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Abstract
We present two results which arise from a
model-based approach to hierarchical agglom-
erative clustering. First, we show formally that
the common heuristic agglomerative cluster-
ing algorithms – Ward’s method, single-link,
complete-link, and a variant of group-average –
are each equivalent to a hierarchical model-based
method. This interpretation gives a theoretical
explanation of the empirical behavior of these
algorithms, as well as a principled approach to
resolving practical issues, such as number of
clusters or the choice of method. Second, we
show how a model-based viewpoint can suggest
variations on these basic agglomerative algo-
rithms. We introduce adjusted complete-link,
Mahalanobis-link, and line-link as variants, and
demonstrate their utility.

1. Introduction

Model-based clustering algorithms are theoretically well-
founded and empirically successful methods for cluster-
ing data. In model-based clustering, the data is assumed
to have been generated by a mixture of component proba-
bility distributions, where each component corresponds to
a different cluster. Model-based agglomerative clustering
has proven effective in many areas, including document
clustering (Dom & Vaithyanathan, 1999), optical character
recognition (Murtagh & Raftery, 1984), and medical image
segmentation (Banfield & Raftery, 1993).

Despite the theoretical appeal and empirical success of
model-based methods, in practice they are used far less
than the popular, but more heuristic, classical agglomer-
ative methods: single-link, complete-link, group-average,
and Ward’s method (Jain et al., 1999). In these algorithms,
each data point is initially assigned to its own singleton
cluster, and pairs of clusters are then successively merged
according to some objective function until all points belong

to the same cluster. The various agglomerative algorithms
differ in the objective function they use to determine the
sequence of merges.

The heuristic methods are popular for several reasons. The
sequence of merges in these algorithms produces a cluster
dendrogram as in figure 1, which is often more useful than
the flat cluster structure created by partitional clustering al-
gorithms. Moreover, their conceptual simplicity and ease
of implementation make them convenient for use in many
situations. Finally, they are a natural choice in cases where
only proximity data is available. For this reason, linkage-
based agglomerative methods have been widely used in the
field of genomics, where gene sequence data does not have
a natural feature representation, but lends itself well to cal-
culating pairwise proximities.

In the present work, we prove that the classical agglomera-
tive methods are a subset of model-based methods. In sec-
tion 2, we introduce model-based agglomerative clustering.
In section 3, we discuss the heuristic agglomerative meth-
ods, showing that each classical agglomerative method can
be seen as a hierarchical model-based method for a certain
finite mixture model. Finally, in section 4, we show how
the model-based viewpoint can suggest variations on the
classical agglomerative clustering methods. We introduce
three such variants and demonstrate their utility.

2. Model-Based Clustering

Model-based hard clustering is an approach to comput-
ing an approximate maximum for the classification likeli-
hood (Celeux & Govaert, 1993) of the data X :

�
(θ1, . . . , θk; l1, . . . , ln|X) =

n
∏

i=1

p(xi |θli ) (1)

where li are labels indicating the classification of each data
point (li = j if xi belongs to component j ), and θ1, . . . , θk



are model parameters.1

In the agglomerative model-based hard clustering methods,
one begins with a partition P of the data in which each
sample is in its own singleton cluster. At each stage, two
clusters are chosen from P and merged, forming a new par-
tition P ′. The pair which is merged is the one which gives
the highest resulting likelihood (usually all merges will re-
duce the likelihood somewhat). The process is greedy; the
best choice at a certain stage need not develop into the best
likelihood at later stages.

A subtlety of model-based agglomerative clustering is that,
by merging clusters, we are choosing new labels li at each
stage. However, we do not explicitly choose model param-
eters θ . Rather, we implicitly consider θ to be the best
possible θ for the chosen labels.

More formally, we have a label likelihood function J which
assumes maximum likelihood parameters for each labeling.

J (l1, . . . , ln; X) = max
2

�
(2; l1, . . . , ln|X)

The relative cost of a merge from P to P ′ will be

1J (P, P ′) = J (P ′)/J (P)

The best merge P to P ′ will be the one that maximizes
J (P ′), but procedurally we usually maximize 1J , which
is equivalent.

