercando exhaustive parsingwith a
PennTreebankWSJcovering grammarof sentencesof
theusuallyconsideredlengths(up to 100words)in rea-
sonabletime on a PentiumIII workstationwith 1 Gb of
memory– evenwith a Java implementation.

4 Parsing and Hypergraphs

Oneview of parsingis asa processof logical deduction
(PereiraandWarren,1983;Shieberet al., 1995). There
is alsoa well-known, deepconnectionbetweenlogic, in
particularsatisfiability, anddirectedhypergraphs(Berge,
1973; Gallo et al., 1993). In this section,we draw the
third line in thetriangleto connectparsingwith directed
hypergraphalgorithms. The advantageof this view is
that, while thereis no clearway to generalizethe logi-
cal view of parsingto probabilisticparsing,directedhy-

pergraphshave animmediateandwell-studiednotionof
weighting. We usethis connectionto describethe pre-
cedingalgorithm in hypergraph-theoretictermsand to
outlinea morecomplex algorithmfor computinginside
probabilitieswithin acubictimebound.

First we give somepreliminary definitionsaboutdi-
rectedhypergraphs.For a moredetailedtreatment,see
for example(Berge,1973).

Definition 6 A directedhypergraph � is a pair �+� 9 >u�
where � is a setof nodesand > is a setof directedhy-
perarcs. A directedhyperarc is a pair ��� 9�� � where the
tail � andhead� are disjoint subsetsof � .

Definition 7 A B-(hyper)graphis a directedhypergraph
where the hyperarcs are B-arcs. A B-arc is a hyperarc
for which � is a singletonset.

It is easyto seethe constructionwhich will provide
the link betweenhypergraphsand deduction. Nodes̀
will correspondto propositions,anddirectedhyperarcs� : O��8�8� :��v� � ��  O¡�8�7�  n¢ � will correspondto a rule: Og£ �7�8� : � �   Og¤ �8�8�   ¢ . In the caseof B-arcs,the
correspondingruleswill beHornclauses.

Definition 8 A simple path `p\J3j¥ : is a sequence�+3¦\¨§ª© 9�� O 9 § O 9 �7�8� � ¢ 9 § ¢ � of alternatingnodesandhy-
perarcswhere

(1) each hyperarc is distinct
(2) «a¬=S � � 9 �8�8� 9 � ��9 §'�S   � Q � � � ��
(3) «a¬=S ��® 9 �8�8� 9 �j¯�� ��9 §'°S : Q�¬c±;� � ³² O �

Definition 9 A B-path ? in a B-graph W from a node3 to a node : is a minimal subgraph ��� f 9 > f �´r]W in
which:3 9G: SU� f«V§TS�� f ¯ � 3 ��9¶µ `´\x3�¥ : , ` a simplepathin ?

We cannow statethehypergraphicalview of parsing.
We view the edgesand traversalsin our grammarasa
B-graph � . Edgesarethe nodesin � , while traversals
areB-arcswith the active andpassive edgesin the tail
andtheresultedgeasthehead.We call this the induced
binarizedB-graphof agrammarW .9 ThisB-graphcorre-
spondsto thesatisfiabilitygraphof theHornclauseform
of thebinarizedgrammar.

For satisfiabilitygraphs,onealsoneedsto addspecial
nodesfor true and false andarcsto representtruth as-
signments.Similarly, we will wantto adda specialnode3 for a sourceandarcs �+3 9;· EV¸ _ 9Gb�¹ � for any word span-
ning [ _ ,b ] in our input lattice. We alsomustaddarcsto
eachintroductoryactive edge.Oncewe have donethis,
we call the result the inducedbinarizedB-graphof the
grammarW andinput lattice

X
.

We now equateB-reachabilitywith parseexistence.
9Notethatonecanstraightforwardly view d -ary grammarrulesas

B-arcswith tails of size d , but we restrict our attentionto the view
whichmostcloselyparallelstheparsingdonein this paper.



Definition 10 A node: in a B-graphis B-reachablefrom
a source 3 iff there existsa B-pathfrom 3 to : .
Theorem4 In an inducedbinarizedB-graphof a gram-
mar W anda lattice

X
, a node� is B-reachablefrom 3 iff

a parseof theedge � exists.Furthermore, each parseof� correspondsto a particular B-path.10

Wedonotprovethishere;thestatementitself carriesthe
importantobservation. Note that a CCPcanbe seenas
doinga reachabilitysearchover this graph.Thekey dif-
ferenceis that in chartparsingwe do not have theentire
graphto begin with, but ratherwe constructit on thefly.
Justasreachabilitycanbedonebreadth-first,depth-first,
forward,or backwards,categoricalchartparsingcanbe
donein any directionwhatsoever – provided the intro-
ductionruleswhich dynamicallycreatethe graphdo so
properly.

B-reachabilityalgorithmsgenerallyrun in time linear
in thesizeof thegraph(Galloetal., 1993).Notethatthe
sizeof thegraphis ��+�º�u>���\x��+>´�v�i��\x���Z�hi����� ,
exactly theboundfor CCPs.

At this point we have closed the triangle. Now
we develop the connectionbetweenViterbi parsingand
weightedhypergraphalgorithms.

Definition 11 The weight of a B-arc @ is a function· E�@��¼» which assignsa weightto each arc.

Definition 12 The cost of a B-path ? is the sum (or
product)of theweightsof all arcson thepath.

