
Learned Incremental Representations for Parsing

Nikita Kitaev Thomas Lu Dan Klein
Computer Science Division

University of California, Berkeley
{kitaev,tlu2000,klein}@berkeley.edu

Abstract

We present an incremental syntactic represen-
tation that consists of assigning a single dis-
crete label to each word in a sentence, where
the label is predicted using strictly incremen-
tal processing of a prefix of the sentence, and
the sequence of labels for a sentence fully de-
termines a parse tree. Our goal is to induce
a syntactic representation that commits to syn-
tactic choices only as they are incrementally
revealed by the input, in contrast with standard
representations that must make output choices
such as attachments speculatively and later
throw out conflicting analyses. Our learned
representations achieve 93.72 F1 on the Penn
Treebank with as few as 5 bits per word, and at
8 bits per word they achieve 94.97 F1, which
is comparable with other state of the art pars-
ing models when using the same pre-trained
embeddings. We also provide an analysis of
the representations learned by our system, in-
vestigating properties such as the interpretable
syntactic features captured by the system and
mechanisms for deferred resolution of syntac-
tic ambiguities.

1 Introduction

Language comprehension in humans is, to a non-
trivial extent, an incremental process. Human
speech is heard word by word, and, while the pre-
cise nature of the incrementality is not a settled
question, a listener does not wait for a full sentence
to end before any processing or understanding can
begin. In contrast, some of the highest-performing
machine models for syntactic parsing operate pre-
cisely in this manner: they require a full sentence as
input, and perform deeply bidirectional processing
to produce their outputs. Human capabilities sug-
gest that we should also be able to build accurate
parsers that instead operate incrementally.

Incrementality in NLP has often been equated
with left-to-right processing. For example, incre-
mental transition-based parsers receive their input

S

VP

3JanuaryMonday

PP

on

NP

proposalthe

approved

NP

CouncilThe

S

VP

goodsluxuryfortaxes

PP

on

NP

proposalthe

approved

NP

CouncilThe

Figure 1: A case of ambiguity where speculatively
committing to an attachment decision can lead an in-
cremental parsing system into a dead end.

one word at a time, and — after each word — out-
put any number of actions such as shift or reduce,
where the full sequence of actions represents a syn-
tactic analysis of the input. However, in this paper
we are interested in a stronger notion of incremen-
tality, which we refer to as non-speculative incre-
mentality. We say that a representation is specula-
tive when a symbol in the representation encodes
a commitment to a certain syntactic decision, but
the evidence for that decision is not present in the
corresponding prefix of the input. Transition-based
systems are frequently speculative; we give an ex-
ample sentence in Figure 1, where a decision must
be made regarding whether the preposition “on” at-
taches to noun “proposal” or the verb “approved.”
Transition-based approaches such as shift-reduce or
attach-juxtapose (Yang and Deng, 2020) place the
action that determines the preposition attachment
earlier in the left-to-right processing pattern than
the disambiguating word (“Monday” or “taxes”)
that reveals the correct analysis. Similarly in CCG
parsing, the representation of a CCG analysis in the
form of a sequence of supertags is likewise specula-
tive — including for this same example, where the



correct supertag for each word cannot be predicted
based on only that word and its preceding context.

The speculative nature of incremental transition
systems or CCG supertags makes it impractical to
recover an accurate parse by simply committing to
the highest-scoring option at each each point where
a decision must be made. An incremental parser
in the speculative paradigms must instead consider
multiple analyses in parallel, and later throw out
analyses that are inconsistent with the sentence;
this can be done through a procedure like beam
search. In other words, the true representation of
syntactic information at each point in the sentence
is not a single sequence of actions (or supertags),
but rather a belief state (beam state) that contains
multiple candidate analyses. In the limit of infi-
nite beam size, the parser ceases to be incremental:
its belief state can contain all reasonable analyses,
deferring all choices to the very end of a sentence.