3. Model-based Interpretation of Classical
Agglomerative Algorithms

The classical agglomerative algorithms each define a dis-
tance function d(Ci , C j ) between clusters (see figure 2),
and at each stage merge the two closest clusters according
to this distance function. In sections 3.1 through 3.4, we
consider each of the four methods discussed above. For
each method, we define an associated probabilistic model,
and prove that the cost J for that model, the relative cost
1J , or a related bound, is monotonically non-increasing
with d(Ci , C j ). That is, each classical method discussed
is equivalent to a specific model-based method, with min-
imum distance merges corresponding to maximum likeli-
hood merges.2 We write f ∼ g to indicate a quantity f is
monotonically non-decreasing in a quantity g.

1Note that this is different from model-based soft cluster-
ing (McLachlan & Peel, 2000), where each data point xi is as-
signed to every cluster with probability p(xi |θ j ) according to the
mixture likelihood (with mixture weights τ ):

�
(θ1, . . . , θk; τ1, . . . , τk |X) =

n
∏

i=1

k
∑

j=1

τ j p(xi |θ j )

2In some cases, the probabilistic model is only well-defined
when the data are elements of a Euclidean space.

(a) (b)

Figure 1: Dendrograms for (a) complete-link (farthest mem-
bers) and (b) single-link (nearest members) on the same one-
dimensional data. Complete link forms balanced clusters while
single-link grows paths.

3.1. Ward’s Method

We begin by discussing Ward’s method (Ward, 1963).
Ward’s method uses the error sum-of-squares criterion
function to define the distance between two clusters:

dWard(C1, C2) = ESS(C1 ∪ C2) − ESS(C1) − ESS(C2)

where the error sum-of-squares (ESS) is given by:

ESS(Ci ) =
∑

x∈Ci

(x − mi)
2

and mi is the sample mean of the data points in cluster Ci .

Ward’s method is equivalent to a model-based agglomer-
ative clustering method where the generating model is a
mixture of spherical gaussians with uniform covariance σ I .
This model-based interpretation of Ward’s method is well-
known (Fraley & Raftery, 2000), but we present the proof
here as an introduction to the proofs that follow in the next
few sections.

Theorem 1 If the probability model in equation 1 is multi-
variate normal with uniform spherical covariance σ I , then
1J ∼ dWard.

Proof: The model parameters 2 for this model are the
means µ1, . . . , µk . The component density p(xi |θli ) is:

p(xi |σ, µli ) =
1

σ
√

2π
e−(x−µli )

2/2σ 2

where µli is the mean of the component li to which xi be-
longs. Given a fixed assignment l1, . . . , ln , the µ1, . . . , µk

which maximize
�

are the sample means for each cluster:
m1, . . . , mk . Therefore,

J (l1, . . . , ln; X) =
n

∏

i=1

1

σ
√

2π
e−(xi−mli )

2/2σ 2

and so if merging P to P ′ involves merging clusters C1 and
C2 into C3, with respective sample means m1, m2, and m3,

log[1J (P, P ′)] =
∑

i∈C j





2
∑

j=1

(xi − m j )
2

2σ 2



 −
(xi − m3)

2

2σ 2



Method d(C1, C2) Probabilistic Mixture Model

Single-link min(x1,x2)∈C1×C2 ||x1 − x2|| Branching Random Walks

Complete-link max(x1,x2)∈C1×C2 ||x1 − x2|| Uniform Equal-Radius Hyperspheres

Group-average mean(x1,x2)∈C1×C2 ||x1 − x2||2 Equal-Variance Configurations

Ward’s method ESS(C1 ∪ C2) − ESS(C1) − ESS(C2) Equal-Variance Isotropic Gaussians

Figure 2: Agglomerative methods and the probabilistic models they greedily optimize.

which is a negative multiple of

ESS(C3) − ESS(C1) − ESS(C2)

Since the latter is exactly the quantity which Ward’s
method uses to select a merge, we are done.

