
From Instance-level Constraints to Space-level Constraints:
Making the Most of Prior Knowledge in Data Clustering

Dan Klein KLEIN@CS.STANFORD.EDU

Sepandar D. Kamvar KAMVAR@SCCM.STANFORD.EDU

Christopher D. Manning MANNING@CS.STANFORD.EDU

Department of Computer Science, Stanford University, Stanford, CA 94305-9040 USA

Abstract
We present an improved method for clustering in
the presence of very limited supervisory informa-
tion, given as pairwise instance constraints. By
allowing instance-level constraints to have space-
level inductive implications, we are able to suc-
cessfully incorporate constraints for a wide range
of data set types. Our method greatly improves
on the previously studied constrained

�
-means

algorithm, generally requiring less than half as
many constraints to achieve a given accuracy on
a range of real-world data, while also being more
robust when over-constrained. We additionally
discuss an active learning algorithm which in-
creases the value of constraints even further.

1. Introduction

For many of the large datasets now available online, ex-
tensive hand-labeling would be costly and time-consuming
enough to make standard supervised learning algorithms
infeasible. Beyond that, part of the goal might be pat-
tern discovery: a good labeling of the instances may not
be known. In many such cases, gathering a large amount
of unlabeled data is cheap and easy, and we may well be
able to get a small amount of prior knowledge, such as
some instance-level constraints indicating whether partic-
ular items are similar or dissimilar.

Here, we consider the two types of constraints introduced
by Wagstaff and Cardie (2000): either two instances are
known to be in the same class (in which case we say that
they are must-linked), or they are known to be in different
classes (in which case we say that they are cannot-linked).
These types of constraints are intuitively appealing for the
task of data clustering, where the goal is to group similar
instances. They are a natural way to encode background
knowledge even when class labels are not known a priori.
For instance, for the task of protein function prediction,
genome sequence data can be augmented by knowledge

about functional links between proteins (Eisenberg et al.,
2000). Here, functional links can be found by experimental
means, such as the phylogenetic profile method or the gene
neighbor method, and complement similarity information
that can be automatically computed from sequence data. In
collaborative filtering, the user may wish to modify his rec-
ommendations if he knows a priori that two books are alike
(or not alike). Depending on the nature of the problem and
source of the background knowledge, either or both types
of constraints may be present.

The task of constrained clustering is closely related to the
problem of semi-supervised learning, where the goal is to
induce class labels for data given a very small training
set. However, it is important to note that the information
given by the pairwise constraints we explore is weaker than
the information given by labeled data. While class labels
can be used to generate pairwise constraints, pairwise con-
straints only give information about pairs of instances, and
cannot be used to partially label the data sets.

The idea of using background knowledge to constrain clus-
tering has been widely explored (Gordon, 1996; Wagstaff
et al., 2001). However, the present work is novel in both
the consideration of a spatial inductive interpretation of the
constraints and in the presentation of an active constraint
selection strategy.

2. Instance vs. Space Level Constraints

While it is important for a clustering algorithm to satisfy
known constraints, it is equally important for the algorithm
to satisfy the implications of those constraints. For exam-
ple, in figure 1, both sets of clusters (1b and 1c) satisfy
the diagonal must-link constraints, but figure 1c is clearly a
more intuitive partitioning. This is because the constraints
suggest space-level generalizations beyond their explicit
instance-level assertions; not only should points that are
must-linked be in the same cluster, but the points that are
near these points should probably also be in the same clus-
ter. Cannot-links have similar spatial generalizations.

(a) Data (b) Instance Bias (c) Spatial Bias

Figure 1. The effects of adding two diagonal must-link constraints
to the data in (a): an instance-level inductive bias results in single
outliers (b) while a stronger space-level bias results in qualitative
changes to the clusters (c).

Previous algorithms (COP-COBWEB (Wagstaff & Cardie,
2000) and COP-

�
-means (Wagstaff et al., 2001)) designed

for the task of clustering with constraints have failed to
show marked improvement over their unsupervised coun-
terparts with the addition of very few constraints. COP-
COBWEB is a constrained variant of COBWEB (Fisher,
1987), an incremental partitioning algorithm; and COP-

�
-means (CKM) is a constrained incremental-assignment

variant of standard
�

-means (KM) clustering (McQueen,
1967). In these algorithms, a check is made at each assign-
ment to see if the instance being assigned is must-linked
or cannot-linked to a previously assigned instance, and the
assignment is made accordingly. A major flaw with these
algorithms is that they fail to utilize the space-level impli-
cations suggested by the constraints; in other words, they
have no mechanism for propagating the constraints. There-
fore, they will often exhibit the “outlier” behavior seen in
figure 1b. While the clusters they produce may be consis-
tent with the constraints themselves, they are often not con-
sistent with the natural implications of those constraints.