Our goal in this work is to design a representa-
tion for parsing that is maximally speculation free.
In other words, it should record commitments to
syntactic choices only as they are incrementally
revealed by the input. We additionally want our
representation to relate to constituency trees in a
similar way to how transition-based actions relate
to them: that is, through a deterministic transfor-
mation function. A sequence of shift-reduce or
attach-juxtapose actions is not identical to a parse
tree, but it can be mapped to a tree using a de-
terministic automaton that interprets the discrete
actions as operations on a tree fragment or stack of
tree fragments. A sequence of supertags is likewise
not the same as a tree, and mapping it to a tree
requires further processing in the form of finding
and applying an appropriate series of combinators.
These mappings are non-trivial, especially in the
case of CCG, so we should not expect our mapping
to be trivial either — our only requirement is that
it be deterministic and operate entirely from our
representation, having already discarded the raw
text in the sentence. Finally, we would like our rep-
resentation to take the familiar form of a sequence
of discrete symbols.

We propose to arrive at such a representation
through end-to-end learning, rather than manual
construction. The model can then make its own de-
cisions about when syntactic decisions take place,
how to handle cases of ambiguity, and how to rep-
resent belief states within the learned system it-
self. This system will learn to encode linguistic and

structural features to allow effective incremental
parsing. Our end-to-end approach is a model that
proceeds in two stages. The first stage maps from
individual words to syntactic decisions, which are
represented as discrete tokens drawn from a small,
bounded vocabulary. The second component of our
system is a read-out network that takes a sequence
of discrete tags as input and produces a conven-
tional parse tree as output. Both stages are trained
jointly in an end-to-end manner. Crucially, we do
not a priori assign meaning to the discrete tokens
(e.g. actions like shift, or supertags like in CCG);
we only specify the total number of symbols avail-
able to the model to control the complexity of the
representation. Unlike a speculative system, our
representation can be used by finding the single
highest-scoring tag at each position in a sentence,
and then converting the resulting sequence of tags
into a tree.

Important properties that we evaluate for our
proposed approach are its quality (as measured
by F1 score on the Penn Treebank), as well as
compactness (how many bits per word are required
to encode syntactic information). At 5 bits per
word, a parser using our representations achieves
93.72 F1, and at 8 bits per word it achieves 94.97 F1
— comparable to the method of Kitaev et al. (2019)
trained with the same pre-trained embeddings.

We further provide an analysis of the symbols
learned by our model, including explorations of
the linguistic features captured by the symbol set,
the information content of our incremental repre-
sentation for prefixes of a full utterance, and the
system’s ability to defer resolution of attachment
ambiguities.

Our models and code are publicly available.1

2 Related Work

This work is inspired by the concept of incremental
parsing implemented in works such as Larchevêque
(1995) and Lane and Henderson (2001). With
regards to neural parsers, recent strides in incre-
mental parsing include the attach-juxtapose parsers
from Yang and Deng (2020). However, these neu-
ral models often have incremental tree construction
mechanisms, but are not incremental from the raw
input level due to reliance on pretrained bidirec-
tional models such as the works of Devlin et al.
(2019) and Yang et al. (2019).

1https://github.com/thomaslu2000/
Incremental-Parsing-Representations

https://github.com/thomaslu2000/Incremental-Parsing-Representations
https://github.com/thomaslu2000/Incremental-Parsing-Representations


The placement of an information bottleneck on
token representations has also been studied in the
bidirectional case by Li and Eisner (2019), who
reported many similar findings about the syntactic
features learned by discrete tags. However, our
model differs in that it explores the incremental,
non-speculative case, as well as in the implemen-
tation of the parsing model and its constraints on
representation size.

Our incremental parsing system can be com-
pared to manually formulated representations such
as shift-reduce or CCG supertagging. However,
for purely incremental parsing, limitations of shift-
reduce and CCG supertagging may necessitate the
use of beam search to produce more accurate, vi-
able parse trees, as in the works of Zhu et al. (2013)
and Bhargava and Penn (2020).

Other works have also analyzed the discrete
features useful for syntactic parsing. Some re-
searchers augmented parsing models by adding
discrete, hand-coded indicator features based on
the raw sentence as in Hall et al. (2014). Similar
hand-coded, discrete features have been shown to
improve other tasks such as NMT (Sennrich and
Haddow, 2016). Previous experiments by Gaddy
et al. (2018) have analyzed whether neural parsers
based on bidirectional LSTMs capture other hand-
made indicator functions from earlier hypotheses
by Petrov and Klein (2007). By contrast, our model
seeks to directly learn new features, and in fact,
many of the hand-made indicators from previous
works arise naturally in the learned symbols of our
model.