3.2. Single-Link Clustering

In single-link clustering, the distance between clusters is
defined to be the distance between their closest points:

dS L(C1, C2) = min
(x1,x2)∈C1×C2

d(x1, x2)

The probabilistic model corresponding to this clustering al-
gorithm is a mixture of branching random walks (BRWs).
A BRW is a stochastic process which generates a tree of
data points xi as follows: The process starts with a single
root x0 placed according to some distribution p0(x). Each
node in the frontier of the tree produces zero or more chil-
dren xi .3 The position of a child is generated according to
a multivariate isotropic normal with variance σ I centered
at the location of the parent.

Theorem 2 If the probability model in equation 1 is a mix-
ture of branching random walks, then 1J ∼ dS L .

Proof: The parameters 2 for a mixture of BRWs are the
tree structures or skeletons for each component walk.4 For
a non-root sample i in a walk with skeleton T , we generate
xi , conditioned on the location of the parent mT (i) of i ,
according to:

p(xi |T, σ ) = ps(xi |xmT (i))

=
1

σ
√

2π
e−(xi−xmT (i))

2/2σ 2

Given l1, . . . , ln , we wish to find 2 to maximize
�

. Since
our labels are fixed, all we can vary is the tree skeletons
over each cluster. Notice that log

�
is a constant plus a

3The branching factor has an associated distribution, but it is
not relevant for our analysis.

4For simplicity, we assume that the location of the root of a
walk is generated uniformly at random over the actual locations
of data points.

negative multiple of the sum of squared distances between
each child in the dataset and its parent. Therefore, choosing
the trees which minimize this sum will maximize

�
. But

those trees are just minimal spanning trees (MSTs) over
the graphs in which each pair of points x and y in a cluster
is connected by an arc of weight (x − y)2. Therefore,

log J (P) = α −
∑

Ci∈P

MST(Ci)

where MST(Ci) is the cost of the MST over the squared
distances.

Subtrees of MSTs are MSTs as well, so in if P merges to P ′

by joining clusters C1 and C2 into C3, we can find an MST
of C3 by joining the MSTs of C1 and C2 with a single added
arc. This arc will necessarily be an arc between a closest
pair of points in C1 × C2. The change in log J , which is
log 1J , will then be the negative squared length between
that pair. But a pair with minimum squared length also has
minimum non-squared length, which is the criterion used
by single-link clustering to select a merge.

3.3. Complete-Link Clustering

In complete-link clustering, the distance between clusters
is defined to be the distance between their farthest points:

dC L(C1, C2) = max
(x1,x2)∈C1×C2

d(x1, x2)

It is commonly observed that complete-link clustering
tends to form spherical clusters. We show here that this
behavior is due to its associated probabilistic model, where
points are uniformly generated on hyperspheres of equal-
radius r . Fraley and Raftery (2000) suggest that complete-
link is similar to, but not exactly, equivalent to a uniform
hypersphere model. We show that, while this is strictly
true, complete-link clustering (greedily) maximizes a tight
lower bound on that likelihood.

Theorem 3 If the probability model is a mixture of
uniform-density equal-radius hyperspheres, then 1J is
bounded by a function f such that 1J > f ∼ dC L .

Proof: Let B(z, r) be the hypersphere of radius r centered
at z. The probability p(xi |θli ) here is given by:

p(xi |zli , r) =
{

1/volume(B(zli , r)) for x ∈ B(z, r)

0 otherwise



Let 2 = z1, . . . , zk ; r . Given l1, . . . , ln , we wish to find
z1, . . . , zk; r to maximize

�
. For each cluster Ck , there is

some minimal enclosing hypersphere B(z∗
i , r∗

i ). The max-
imum of

�
will occur when 2 has zi = z∗

i and r = max r∗.
Therefore,

J (l1, . . . , ln; X) =
n

∏

i=1

α

rd
= αn 1

rdn

for a positive α which depends only the dimensionality d
of the data.