Notethat if theweightof a traversalB-arc is thetran-
sition costof thattraversalandif theweightof the ��3 9�� �
edgeintroductionarcsis thescoreof theintroducededge,
thenthecostof apathis thescoreof the(minimal)corre-
spondingparse.Thus,wecanview best-parsealgorithms
asshortest-pathalgorithms.In exactly this sense,theal-
gorithmpresentedaboveis closelyrelatedto theB-graph
extensionof Dijkstra’s algorithm(Gallo et al., 1993). It
shouldbe no surprisethat our proof of correctnessis,
at the core,parallelto the standardDijkstra’s algorithm
correctnessproofs. It shouldalsobeno surprisethat the
main reasonour proofsof correctnessweremorechal-
lengingis the“just in time” natureof edgeintroductions.

4.1 Inside Probabilities

Onecanpushthecorrespondencefurther. Calculatingin-
sideprobabilitiesis essentiallytheproblemof summing
thecostsof all B-paths.Thereareseveralissueswith this
problemwhich did not arisebefore.

First, dynamic programmingsolutions to the sum-
pathsproblemeitherdo not dealwith cycles (meaning
we would have to restrictor transformour grammarto

10Theactualpath-parsecorrespondenceis not one-to-onein general
becauseof cyclic same-spanconstructions,but categorical parsingis
concernedwith parsabilityof edges,not individual parserepresenta-
tion.

makesurethereweren’t any in thehypergraph)or donot
run in lineartime (which is undesirable).

Second,with sum-pathsthesubtlenon-reversibility of
theparseto pathmappingbecomesanissue.While many
parsescancorrespondto asingleB-path,thereis atmost
one bestparsecorrespondingto a given B-path. The
other, non-minimal,parsesdon’t matterfor categorical
parsingbecausethey do not createany new edges,and
they don’t matterfor bestparsingbecausethey neverim-
proveanedge’sscore.However, for insideprobabilities,
they areimportantto count.

Due to spaceconstraints,we merely sketch an al-
gorithm for computinginsideprobabilitiesfor arbitrary
PCFGs.Thecoreissueis thatany edge_ which canbe
usedin aparseof anedge� cancontributeto thescoreof� . If thereareno emptiesor unarytransitions,it is easy
enoughto putaconditiononwhenan _ cancontributeto� ’s sum: if 3;`VQ�����_V�ie½3G`nQ���� � � . In thatcase,onecould
organizethecomputationaroundspansizes,finishingall
edgesof a givenspansizebeforemoving on to thenext,
accumulatingtraversalsasthey areexplored.This is ex-
actly theCKY algorithmfor insideprobabilitiesput into
our framework. It alsocorrespondsto theobviouslinear
timepath-sumdynamicprogramfor acyclic B-graphs.

Oncewe allow anarbitrarygrammar, theB-graphde-
velopscycles. For a normalgraphwith cycles,onecan
modelthepath-sumflow andusematrixmathto solvein
closedform theinfinite sumscausedby cyclic dependen-
cies(Stolcke,1995). This is not a linear time operation,
and is in fact cubic in the numberof graphnodesas it
involvesamatrix inversion.However, in ourB-graphthe
cyclesarenot all acrossthe graph,but ratherexist only
amongedgeswith identicalspans,in regionswhich are
in fact isomorphicto normalgraphs.Furthermore,even
in theseregionsweneednotdoamatrixclosureover the
entiresame-spanregion,but ratheronly its stronglycon-
nectedcomponents(SCCs).TheSCCsthemselvesform
an acyclic B-graphfor which we canusea linear algo-
rithm.

Our algorithmusestheseideas. In additionto edges
andtraversals,wewill haveanSCCobjectcalledanedge
cluster. Edgeswill still have scoreswhich will be their
total sumprobabilityestimateto date(alwaysanunder-
estimateor correct). Clusterswill have not scoresbut
tier values(analogousto spansizesfor CKY but which
alsoorderSCCsinsidesame-spanregions). The finish-
ing agendawill hold clustersandfinishinga clusterwill
happenwhen all the acyclic inputs to the edgesin the
clusterareknown. Finishingwill involve a matrix clo-
sureovertheclusteratwhichpointall of theedgesin the
clusterwill befinished.

Thedifficultly is thenonlinetier numbering,SCCde-
tection,andthe matrix inversions.Of these,the matrix
inversioncostsarethelargestpotentialasymptoticslow-
down, totalingup to ��+Z=�8���7� time.

Theruntimeof thealgorithmis ���Z�hi�����UZ=�¾����� and
thespacerequirementsare ��+Z=�8���7� . At first sight,one



might wonderhow this canpossiblybesuperiorto sim-
ply transformingthegrammaronceanddoingCKY pars-
ing. Z=� and Z�� would bevery largefor a hugegrammar,
andonemaywell bedoingthesamework overandover
again,in essencedoingthesamegrammartransformfor
everyspan.

However, there are reasonsto prefer this method.
First, all causesof cycles (left-recursion,empties,and
unaries),aretreatedidenticallyandnaturally.

Second,for a hugegrammar, this methodcould be
much faster. The Z=� term comesfrom the matrix in-
versionswhich areactuallycubiconly in thesizeof the
actualSCCs.11 For large grammars,the total may be
smallcomparedto ��� andmaynot appreciablyslow the
parserdown. Furthermore,if thosesizesaremuchmuch
lessthan Z , thesmall inversionscouldbecheaper, even
done ��� times, thana singlenaive Z=� transformof the
entiregrammar. Notethatthiswin is notbiggestfor, say,
standardlexicalizedgrammars,wheretheinteractionbe-
tweenthe lexical itemsandcategoriesis easyto factor
andit is easyenoughto preprocessthe CFG backbone,
but ratherin complex grammarswherethe interactions
betweenconditioningenvironmentsmay be subtleand
difficult to computein advance. In this case,our algo-
rithm will straightforwardlyanddynamicallydoonly the
necessarySCCanalysisandinversions.
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