There also exists work examining the learned
grammatical rules of a stack-based recurrent neural
network via analysis of an attention mechanism
(Kuncoro et al., 2017). By contrast, our analysis
has a lesser focus on the attention distribution be-
tween tokens, and a greater focus on the features
and syntactic decisions captured by each individual
symbol.

3 Approach

Our model is based on a parsing architecture that
contains an encoder layer that uses a pretrained
network and a chart-based decoder, as detailed in
Kitaev and Klein (2018). To ensure incremental-
ity, the encoder for this incremental model uses
GPT-2 as a base, which disallows a backwards flow
of information from future tokens (Radford et al.,
2019).

At the interface between the pre-trained encoder
and subsequent parts of the model (which we refer
to as the read-out network), we introduce a dis-
cretization step that collapses the continuous, high-
dimensional vectors from the encoder network to a
small inventory of discrete symbols. The read-out
network has access only to these discrete symbols
and not to the original text of the input; in other
words, the sequence of discrete symbols must en-
code all information necessary to represent the syn-
tactic structure of the sentence. We introduce an
information bottleneck that limits the size of the
discrete token vocabulary to as few as 32 distinct
symbols per raw input token. The decision to label
each token with a single symbol is partially rooted
in prior research providing evidence that syntac-
tic decisions among human speakers adhere to the
uniform information density hypothesis, thus each
token may convey similar amounts of syntactic in-
formation (Levy and Jaeger, 2006).

Concretely, a learned projection matrix is first
applied to the token-level representation vectors of
GPT-2. Each projected vector is then converted into
a single discrete symbol via vector quantization
(van den Oord et al., 2017). The number of symbols
is kept small; as such, only a few bits are needed
to encode all symbols. In comparison, the base
architecture uses a 512-dimensional vector of 32-
bit floating point numbers for each token. We can
obtain high parsing accuracy sending 5 bits per
token, which is only 0.03% of the bits of the base
architecture’s token representations. At around 8
bits per token, parsing performance approximately
matches that of the base architecture.

After discretization, each symbol from the se-
quence is associated with a learned embedding,
as specified in the vector quantization codebook.
These vectors are fed as an input to the bidirectional
read-out network, which consists of Transformer
layers and an MLP-based span classification layer
that otherwise match the base architecture. The out-
put of the network is a chart of scores representing
each possible constituent span of the sentence. A
tree is then efficiently generated through the CKY
algorithm following the span scoring methods of
Stern et al. (2017).

It should be noted that while the encoder is uni-
directional, our read-out network is bidirectional.
The bidirectionality allows the network enough
slack to learn a flexible mapping between the in-
duced representation and standard constituency



trees. For example, the discrete symbol associ-
ated with a word may help determine a syntactic
attachment that concerns previous words that have
already been assigned their own symbols. In prac-
tice, the behavior of the read-out network exhibits
consistent patterns that we interpret in Section 5.
Moreover, the main product of our method — and
the principle object of analysis in this paper — is
not the network itself but rather the sequence of
discrete symbols, each of which encodes no knowl-
edge of future context.

We train our models using a learning rate of 3e-5
for weights carried over from pre-training, a learn-
ing rate of 1e-4 for randomly initialized weights,
and a batch size of 32. In order to facilitate train-
ing, the first two epochs of training proceed without
the use of vector quantization. During this time,
a streaming k-means algorithm (Ackermann et al.,
2012) calculates the initial centroids to use for vec-
tor quantization. Over the course of the third epoch,
the model linearly interpolates between continuous
and quantized representations, and uses only the
quantized version from the fourth epoch until the
end of training. We found that cold-starting with
randomly-initialized centroids performs worse, in
the sense that some centroids would never be used
or updated at any point during training. We at-
tribute this degradation to the fact that randomly
sampled code vectors are a poor distributional fit
for outputs arising from a pre-trained GPT-2 model.

4 Results

We apply our approach to the labeled constituent
trees of the English Penn Treebank (Marcus et al.,
1993). The final incremental model generated us-
ing this setup achieves a score of 94.97 F1 on the
Penn Treebank WSJ test set. This model uses only
8 bits per token (256 symbols) to define the discrete
symbol set using a unidirectional pretrained model
(GPT2-medium). A comparable model (Kitaev
et al., 2019) that combines the same pre-trained en-
coder with deep bidirectional processing achieves
95.10 F1. This shows that our representation can
induce parse trees with competitive accuracy.