Therefore, the best merge at each stage will be the one
which minimizes the new r . Define the width of a set to be
the greatest distance between any two points in that set. At
each stage, complete-link clustering chooses the merge that
minimizes the maximum cluster width w. In one dimen-
sion, the radius r of the minimal enclosing 1-hypersphere
(interval) of that set is equal to half its width. Therefore,
for data that lies in one dimension, complete-link cluster-
ing exactly minimizes r at each stage by minimizing w. In
higher dimensions, the relation r = w/2 no longer holds
strictly. However, w/2 ≤ r ≤ βw/2 for some dimension-
dependent constant β, 1 ≤ β ≤

√
2. Therefore, by min-

imizing w, complete-link clustering also minimizes a (rel-
atively tight) upper bound on r at each stage in the algo-
rithm.5

3.4. Group-Average Clustering

In typical group-average clustering, the distance between
clusters is defined to be the the average distance between
the points in the different clusters:

d(C1, C2) = mean(x1,x2)∈C1×C2d(x1, x2)

We analyze the slightly different formulation in which the
average squared distance is used. The generative process
for group-average is slightly different than for the other
methods. Here, we place all members of a cluster at once.
Their joint locations are chosen uniformly from all configu-
rations, subject to a maximum configuration variance. For-
mally, 2 is a (maximum) variance parameter v. Each clus-
ter C is generated by choosing locations x ∈ C such that
var(C) ≤ v. Clearly, then, the classification likelihood
depends only on the maximum variance of the highest-
variance cluster, with a lower maximum variance giving a
higher classification likelihood.

Note that clusterings with small cluster variance are not
the same as ones with small error-sum-of-squares (as with
Ward’s method). For example, to minimize ESS, a very

5In higher dimensions, w/2 ≤ r sin(φ/2)) where φ is the an-
gle between two vertices of a regular hyperpyramid and its center.
This angle is π in one dimension, and always less than π/2, hence
the range on the bound.

distant outlier will be assigned to the cluster with the clos-
est mean. However, to minimize cluster variance, it will be
assigned to the densest cluster, where it will have the least
impact on the maximum variance.

Theorem 4 If the probability model generating the data is
the stochastic process described above, then group-average
maximizes a lower bound on J .

Proof: For clusters C and D, let SC D be the sum
of squared distances between pairs in C × D: SC D =
∑

c∈C,d∈D(c − d)2. The relation between cluster variance
and average distances is given by the following identity:

1

|C|
∑

c∈C

(c − µ)2 =
1

2|C|2
∑

c1∈C

∑

c2∈C

(c1 − c2)
2 =

1

2|C|2
SCC

Essentially, the average internal-pair squared distance
equals the average variance in a Euclidean space. Further-
more, the distance between the centroids of two clusters C
and D is given by:

dcentroid(C, D) =
1

|C||D|
SC D −

1

2|C|2
SCC −

1

2|D|2
SD D

We do not prove these identities here; they follow by in-
duction from the law of cosines. The consequence of the
latter is that, since the centroids have non-negative dis-
tance from each other, it must be that SCC ≤ 2|C |

|D| SC D and

SD D ≤ 2|D|
|C | SC D, which we will need later.

As argued above, the classification likelihood for this
variance-limited probabilistic model is monotonically de-
creasing in the maximum cluster variance. By the variance-
distance identity, the likelihood is thus also monotonically
decreasing in the average of within-cluster distances for the
highest-variance cluster E .

J ∼
1

|E|2
SE E

Now, if we chose the merge E = C ∪ D based on the av-
erage squared distances of all pairs inside the result cluster
E , which is sometimes done, we would be greedily min-
imizing exactly the maximum cluster variance. However,
in group-average, we more typically average only the pairs
between the merging clusters C and D. Nonetheless, we
know that

J ∼
1

|E|2
SE E =

1

|C + D|2
(SC D + SCC + SD D)

<
1

|C + D|2
(SC D +

2|C|
|D|

SC D +
2|D|
|C|

SC D)

=
2

|C||D|
|C|2 + |C||D|/2 + |D|2

|C + D|2
SC D

<
2

|C||D|
SC D



But the last quantity is twice the quantity that this group-
average variant actually does minimize. Therefore, it also
minimizes a bound on J .

It is worth stressing that this bound is looser than the other
bounds presented, and to our knowledge it is an open prob-
lem to supply a model for the non-squared formulation of
group-average.