It is important to stress that constrained clustering is a prob-
lem of induction, and therefore subject to differing induc-
tion principles. The principle we propose is that elements
involved in pairwise constraints are generally representa-
tive of their local neighborhoods. However, if one were
supplying constraints with the express purpose of reclassi-
fying known outliers, then our induction principle would
not apply, and in these cases, it might well be better to use
an algorithm like COP-

�
-means which exhibits this behav-

ior. But this latter bias is unnatural as a starting point for
clustering; it would more naturally apply to fixing up mis-
takes in an existing clustering.

We propose here an algorithm that addresses this prob-
lem by distorting pairwise proximities between instances
to reflect the spatial information given by the constraints.
Proximity-based clustering is then done with the distorted
proximities. This entire algorithm, called Constrained
Complete-Link (CCL), performs substantially better than
previously proposed algorithms in empirical studies.

(a) (b) (c)

Figure 2. The scenarios for clustering. (a) Distant, tight clusters
are easily detected without constraints. (b) Odd-shaped or non-
contiguous clusters can be detected more easily with constraints.
(c) Clusters which are not at all separated in the feature space will
not likely be detected, even with constraints.

3. Constraint Applicability

Before presenting the details of the algorithm, it is helpful
to identify the cases in which adding a few constraints will
be useful in pattern discovery or classification.

If the data naturally form tight clusters that are well-
separated (as in figure 2a), there is no need for background
knowledge at all – any reasonable clustering algorithm will
detect the desired clusters. Likewise, if no distinction can
be made between classes in feature space (as in figure 2c),
then little useful information can be found in the data itself,
and constraints will again be of little use.

Background knowledge will therefore be most useful when
patterns are at least partially present in the data, but a clus-
tering algorithm will not detect them correctly without as-
sistance. This situation can arise in many ways. We focus
on the case where the fine proximity structure in feature
space is strongly correlated with the underlying similarity,
but the coarse proximity structure may be misleading. Fig-
ure 2b and figure 7 show extreme examples of such cases.
While these examples may seem contrived, real data often
has such characteristics to a lesser degree, and the method
we present works well for real data (figure 10) as well as
for the examples in figure 7.1

Our goal is to take feature-space proximities, along with
a sparse collection of pairwise constraints which indicate
ways in which the feature space is unlike the target sim-
ilarity space, and to cluster in a space which is generally
like the feature space, but altered to accommodate the
constraints. This alteration may involve a radical change
in the topology of the original space which allows entirely
new clusters to be detected, or it might involve only small
deformations which improve the boundaries of mostly
correct clusters.

1In the case where a good similarity space can be constructed
from the feature space by a global linear transformation, feature
weighting may be a more appropriate way to improve perfor-
mance. Zhu et al. (2001) describe a heuristic method for selecting
feature weights from pairwise constraints.

4. Imposing and Propagating Constraints

The outline of our general algorithm is as follows. We
are given a proximity matrix for the instances in our data
set, as well as a set of constraints given as pairwise cluster
decision assertions. We create a new proximity matrix on
the basis of the constraints and their implications. We then
supply this new matrix to a proximity-based clustering
algorithm.

Our distortion algorithm has two goals. First, in our dis-
torted proximities, we would like specific items known to
be in the same class to be very close together, while two
items in different classes should be very far apart. Ad-
justing the feature space in this manner, for example in-
creasing the distance between two cannot-linked points, is
called imposing constraints, and, by itself, corresponds to
an instance-level view of the constraints.

Secondly, we would like to further distort other entries in
the proximity matrix to reflect the following two intuitions.

� If points ��� and ��� are very close together, then points
that are very close to ��� are close to ��� .� If points ��� and ��� are very far apart, then points that
are very close to ��� are far from ��� .

Further adjusting the proximities to satisfy these intuitions
corresponds to a space-level view of the constraints. This
adjustment is called propagating constraints, and is illus-
trated in figure 3.