In Table 1, we present an F1 score comparison
that highlights the behavior of different syntac-
tic representations with different choices of en-
coder. When directly predicting either per-span
label probabilities (following the span classifica-
tion approach of Stern et al., 2017), or actions in the
attach-juxtapose transition system (Yang and Deng,

Encoder Type

Bi (↔) Uni (→)

Representation BERT GPT-2 GPT-2

Span Classification
95.59 95.10† 93.95†(Kitaev et al., 2019)

Attach-Juxtapose 95.79 94.53† 87.66†(Yang and Deng, 2020)

Learned
95.55 – 94.97(This work)

Table 1: F1 on the WSJ test set for parsers using differ-
ent syntactic representations and pre-trained encoders.
Our representation results in an F1 score that is close
to the maximum achievable with the same pre-trained
GPT-2-medium model. †Results based on integrating
GPT-2 with publicly available code for prior methods,
with and without bidirectional layers on top of GPT-2.

2020), failing to include bidirectional layers on top
of a unidirectional GPT-2 incurs a strong accuracy
penalty. This is despite the fact that both systems
can discard speculative attachment decisions. In
the case of the chart parser with representations that
consist of label probabilities for each span, adding
an additional word can cause a switch to a new
analysis by way of the CKY decoding procedure.
In the case of the attach-juxtapose parser, the same
can be achieved via the use of beam search. Nev-
ertheless, incrementally predicting either of these
representations fails to leverage the full power of
the pre-trained encoder.

The choice of GPT-2 rather than a stronger bidi-
rectional model has a large effect on the perfor-
mance on the Penn Treebank. To give a more ac-
curate comparison with other models, Table 1 also
shows F1 scores for models based on BERT, with
the recognition that no model with such a deeply
bidirectional encoder can truly be referred to as
incremental. Our approach of inducing learned rep-
resentations with vector quantization also performs
well in this setting, validating the method.

Even higher scores are achievable by using
stronger pre-trained models, different forms of bidi-
rectional processing, and additional supervision in
the form of dependency trees; Mrini et al. (2020)
combine all of these elements to achieve 96.38 F1.
However, many of these techniques are either or-
thogonal to our work, or they cannot be borrowed
into an incremental setting due to their focus on
deeply bidirectional neural processing.



Context Type

Set Size Uni (→) Bi (↔) Clustered Lexicon

2 45.71 38.42 27.92
4 68.93 69.74 52.36
8 86.28 87.41 65.88
16 92.13 92.78 71.53
32 93.50 94.82 79.51
64 94.01 95.24 83.17
128 94.13 95.33 84.65
256 94.49 95.41 85.86

Table 2: Parsing performance on WSJ development set
using different model contexts. Each number is an av-
erage F1 score across 3 runs. Our unidirectional model
surpasses the baseline performance of a clustered lexi-
con and approaches the performance of a bidirectional
context.

We further evaluate our approach in terms of the
compactness of the produced representations. To
do this, we trained a number of models while vary-
ing the size of the symbol set. For added compari-
son, we also trained models using a bidirectional
pretrained encoder (BERT). As a baseline, we also
produced a model that assigns symbols through
simple k-means clustering of single-word embed-
dings (Mikolov et al., 2013) rather than fine-tuned
contextual models. The average F1 score for each
model across a range of tag set sizes is shown in
Table 2. Note that while the numbers of possible
tags are all powers of two, this is not a strict re-
quirement of the model, and any positive integer
may be used as the tag set size.

While our best-performing unidirectional model
uses 8 bits per token, using as few as 5 bits per
token (32 symbols) retains a performance of 93.72
F1 on the test set. As a point of comparison, gold
CCG supertags in the CCGbank (Hockenmaier and
Steedman, 2007) training data have an entropy of
5.14 bits per word. However, CCG decoding typ-
ically requires multiple analyses to be considered
in parallel. A better comparison, then, might be
the entropy of top-k supertag predictions from a su-
pertagging model. We find that the trained model of
Tian et al. (2020) has an entropy of 5.98 bits/word
for its ranked top-2 predictions, 7.57 for top-3, and
9.03 for top-4. Our method’s best-performing set-
ting of 8 bits per word is therefore at an entropy
level similar to top-3 or top-4 predictions for a re-
cent CCG supertagger.