3.5. Practical Consequences

There are several practical consequences of the results pre-
sented in sections 3.1 through 3.4. First, it justifies the
use of the classical agglomerative methods as well-founded
probabilistic methods rather than just convenient heuristics.

Second, it explains the qualitative empirical behavior of the
different classical methods on the basis of their associated
probabilistic models.

Furthermore, in model-based agglomerative clustering,
there are approaches to determining the number of clus-
ters and the choice of clustering method based on model
selection. These approaches can now be used with linkage-
based agglomerative methods. The second two conse-
quences are discussed in further detail in this section.

Finally, this formulation suggests the design of novel ag-
glomerative clustering algorithms based on the classical ag-
glomerative methods. This last consequence is explored in
section 4.

3.5.1. PREDICTING ALGORITHM BEHAVIOR

As linkage-based methods are so commonly used, the
qualitative empirical behavior of these algorithms is well-
known. Single-link clustering tends to produce long strag-
gly clusters, complete-link clustering tends to produce tight
spherical clusters (see figure 1), and group-average cluster-
ing tends to produce clusters of intermediate tightness be-
tween single-link and complete-link.

Such behavior is unsurprising given these methods’ associ-
ated probabilistic models. Data generated by a mixture of
branching random walks is likely to have straggly patterns.
Data generated uniformly over hyperspheres is likely to be
spherical. And a distribution which generates configura-
tions of equal variance will be somewhere in between, with
wide tails on clusters being balanced by dense centers.

We present two examples here. Figure 3 shows data
which was generated uniformly on two equal-radius hy-
perspheres, but is sampled much more lightly from one of
the hyperspheres. Here, Ward’s method does not identify
the correct clusters, because it assumes that the data was
generated by two gaussians – it uses its explanatory power
to explain the halves of the dense region. Complete-link
clustering, on the other hand, is tolerant of such sampling

Accuracy: 1 Accuracy: 0.542

COMPLETE-LINK WARD’S METHOD

(a) (b)

Figure 3: Data sampled from two circles, uniformly over each cir-
cle, but with very different densities. (a) Complete-link identifies
the correct clusters. (b) Ward’s method considers the points in the
lightly sampled region outliers and tries to explain the dense re-
gion. In general, uniform distance models (complete-link, group
average) will use their clusters to explain spatial extents, while
gaussian algorithms (Ward’s, k-means) will use their clusters to
explain dense regions. Accuracy values in all figures are given by
the Rand Index (Rand, 1971).

because the likelihood of the data is dependent only on the
radius of the minimal spanning hypersphere. For the same
reason, Ward’s method is more tolerant of true outliers.

In figure 5, the data was generated by two direction-biased
random walks. Single-link clustering finds the correct clus-
ters, while the clusters found by complete-link clustering
and Ward’s method reflect the implicit spherical probabilis-
tic models for these methods.

3.5.2. WHICH METHOD? HOW MANY CLUSTERS?

Often, one will have a general idea as to a probabilis-
tic model that would plausibly have generated one’s data.
For example, in face recognition, faces are often mod-
eled as deviations from a generic face, where face patterns
have a multivariate gaussian distribution (McKenna et al.,
1998). The probabilistic interpretation of these agglomer-
ative methods suggests that one’s choice of agglomerative
clustering algorithm should be motivated by the probabilis-
tic model that is believed to have generated the data.

More rigorously, in model-based agglomerative clustering,
determining the clustering method and the number of clus-
ters is accomplished in a principled manner by using ap-
proximate Bayes’ factors to compare models. The formula-
tion of the linkage-based methods as model-based methods
allows such an approach to model selection to be used in
the context of linkage-based methods. An in-depth discus-
sion of Bayesian model selection in clustering is outside of
the scope of this paper, and we refer the interested reader
to (Fraley & Raftery, 1998).