Notice that the two intuitions above are trivially satisfied
by the triangle inequality if we have a metric input prox-
imity matrix and no constraints. However, in imposing
constraints, we may lose metricity. One way of propagat-
ing constraints is therefore to find a way of restoring the
metricity of proximities while maintaining the constraints
that were imposed.

One could imagine various methods for proximity distor-
tion and various clustering algorithms; we give a concrete
method for each in the following sections (and pseudocode
in figures 5 and 6).

4.1. Must-links

In the case where the only constraints are must-link pairs,
imposing the constraints will only involve shortening cer-
tain entries in the proximity matrix. Concretely, we in-
terpret the proximity matrix as weights for a complete
graph over the data points, and we impose must-link con-
straints by lowering the distance between the must-linked
pair to zero. If the original proximities are metric, then
the arc directly connecting two points is a shortest path
between those points. By imposing the constraints, we
will likely have violated the triangle inequality and there-
fore this shortest path property, but only in a very specific

X Y

Z

X Y

Z

(a) (b)

Figure 3. Constrained pairs have implications for nearby points.
If X and Z are very close, then (a) constraining X away from Y
should push Z from Y and (b) constraining X towards Y should
pull Z towards Y.

�
	� ��

�����
��
��� �����

Feature space Similarity space

Figure 4. Clusters which are distant in feature space can be
brought together in similarity space with a propagated must-link
constraint.

way: points which were previously some distance � apart
may now be closer along some path which skips through
the constrained pairs. We can therefore find a new metric
which respects these new constrained entries by running an
all-pairs-shortest-paths algorithm on the imposed matrix.
The resulting path-length matrix will be metric, and will
still be faithful to the original distances in some sense.

Our method of imposing constraints allows us to speed up
the computation of the all-pairs-shortest-path lengths. In
particular, for every source � and goal � there is a short-
est path where all points along are either � , � , or some
point involved in a must-link constraint. A trivial modifica-
tion to the Floyd-Warshall algorithm (Cormen et al., 1990)
allows us to do the all-pairs-shortest-paths computation in
time !#"%$'&)(+* where (is the number of points involved
in some must-link constraint, rather than !#"%$-,.* . If we as-
sume that (0/1$, then this phase is no more expensive
than proximity-based clustering algorithms alone.2

4.2. Cannot-links

The addition of cannot-links complicates matters substan-
tially. First of all, while we can find some satisfying clus-
tering for pure must-links in only slightly superlinear time,
it is NP-complete to even determine whether a satisfying
assignment exists when cannot-links are present. Even in
practice, it is much harder to devise a satisfactory proce-
dure when cannot-link constraints are included.

An example of a well-founded but ineffective procedure
would be to take the input proximity matrix 2 , constrain
all must-linked entries to zero, constrain all cannot-linked
entries to some large number (perhaps 35476 �98 � 2 �:�<;>=),
and allow all other entries to vary. Then we could search

2Complete-link clustering standardly runs in ?A@9B5CED�F.GHB#I
time with a priority queue implementation.

for a matrix 2 � such that 2 � defines a metric space and2 ��� 4����
3��
	������������� ��� 2�� 2 � � for some norm. This con-
strained optimization problem is too large to solve for more
than a dozen points with general-purpose solvers, since
each permutation of three data points "�� �"!#��$ * corresponds
to some triangle inequality 2&%(' ; 2)'+*-, 2.%/* .
What we use for mixed constraints is less satisfying con-
ceptually, though it works well in practice. We first add
the must-link constraints using the all-pairs-shortest-paths
algorithm from section 4.1. This gives us a metric matrix.
Then, we only impose instance-level cannot-links, setting
those entries to 35476 � 8 � 2 ��� ; = . Then, rather than explicitly
restore the metricity, we choose a proximity-based cluster-
ing algorithm that will indirectly propagate the cannot-link
constraints, implicitly restoring some metricity each time
it performs a merge. We will discuss this further in sec-
tion 4.3, but we mention here that the clustering phase is ef-
fective at propagating cannot-links. One way in which this
division between propagation methods is appropriate in our
context is that, as mentioned before, satisfying cannot-links
is NP-complete, as is the clustering problem, while must-
links can be satisfied very efficiently. Therefore, since one
hard problem is being approximated with heuristic cluster-
ing, it is convenient to approximate both at once.