NP

The
122

NP

Council
120

The
122

S

VP

approved
145

NP

Council
120

The
122

S

VP

NP

the
92

approved
145

NP

Council
120

The
122

S

VP

NP

proposal
81

the
92

approved
145

NP

Council
120

The
122

S

VP

PP

on
93

NP

proposal
81

the
92

approved
145

NP

Council
120

The
122

S

VP

PP

NP

Monday
246

on
93

NP

proposal
81

the
92

approved
145

NP

Council
120

The
122

S

VP

NP

PP

NP

taxes
255

on
93

proposal
81

the
92

approved
145

NP

Council
120

The
122

Figure 2: Applying our read-out network to prefixes of
the syntactic tag sequence demonstrates that syntactic
decisions are committed to incrementally, and are not
all deferred to the end of the sentence. Nevertheless,
the same tag sequence may decode to different trees,
depending on a future tag. Numbers below each word
denote the discrete tags assigned by our model.



5 Discussion

5.1 Incremental Behavior
Having achieved high F1 scores, we must next
demonstrate that our representation is, in fact, incre-
mental. An incremental representation has mean-
ingful syntactic information in each of its prefixes,
and we can probe this by running our read-out net-
work after each word in the sentence, as shown
in Figure 2. The resulting trees involve mostly lo-
cal changes from word to word, which shows that
important information is not being deferred to the
very end of a sentence.

It should be noted that our read-out network was
never trained on anything but complete sentences.
Applying it to fragments will produce individual
trees that may not be representative of the ambigu-
ity present in the underlying representation. For
example, after the word “on” the read-out network
outputs a prepositional phrase that initially appears
to attach to the verb. Depending on the label chosen
for the next word, however, the final attachment
can be to either the verb or the noun phrase.

Nevertheless, this approach allows us to probe
the degree to which the representation encodes syn-
tactic decisions immediately, versus deferring them
to some later point. For each span in the final tree,
we can walk backwards through the partial read-
outs to find the furthest point when the span still
appears in a readout; we call this the point in time
that a span is finalized. In Figure 2, the noun phrase
“The Council” is finalized after the word “Council,”
and the verb phrase is finalized after the word “ap-
proved.” For the purposes of identifying whether
a span is the same across two different trees, we
assume that a span is uniquely identified by its la-
bel, its starting position, and the position of the
last word in the leftmost child of the span (or the
position of the single word in the span, if it only
covers one word). The last of these we also refer
to as the split point of the span.

Figure 3 shows that approximately half of all
spans are finalized either immediately at or imme-
diately after their split point. The distribution has a
tail that falls off roughly exponentially, as shown
by the loosely straight-line decay on the log-linear
plot. The presence of this tail stands in contrast
with the attach-juxtapose representation, where all
attachments are determined immediately after a
split point, and the only way to defer a decision
past that point is to retain multiple analyses on
something like a beam. An extremely frequent phe-

0 10 20 30 40 50
Number of words past split point

0.001

0.01

0.1

1

Fi
na

liz
ed

 s
pa

ns
 (f

ra
ct

io
n 

of
 to

ta
l)

Figure 3: Our representation commits to (finalizes) the
majority of spans within just a few words of their split
point. The tail of the histogram reflects cases where
it may not commit to a decision (e.g. resolving an am-
biguity) until many words past the split point of the
relevant span. Note the log scale for the y-axis.

nomenon within the tail is when a phrase expands
to be nested inside another phrase of the same type:
sometimes this happens due to the nature of the
constituency representation we’re converting to,
and sometimes it reflects actual syntactic ambigu-
ity. One example in the latter is shown in Figure 4,
where either the NP or the S node must expand due
to coordination. Note how our representation can
handle this situation without considering multiple
candidate labelings, while speculative transition-
based systems would not.

5.2 Entropy of Symbol Distribution

In our parsing scheme, each new token is assigned
a single syntactic symbol based on all tokens up to
the current. The subsequent sequence of symbols
then fully determines a constituency tree.