4. Extending Classical Agglomerative Methods

The probabilistic interpretation of the classical agglomera-
tive clustering algorithms suggests extensions to these al-
gorithms based on variants of the associated mixture mod-



Method d(C1, C2) Probabilistic Mixture Model

Line-link TPSE(C1 ∪ C2) − TPSE(C1) − TPSE(C2) Linear Random Walks

Adjusted Complete-link span(C1 ∪ C2) − max{span(C1), span(C1)} Uniform Variable-Radius Hyperspheres

Mahalanobis-link ESSM(C1 ∪ C2) − ESSM(C1) − ESSM(C2) Equal-Variance Non-Isotropic Gaussians

Figure 4: New agglomerative methods and the probabilistic models they greedily optimize.

Accuracy: 1 Accuracy: 0.5 Accuracy: 0.525 Accuracy: 0.544

SINGLE-LINK COMPLETE-LINK GROUP-AVERAGE WARD’S METHOD

(a) (b) (c) (d)

Figure 5: Directional random walks are easily found by single-link clustering, but the other methods’ implicit models cause them to find
more spherical clusters.

Actual Walks Maximum Likelihood Walks
(a) (b)

Figure 9: Even for synthetic data, maximum likelihood walks (b)
can be very different from the walks that generated the data (a).

els. More specifically, we may want to alter the merge costs
to reflect the types of patterns we wish to find in the data.
We present three such extensions here, discuss their associ-
ated probabilistic models, and compare their empirical per-
formance to the agglomerative methods discussed in sec-
tion 3.

4.1. Line-Link

Single-link clustering has historically achieved poor classi-
fication performance. There are two primary reasons. First,
in applications where clustering is useful, data is rarely
generated by branching random walks. Second, even when
data is truly generated by branching random walks, the
maximum-likelihood random walks are unlikely to be the
ones which actually generated the data (see figure 9). In
general, branching random walks that are close or overlap-
ping are difficult to separate in an unsupervised manner.

Although, single-link clustering remains accurate in cases
where the data is generated by a well-separated mixture of
Markov processes, it would be be useful to have hierar-
chical methods which are capable of correctly identifying
non-spherical trends.

Here, we present line-link agglomerative clustering, where
the model is that data points are generated along line, but
with gaussian perpendicular displacement. One can think
of this as data generated by some process traveling along a
line, and emitting points along the way. This is a plausible
model for earthquake epicenters on the same seismic fault,
or GPS data from cars traveling on the same road.

Since we know the model, we could easily use a hard parti-
tional clustering according to the model using a classifica-
tion EM procedure as in Murtagh and Raftery (1984). We
would iteratively assign points to the closest line and move
each line to best fit the points assigned to it.

However, if we want a hierarchical clustering, for exam-
ple if we want to be able to sub-divide major fault fami-
lies into smaller minor faults, or split roads into lanes, it
would be useful to have an agglomerative algorithm for this
model. Our likelihood according to this model, for fixed
line parameters, will be monotonic in the sum of squared
distances from each point to its assigned line. Thus, for
each cluster, we will track the total perpendicular squared
error (TPSE) from that cluster’s best-fit line.6 For each pair
of clusters, we track the cost of merging them, which will
be the difference between the best total squared error for
the joint cluster and the sum of the best total squared errors
of the two component clusters. Note that there is no neces-
sary relation between the three clusters’ best-fit lines’ pa-
rameters. It should be clear that, by design, this algorithm
greedily maximizes the desired likelihood. This algorithm,
like all agglomerative methods, can be made to run in time
O(n2( f (n) + log n)) where n is the number of points to

6We calculate this using a conjugate-gradient method, but any
numerical optimization will do.
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LINE-LINK SINGLE-LINK COMPLETE-LINK GROUP-AVERAGE WARD’S METHOD

(a) (b) (c) (d) (e)

Figure 6: Crossing lines are only recovered by LINE-LINK (a). SINGLE-LINK makes a huge cluster with outliers (b), while the other
methods slice the data into spatially balanced regions.
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LINE-LINK SINGLE-LINK COMPLETE-LINK GROUP-AVERAGE WARD’S METHOD
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Figure 7: Crabs data: on this difficult set, only LINE-LINK (a) is able to detect the correct overall trend, in which the principle component
of the data is not explanatory.
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MAHALANOBIS-LINK SINGLE-LINK COMPLETE-LINK GROUP-AVERAGE WARD’S METHOD

(a) (b) (c) (d) (e)

Figure 8: When the data is generated by non-isotropic gaussians, Mahalanobis-link can detect the clusters more reliably, essentially by
linearly transforming the data into a space where the clusters become spherical.

cluster and f (n) is the cost of calculating the merge be-
tween two clusters.