4.3. Clustering

For the present work, we use complete-link hierarchical
agglomerative clustering (see Jain & Dubes, 1988) as our
clustering algorithm. We assume basic familiarity with
complete-link (CL) clustering. CL merges clusters in or-
der of proximity; the closest clusters will be merged first,
and the furthest clusters will be merged last. By setting
the must-link entries in the proximity matrix to 0, and the
cannot-link entries to 354 6 � 8 � 2 ��� ; = , we can achieve a di-
rect operational (instance-level) interpretation of the con-
straints without any modification to the clustering algo-
rithm. The propagation of the cannot-link constraints oc-
curs through the merges. At each merge, CL creates a
reduced proximity matrix, with one less row and column.
Because CL defines the distance between clusters as the
maximum distance between points in each cluster, if 0 is
cannot-linked to 1 , merging 0 and (will cause (to also
be cannot-linked to 1 . In this way, CL achieves implicit
propagation of cannot-link constraints.

5. Results and Discussion

5.1. Evaluation Criteria

Several methods exist for cluster evaluation (Siegel &
Castellan, 1988). When a target classification is known,
a commonly used index is the Rand Index (Rand, 1971).
The Rand index views a clustering of the data as a link-
age decision for each pair of data points. A pair is con-

constrainProximities(Matrix 2 , Constraints 3)
imposeMustLinks(2 , 3)
propagateMustLinks(2 , 3)
imposeCannotLinks(2 , 3)
propagateCannotLinks(2 , 3)

imposeMustLinks(Matrix 2 , Constraints 3)
for @5476�87I�9 3;: <>=
?2A@ B 6 2-B�@DCFE

imposeCannotLinks(Matrix 2 , Constraints 3)
for @5476�87I�9 3;GIH+J>J"K�? and @L8M67N I;9 3;: <>=
?2 @PO 6 2 B"O CRQ

propagateMustLinks(Matrix 2 , Constraints 3)2SC fastAllPairShortestPaths(2 , 3)
for @5476�87I s.t. 2 @ B CRE3;: <>=P?TCU3;:�<>=
?�V�W @54+6I87I7X

propagateCannotLinks(Matrix 2 , Constraints 3)
(done implicitly by completeLink)

fastAllPairsShortestPaths(Matrix 2 , Constraints 3)
% find valid intermediatesY C 4[Z]\^8._C 4+6�@54+6�87I;9 3;: <"=
?
% modified Floyd-Warshall
for N`9 Y , for 4�9 W#a ZMb X , for 8c9 W#a ZMb X2A@ BdCfehgLijW/2k@ B 6 2 @PO�l 2 O�B X

Figure 5. Pseudocode for constraining an input proximity matrix.

constrainedCL(Matrix 2 , Constraints 3)
constrainProximities(2 , 3)
completeLink(2)

completeLink(Matrix 2)3nm
oqp"r+sutMp = W(v"@ for each point 4wXx 4�b�N�y#z s starts empty
distances { @ v @+6 v B I CR2 @ B
while | 3nm
oqp"r+sutMp#|�}Ra

choose closest @ v^~ 6 v C I CF�/� G ehgLi��7�>� ���u�������/�������7�j{ @ v^~ 6 v C I
add @ v ~ 6 v C I to

x 4�b�N�y#z s
merge v ~ and v C into v>J"��� in 3nmPoqp"r+sut�p
for v @T9 3nm
oqp"r+sutMp{ @ v"@ 6 v>� �w� I Cfe��/��Wu{ @ v"@ 6 v ~ I�6 { @ v>@ 6 v C I7X

Figure 6. Pseudocode for constrained complete-link clustering.

sidered correct if the proposed clustering agrees with the
target clustering. The Rand index is then:

�A� �����>�#�u���>�/ -¡��"�/¢�£u¢��#¤�£#¥��¦ +�# +§#¨�¡��>�(¢�£u¢��#¤�£

Its value lies between 0 and 1, 1 being perfect agreement.