For different random initializations of our ap-
proach with the same set size, similar features are
typically captured by the system. Models using
smaller sets of symbols tend to have the most vari-
ability in terms of feature distribution. The entropy
of several random initializations of these sets is
shown in Figure 5.

Entropy appears to roughly stabilize after a small
number of training iterations. At this point, the
characteristics of each symbol also roughly stabi-
lize. The entropy of the distribution of symbols
seems to increase linearly with the number of bits
per representation, but does not reach a level that
corresponds to uniform usage frequency for all
symbols in the discrete inventory.



S

VP

NP

mom
59

my
92

love
5

NP

I
240

S

VP

NP

NP

dad
165

my
9

and
69

NP

mom
59

my
92

love
5

NP

I
240

S

S

VP

NP

ADVP

too
242

her
9

loves
157

NP

dad
165

my
9

and
69

S

VP

NP

mom
59

my
92

love
5

NP

I
240

Figure 4: Our representation is a strictly append-only
sequence of tags. Nevertheless, later tags can resolve
ambiguities (in this case, coordination scope) intro-
duced at an earlier point in the sentence.

0 50 100 150 200
Training Iterations

0

1

2

3

4

5

6

7

8

En
tro

py
 o

f S
ym

bo
ls

 (b
its

)

2 Tags
4 Tags
8 Tags
16 Tags
32 Tags
64 Tags
128 Tags
256 Tags

Figure 5: Entropy of derived symbol sets over the train-
ing period (in bits). Multiple training runs are shown
for each tag set size.

5.3 Learned Token-Level Features
Due to the small size of our information bottleneck,
we hypothesize that our symbols encode the most
powerful features needed to produce an accurate
constituent tree representable by the given bitrate.
Thus, by analyzing the features captured by differ-
ently sized symbol sets, we can deduce a rough
hierarchy of distinct features that are relevant to the
incremental parsing task.

Starting with a system using only 2 discrete sym-
bols, we steadily increase the bit rate of the dictio-
nary and manually inspect the representation to find
interpretable token-level features. Many of these
are similarly found in other works investigating the
linguistic features captured by the token representa-
tions of neural parsers (Gaddy et al., 2018; Li and
Eisner, 2019). What follows is the rough order in
which several of these features appear:

1. Separation between noun phrases and verb
phrases

2. Symbols representing a new determiner or
noun phrase, and ending ongoing noun
phrases

3. Special symbols for other simple parts of
speech (adjectives, adverbs, questions, punc-
tuation, etc.)

4. Indication of a token being in subordinate
clauses or relative clauses

5. Multiple symbols per part of speech (often
nouns, verbs, and prepositions) signifying dif-
ferent attachments

6. Indication of other specific and specialized
structures, such as clauses which are the ob-
ject of a verb phrase, or a noun within a rela-
tive clause

7. Other specific common language features,
such as possessive markings, gerunds, tokens
introducing new clauses, or adverbs that mod-
ify adjectives rather than verbs

5.4 Clause Separation
To demonstrate the features learned and captured
by these tags, consider a model using only 32 sym-
bols. Main, subordinate, and relative clauses are
typically associated with different discrete symbols
for the same parts of speech.

The sentences in Figure 6 display the predicted
tag sequences and parses involving many of the



S

VP

NP

pumpkin
7

the
11

smashed
6

NP

Luna
16

S

VP

NP

foot
21

her
11

hurt
6

NP

she
16

,
1

SBAR

S

VP

NP

pumpkin
7

the
11

smashed
13

NP

Luna
15

WHADVP

When
23

S

VP

NP

SBAR

S

VP

smashed
26

NP

Luna
20

WHNP

that
23

NP

pumpkin
7

the
11

ate
6

NP

She
16

Figure 6: Predicted parses of the clause “Luna smashed
the pumpkin,” where the subject and verb are assigned
different symbols depending on the clause type. Tags
shown below each word were predicted by a model that
may use up to 32 distinct symbols.