In figure 6, we show that line-link works far better than the
other agglomerative clustering algorithms in the case where
the data are actually generated by walks along lines. In fig-
ure 7, we show the performance of line-link clustering on
crabs data from (Campbell & Mahon, 1974). In the crabs
data set, the instances represent different crabs, the features
represent structural dimensions, and the classes correspond
to different species of crabs. In this data set, crabs’ ab-
solute proportions vary roughly linearly with their general
size, and so the data for a given species can be viewed as
being generated by a linear random walk along a size/age
axis which emits crabs of slightly different relative propor-
tions along the way.

It should be stressed that the crabs set is quite difficult for
most clustering algorithms. The principal direction of the
data is, roughly, crab size, and is very decorrelated from the
desired distinction, which is crab species. Spherical algo-
rithms generally identify big crabs vs. little crabs, while

single-link identifies a single outlier vs. all other crabs.
Ripley (1996) and others generally discard the first com-
ponent, and then are able to cluster the data readily. How-
ever, an appropriate model means that we do not have to
preprocess the data to make it fit our algorithm.

4.2. Adjusted Complete-Link

In complete-link clustering, the assumption that the data
is generated by hyperspheres of equal radius may be inap-
propriate for the data. If we expect that the data will be
spherical, but on spheres of varying radii, we can make a
small change to the complete-link distance which gives us
exactly this model. In adjusted complete-link clustering,
the distance between two clusters is defined not by the re-
sult width, but by the increase in width over the larger of
the two merged clusters’ widths. Formally,

dAC L(C1, C2) = width(C1 ∪ C2) − max
i∈{1,2}

{width(Ci )}

This change is easily implemented, and is equivalent to
choosing the merge that maximizes the likelihood that the
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Figure 10: Complete-link (a) is unsuited to clusters of widely
varying size; adjusted complete-link (b) is more appropriate for
this situation.

data was generated uniformly on hyperspheres of arbitrary
radius. The proof is similar to the proof of theorem 2, and
we do not include it here. In figure 10, we show how ad-
justed complete-link compares to complete-link in both the
case where the data is generated uniformly on hyperspheres
of equal radius and the case where the data is generated uni-
formly on hyperspheres of (possibly) unequal radii.

4.3. Mahalanobis Link

In section 3.1, we mentioned that the model assumed by
Ward’s method is a mixture of multivariate gaussians with
the uniform spherical covariance σ I . If we assume that
the data is generated by a mixture of multivariate gaus-
sians with a common, known covariance matrix 6, we can
modify Ward’s method to minimize the increase in sum of
squared Mahalanobis distances at each merge. Formally,

dM L(C1, C2) = ESSM(C1 ∪ C2) −
∑

i∈{1,2}
ESSM(Ci )

where

ESSM(Ci ) =
∑

x∈Ci

(x − mi)
T 6(x − mi)

We show in figure 8 how this method, which we call
Mahalanobis-link clustering, compares to Ward’s method
in the case where the data is generated by a mixture of
gaussians with known covariance 6 6= σ I . Mahalanobis-
link can detect the clusters more reliably, essentially by lin-
early transforming the data into a space where the clusters
become spherical. In the case that 6 is diagonal, this is
equivalent to feature weighting.

5. Conclusion

We have presented probabilistic interpretations of the clas-
sical agglomerative clustering algorithms – single-link,

complete-link, group-average, and Ward’s method – based
on greedy maximum-likelihood estimation for finite mix-
ture models. The framework of model-based clustering
enables us to better understand the classical methods, and
suggests a principled approach to developing variants of
these methods. We have introduced three novel agglom-
erative methods – line-link, adjusted complete-link, and
Mahalanobis-link – and have argued their utility. These
methods are easily implemented, and the model-based per-
spective presented allows easy evaluation of which meth-
ods are most likely to be effective on a given problem.
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