Following Wagstaff and Cardie (2000), we use a modifica-
tion of the Rand index, suitable for constrained clustering.
Adding constraints ensures the correctness of pairs fixed by
the constraints or their closure. Therefore, we confine our
evaluation to decisions which are underdetermined by the
constraints. We have:

(�c� �����>�]�u���>�(©>���>�h¡��>�(¢�£u¢��]¤q£�¥��¦ ��] �§]¨�©>���>�h¡��>�/¢�£u¢��#¤q£

We use this not only because it is a natural evaluation cri-
teria for clustering with pairwise constraints, but also to

(a) (b) (c) (d)

Figure 7. Synthetic data sets: target clusterings. (a) CIRCLES, (b) TWOCIRCLES, (c) XOR, and (d) STORMCLOUDS

0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

CCL (active)
CCL
CKM

0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1
CCL (active)
CCL
CKM

0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

CCL (active)
CCL
CKM

0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

CCL (active)
CCL
CKM

(a) (b) (c) (d)

Figure 8. Synthetic data sets: number of constraints vs. accuracy. CCL is constrained CL with random constraint selection, CCL (active)
is constrained CL with active selection, and CKM is COP

�
-means. (a) CIRCLES, (b) TWOCIRCLES, (c) XOR, and (d) STORMCLOUDS

0 50 100 150 200
0.8

0.85

0.9

0.95

1

CCL (active)
CCL
CKM

0 50 100 150 200
0.4

0.5

0.6

0.7

0.8

0.9

1
CCL (active)
CCL
CKM

0 50 100 150 200
0.84

0.86

0.88

0.9

0.92

0.94

CCL (active)
CCL
CKM

(a) (b) (c)

Figure 9. Real data sets: number of constraints vs. accuracy. (a) IRIS, (b) CRABS, (c) SOYBEAN.

facilitate comparison with previous work in this area. The
term “accuracy” will be used to refer to CRI values.

In what follows, CCL is the constrained complete-
link algorithm presented above and CKM is our re-
implementation of COP- � -means (Wagstaff et al., 2001).

5.2. Synthetic data

We evaluate our system using both synthetic and real-world
data. The synthetic data is designed to highlight problems
which can be solved effectively with CCL but not with
either unconstrained CL or other constrained algorithms.
Figure 7 shows the target clusterings of the synthetic sets:

(a) CIRCLES is a difficult case for spherical clustering
methods (like CL and KM).

(b) TWOCIRCLES is difficult for any common clustering
algorithm because the centers’ equality is not proxi-

mal in the feature space.

(c) XOR is difficult because the solution is not linearly
separable (and so not solvable by two-class KM) and
prior knowledge is required to distinguish the target
labeling from alternate ones.

(d) STORMCLOUDS is a difficult case for spherical clus-
tering methods because of the high ellipticality.

Figure 8 shows that CCL does very well on all these sets.
Constraints were added by randomly choosing data pairs
and constraining that pair to be whatever it actually is in the
target clustering (we also examine active selection in sec-
tion 5.5). In every case, there is sizable improvement over
the unconstrained accuracy, even with very few constraints.
Moreover, CCL’s spatial propagation allows it to substan-
tially outperform CKM. To investigate the qualitative be-
havior of both algorithms, figure 12 shows example results
for varying numbers of randomly chosen constraints.

−2
0

2

−5

0

5
−4

−2

0

2

−5
0

5

−10

0

10
−10

0

10

20

(a) (b)

Figure 10. The (a) IRIS and (b) CRABS data sets projected into
their first three principal components.

Consider figure 12a, which is representative. With no
constraints, both CCL and CKM simply divide the data
roughly linearly in half. Constraints cause CKM to slightly
alter its chosen centers, but, as suggested earlier, CKM can
satisfy instance-level constraints by assigning points to a
different cluster from their close neighbors, essentially cre-
ating outliers in the middle of qualitatively unchanged clus-
ters: for unconstrained data points, assignment boundaries
will still be Voronoi partitions of the feature space. This
behavior persists even with large numbers of constraints.
CCL, however, deforms the feature space in such a way
that the circles lie in disjoint spheres in proximity space.

For all four of these data sets, either must-links or cannot-
links are able to shape the proximities in such a way that the
desired clusters are easily found. It is worth pointing out
that a non-spherical clustering method, for example single-
link clustering, can detect some of these non-spherical syn-
thetic patterns. However, the next section demonstrates that
our algorithm is effective for real data sets where single-
link is completely ineffective.

5.3. Real-World Data

We also give results for several real-world data sets, two of
which are shown in figure 10.

� SOYBEAN is the SOYBEAN-LARGE data set from the
UCI repository. It has 562 instances, 35 features, and
15 different classes. It is nominal, and Hamming dis-
tance is the default metric. The instances represent
different soybeans, the features represent qualitative
measurements, and the classes are plant diseases.3

� IRIS is the classic iris data from (Fisher, 1936). It has
150 instances and 4 features. There are three classes
which are relatively separated but non-spherical. The
instances represent different irises, the features are
structural dimensions, and the classes are iris species.