S

VP

PP

NP

him
11

to
4

NP

groceries
7

the
11

brought
6

NP

Lucas
16

S

VP

NP

PP

NP

him
11

for
24

NP

groceries
7

the
11

brought
6

NP

Lucas
16

Figure 7: Derivation of the sentences “Lucas brought
the groceries to him” and “Lucas brought the groceries
for him.” Tags shown below each word were predicted
by a model that may use up to 32 distinct symbols.

same words, but within different clause types. In
main clauses, subjects and verbs are assigned sym-
bols 16 and 6. Subordinate clauses, however, tend
to use alternate symbols 15 and 13 for subject
nouns and verbs respectively, while relative clauses
use 20 and 26.

This feature of our symbol set suggests that our
tags capture structural context beyond the current
word, and the features learned by these tags can
have human-interpretable meanings upon analysis.

5.5 Ambiguity Resolution

The structure of the final parse tree is interpolated
from the series of discrete symbols resulting from
the encoder network. To analyze how syntactic de-
cisions are encoded in our representation, we first
attempted to train a modified PCFG based on Klein
and Manning (2003), with the goal of replicating
the behavior of our read-out network. However,
this system could only reach a performance around
76.18 F1 towards the reconstruction task, suggest-
ing that the PCFG’s assumptions of locality and
sub-tree independence are not valid for our learned
representations.

To better understand the mechanism by which
our representations are capable of representing a
wide range of syntactic structures, we focus specif-
ically on cases with potential syntactic ambigui-
ties. Consider the minimal pair shown in Figure 7,
where the predicted syntactic structure differs by
only a single prepositional attachment. This pair
uses the same encoder model as the previous exam-
ple, which has a maximum of 32 discrete symbols.
Due to the different symbols assigned to the prepo-
sitions, the read-out network attaches the preposi-
tional phrase at a different height.

Not all prepositional attachments can be reli-
ably determined based on only the words up to and
including the preposition. To avoid speculative be-
havior, the tag sequences must contain mechanisms
for recording instances of ambiguity and then re-
solving them based on tokens further down in the
string. Figure 8 shows an example of how our rep-
resentation handles such situations. Running the
read-out network for the prefix “Lucas brought the
groceries for” produces a partial parse that attaches
the preposition to “the groceries.” However, the
final token offers additional information that may
influence the attachment location, suggesting that
the symbol sequence up to the preposition does
not eliminate either possible structure, but rather



S

VP

NP

PP

for
24

NP

groceries
7

the
11

brought
6

NP

Lucas
16

S

VP

NP

PP

NP

him
11

for
24

NP

groceries
7

the
11

brought
6

NP

Lucas
16

S

VP

PP

NP

himself
16

for
24

NP

groceries
7

the
11

brought
6

NP

Lucas
16

Figure 8: Two possible sentences continuing from the
prefix “Lucas brought the groceries for” where the final
attachment height for the prepositional phrase is deter-
mined by the discrete symbol for the word following
the preposition. Tags shown below each word were
predicted by a model that may use up to 32 distinct
symbols.

encodes the locations of other likely attachments.
The encoder’s decision over whether to mark the fi-
nal token as symbol 11 or 16 allows the final tree to
have an attachment to the verb phrase, rather than
adhering to the partial interpretation of targeting
the noun phrase.

6 Conclusion

In this paper, we present an approach to induc-
ing syntactic representations that associate each
token in the input with a discrete symbol from an
arbitrarily-sized vocabulary, where the representa-
tions can be predicted incrementally in a strictly
append-only manner. Our models achieve high
F1 on the WSJ test set despite a steep informa-
tion bottleneck limiting the information that can be
associated with each token. The token-level tags
produced by our model encode relevant syntactic
information suitable for the given bit rate, while the
locations of these tags serve to concretely define

the location at which syntactic decisions can be
committed to in a speculation-free manner. These
systems can serve to improve our understanding of
incremental parsing and sequential decision mak-
ing, and the underlying computational methods
may be useful in the analysis of other incremental
contexts.

Acknowledgments

This research was supported by DARPA under the
LwLL program / Grant No. FA8750-19-1-0504.

References
Marcel R Ackermann, Marcus Märtens, Christoph Rau-

pach, Kamil Swierkot, Christiane Lammersen, and
Christian Sohler. 2012. Streamkm++ a clustering al-
gorithm for data streams. Journal of Experimental
Algorithmics (JEA), 17:2–1.