3Wagstaff et al. (2001) reports results on the simpler, smaller
SOYBEAN-SMALL set, but we omit this set because unconstrained
CL alone yielded a perfect clustering.

� CRABS is crabs data from (Campbell & Mahon, 1974).
There are 200 instances, 5 features, and 2 classes. The
instances represent different crabs, the features rep-
resent structural dimensions, and the classes are crab
species. This data set is difficult because the the first
principal component (essentially crab size) is mostly
irrelevant to the target classification.

Figure 9 shows the accuracy of CCL as constraints are
added. Constraints improve performance substantially in
every case. CKM is also shown; CCL again outperforms it
substantially, supporting the hypothesis that a spatial in-
duction principle is appropriate for real data sets. Note
that in the SOYBEAN example, the unconstrained CL al-
gorithm performs worse than unconstrained KM. However,
CCL exploits constraints so well that it quickly overtakes
CKM in accuracy, whereas a limited number of constraints
appears to be ineffective in helping the CKM algorithm.

5.4. Constraint Types

In the results above, constraints were selected by randomly
choosing pairs and constraining that pair to have its target
equality. In practice, most pairs are cannot linked. How-
ever, we argued in section 1 that some applications may
have must-links only, cannot-links only, or other mixes of
constraints available. This issue is especially important in
the present context as Wagstaff et al. (2001) suggest that
CKM best exploits cannot-link constraints.

To test the dependence on the mix, figure 11 shows the be-
haviour of CCL for several different constraint mixes for
the SOYBEAN, IRIS, and CRABS data sets. In all cases,
CCL’s accuracy improves quickly (and faster than CKM)
as constraints are added.

5.5. Active Learning

In a real-world domain, one might have control over which
pairs to assay. In this case, we would like to choose pairs
which we believe will have maximum impact on our ac-
curacy. We claimed that our constraint propagation was
intended for the case where the local proximity structure of
the feature space was reliable, but the global structure was
not. In this case, we might then want to perform CL in an
unconstrained fashion until we had some moderate num-
ber of clusters remaining. We might then have the scientist
supplying the constraints simply make the harder top-level
decisions. We believe that this is a valuable intuition, but
doing so requires the scientist to supply a quadratic number
of constraints. Instead, we propose gradually feeding con-
straints to the algorithm as it requires them, requiring only
a small (hopefully linear) number of constraints to com-
plete the clustering once the algorithm begins to request
constraints.

0 50 100 150 200
0.8

0.85

0.9

0.95

1

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

0 50 100 150 200
0.85

0.86

0.87

0.88

0.89

0.9

0.91 CCL
Must-Links Only – � –
Equal Proportion –

�
–

Data Proportion – � –
Cannot-Links Only – � –

CKM
Must-Links Only ��� � ���
Equal Proportion ��� � ���
Data Proportion ���������
Cannot-Links Only ��� �����

(a) (b) (c) Legend

Figure 11. Constraints are effective for CCL over a wide range of mix types, including 100% must-links and 100% cannot-links, as well
as mixes in equal proportion and in proportion to the relative number of pair types in the data. (a) IRIS, (b) CRABS, (c) SOYBEAN

More precisely, we implemented the following active learn-
ing scheme. The algorithm is told that it will be allowed 	

pairwise questions. Recall that the merged-cluster distance
is always increasing in the CL algorithm. The learner clus-
ters the data without constraints, and determines at what
distance cutoff
 it can begin asking questions without ex-
pecting to need more than 	 questions. It then clusters un-
til it must make a merge of distance
 and asks whether the
roots of the next proposed merge belong together. Based
on the response, it imposes the constraint accordingly and
propagates it on the reduced proximity matrix. It then se-
lects a new merge if needed, and continues. If it keeps
proposing bad merges, it might exhaust its questions on
a single stage. On the other hand, spatial contraction can
cause later merges to be closer than
 and several merges
may occur before another question is asked. If at any point,
it has no questions left, it continues onward, unsupervised.

Figures 8 and 9 show results for active constraint selection.
In all cases, actively chosen constraints are much more ef-
fective than passively chosen ones.4 Figure 12 shows the
actual constraints chosen on the synthetic sets. The active
selection converges to the correct structures very quickly.

6. Conclusions

Previously proposed algorithms for constrained clustering
treat pairwise constraints as assertions about individual in-
stances, but fail to exploit spatial implications of those con-
straints. We have given a method for inducing spatial ef-
fects of pairwise constraints and have demonstrated that it
substantially outperforms previous approaches, exhibiting
behavior which is both quantitatively superior and quali-
tatively more natural. We have also presented an active
learning scheme which dramatically decreases the number
of constraints required to achieve a given accuracy.

4For some data sets and very small numbers of constraints,
passively selected constraints sometimes outperformed the active
selection. The appears to be because the active strategy tends
to focus questions on hard regions of the data, which can cause
unequal contraction across the space. This is an obstacle for CL,
which has a bias toward equal-radius clusters.

Acknowledgements

We would like to thank Kiri Wagstaff for helpful discus-
sion and criticism, as well as the anonymous reviewers for
suggestions and corrections. This paper is based on work
supported in part by the National Science Foundation (un-
der Grant No. IIS-0085896 and by an NSF Graduate Fel-
lowship), and by the research collaboration between NTT
Communication Science Laboratories, Nippon Telegraph
and Telephone Corporation and CSLI, Stanford University.

References
Campbell, N. A., & Mahon, R. J. (1974). A multivariate study

of variation in two species of rock crab of genus Leptograpsus.
Australian Journal of Zoology, 22, 417–425.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Intro-
duction to algorithms. Cambridge, MA: MIT Press.

Eisenberg, D., Marcotte, E., Xenarios, I., & Yeates, T. O. (2000).
Protein function in the post-genomic era. Nature, 405, 823–6.

Fisher, D. H. (1987). Knowledge acquisition via incremental con-
ceptual clustering. Machine Learning, 2, 139–172.

Fisher, R. A. (1936). The use of multiple measurements in axo-
nomic problems. Annals of Eugenics, 7, 179–188.

Gordon, A. D. (1996). A survey of constrained classification.
Computational Statistics & Data Analysis, 21, 17–29.

Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering
data. Englewood Cliffs, NJ: Prentice Hall.

McQueen, J. B. (1967). Some methods for classification and anal-
ysis of multivariate observations. Proceedings of the Fifth Sym-
posium on Math, Statistics, and Probability (pp. 281–297).

Rand, W. M. (1971). Objective criteria for the evaluation of clus-
tering methods. Journal of the American Statistical Association,
66, 846–850.

Siegel, S., & Castellan, Jr., N. (1988). Nonparametric statistics
for the behavioral sciences. New York: McGraw-Hill.

Wagstaff, K., & Cardie, C. (2000). Clustering with instance-level
constraints. The Seventeenth International Conference on Ma-
chine Learning (pp. 1103–1110).

Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S. (2001). Con-
strained k-means clustering with background knowledge. The
Eighteenth International Conference on Machine Learning.

Zhu, X., Chu, T., Zhu, J., & Caruana, R. (2001).
Heuristically inducing a distance metric from user prefer-
ences for clustering. Ms., Carnegie Mellon University,
http://www.cs.cmu.edu/˜zhuxj/academics/ml/clusterfinal.ps.gz.

CCL –
ACTIVE
SELECTION

Accuracy: 0.6 Accuracy: 1 Accuracy: 1 Accuracy: 1

CCL –
PASSIVE
SELECTION

Accuracy: 0.6 Accuracy: 0.678 Accuracy: 0.777 Accuracy: 0.91

CKM

Accuracy: 0.498 Accuracy: 0.498 Accuracy: 0.497 Accuracy: 0.5

0 Constraints 4 Constraints 8 Constraints 16 Constraints
(a)

CCL –
ACTIVE
SELECTION

Accuracy: 1 Accuracy: 1 Accuracy: 0.957 Accuracy: 0.71

CCL –
PASSIVE
SELECTION

Accuracy: 1 Accuracy: 1 Accuracy: 0.88 Accuracy: 0.523

CKM

Accuracy: 0.51 Accuracy: 0.498 Accuracy: 0.874 Accuracy: 0.506

8 Constraints 8 Constraints 8 Constraints 64 Constraints
(b) (c) (d) (e)

Figure 12. Examples of clustering behavior: (a) CIRCLES, (b) STORMCLOUDS, (c) XOR, (d) IRIS, (e) CRABS. Loops indicate must-link
pairs, dashed lines indicate cannot-link pairs.