Aditya Bhargava and Gerald Penn. 2020. Supertag-
ging with CCG primitives. In Proceedings of the
5th Workshop on Representation Learning for NLP,
pages 194–204, Online. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? an
analysis. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 999–1010,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

David Hall, Greg Durrett, and Dan Klein. 2014. Less
grammar, more features. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 228–237, Baltimore, Maryland. Association
for Computational Linguistics.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Com-
putational Linguistics, 33(3):355–396.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual

https://doi.org/10.18653/v1/2020.repl4nlp-1.23
https://doi.org/10.18653/v1/2020.repl4nlp-1.23
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.3115/v1/P14-1022
https://doi.org/10.3115/v1/P14-1022
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340


Meeting of the Association for Computational Lin-
guistics, pages 3499–3505, Florence, Italy. Associa-
tion for Computational Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics, pages 423–430, Sapporo, Japan.
Association for Computational Linguistics.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2017. What do recurrent neural network
grammars learn about syntax? In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1249–1258, Valencia, Spain.
Association for Computational Linguistics.

P. R. Lane and J. B. Henderson. 2001. Incremental
syntactic parsing of natural language corpora with
simple synchrony networks. IEEE Transactions on
Knowledge and Data Engineering, 13(02):219–231.

J.-M. Larchevêque. 1995. Optimal incremental parsing.
ACM Trans. Program. Lang. Syst., 17(1):1–15.

R. Levy and T. Florian Jaeger. 2006. Speakers optimize
information density through syntactic reduction. In
NIPS.

Xiang Lisa Li and Jason Eisner. 2019. Specializing
word embeddings (for parsing) by information bot-
tleneck. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2744–2754, Hong Kong, China. Association for
Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013. Efficient estimation of word
representations in vector space. In ICLR Workshops
Track.

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran,
Trung Bui, Walter Chang, and Ndapa Nakashole.
2020. Rethinking self-attention: Towards inter-
pretability in neural parsing. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, pages 731–742, Online. Association for Com-
putational Linguistics.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Human Language Tech-
nologies 2007: The Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics; Proceedings of the Main Conference,
pages 404–411, Rochester, New York. Association
for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
In Proceedings of the First Conference on Machine
Translation: Volume 1, Research Papers, pages 83–
91, Berlin, Germany. Association for Computational
Linguistics.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 818–827, Vancouver, Canada.
Association for Computational Linguistics.

Yuanhe Tian, Yan Song, and Fei Xia. 2020. Su-
pertagging Combinatory Categorial Grammar with
attentive graph convolutional networks. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6037–6044, Online. Association for Computational
Linguistics.

Aäron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. 2017. Neural discrete representation
learning. In NIPS.

Kaiyu Yang and Jia Deng. 2020. Strongly incremental
constituency parsing with graph neural networks. In
NeurIPS.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. In NeurIPS.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and accurate shift-
reduce constituent parsing. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
434–443, Sofia, Bulgaria. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.3115/1075096.1075150
https://doi.org/10.3115/1075096.1075150
https://www.aclweb.org/anthology/E17-1117
https://www.aclweb.org/anthology/E17-1117
https://doi.org/10.1109/69.917562
https://doi.org/10.1109/69.917562
https://doi.org/10.1109/69.917562
https://doi.org/10.1145/200994.200996
https://proceedings.neurips.cc/paper/2006/file/c6a01432c8138d46ba39957a8250e027-Paper.pdf
https://proceedings.neurips.cc/paper/2006/file/c6a01432c8138d46ba39957a8250e027-Paper.pdf
https://doi.org/10.18653/v1/D19-1276
https://doi.org/10.18653/v1/D19-1276
https://doi.org/10.18653/v1/D19-1276
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://www.aclweb.org/anthology/N07-1051
https://www.aclweb.org/anthology/N07-1051
https://doi.org/10.18653/v1/W16-2209
https://doi.org/10.18653/v1/W16-2209
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/2020.emnlp-main.487
https://doi.org/10.18653/v1/2020.emnlp-main.487
https://doi.org/10.18653/v1/2020.emnlp-main.487
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7177163c833dff4b38fc8d2872f1ec6-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7177163c833dff4b38fc8d2872f1ec6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://www.aclweb.org/anthology/P13-1043
https://www.aclweb.org/anthology/P13-1043

