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Abstract
We present a state-of-the-art neural approach
to the unsupervised reconstruction of ancient
word forms. Previous work in this domain used
expectation-maximization to predict simple
phonological changes between ancient word
forms and their cognates in modern languages.
We extend this work with neural models that
can capture more complicated phonological
and morphological changes. At the same time,
we preserve the inductive biases from classical
methods by building monotonic alignment con-
straints into the model and deliberately underfit-
ting during the maximization step. We evaluate
our performance on the task of reconstructing
Latin from a dataset of cognates across five
Romance languages, achieving a notable reduc-
tion in edit distance from the target word forms
compared to previous methods.

1 Introduction

Research has shown that groups of languages can
often be traced back to a common ancestor, or a
protolanguage, which has evolved and branched
out over time to produce its modern descendants.
Words in protolanguages undergo sound changes to
produce their corresponding forms in modern lan-
guages. We call words in different languages with a
common proto-word ancestor cognates. The study
of cognate sets can reveal patterns of phonological
change, but their proto-words are often undocu-
mented (Campbell, 2013; Hock, 2021).

To reconstruct ancient word forms, linguists use
the comparative method, which compares indi-
vidual features of words in modern languages to
their corresponding forms in hypothesized recon-
structions of the protolanguage. Past work has
demonstrated the possibility of automating this
manual procedure (Durham and Rogers, 1969; East-
lack, 1977; Lowe and Mazaudon, 1994; Covington,
1998; Kondrak, 2002). For example, Bouchard-
Côté et al. (2007a,b) developed probabilistic mod-
els of phonological change and used them to learn

reconstructions of Latin based on a dataset of Ro-
mance languages, and Bouchard-Côté et al. (2009,
2013) extended their method to a large scale dataset
of Austronesian languages (Greenhill et al., 2008).

Nevertheless, previous approaches to computa-
tional protolanguage reconstruction have mainly
considered simple rules of phonological change. In
previous works, phonological change is modeled
applying a sequence of phoneme-level edits to the
ancestral form. Although this can capture many
regular sound changes such as lenitions, epenthe-
ses, and elisions (Bouchard-Côté et al., 2013),
these edits are typically conditioned only on ad-
jacent phonemes and lack more general context-
sensitivity. Phonological effects such as dissimila-
tion (Bye, 2011), vowel harmony (Nevins, 2010),
syllabic stress (Sen, 2012), pre-cluster shortening
(Yip, 1987), trysyllabic laxing (Mohanan, 1982),
and homorganic lengthening (Welna, 1998), as
well as many non-phonological aspects of language
change (Fisiak, 2011), are all frequently dependent
on non-local contexts. However, it is difficult to
extend existing multinomial (Bouchard-Côté et al.,
2007a) and log-linear (Bouchard-Côté et al., 2007b,
2009, 2013) models to handle more complex con-
ditioning environments.

Motivated by these challenges, our work is the
first to use neural models for unsupervised recon-
struction. Ancestral word forms and model param-
eters in previous unsupervised approaches are typi-
cally learned using expectation-maximization (e.g.,
Bouchard-Côté et al., 2007a). In applying neu-
ral methods to protolanguage reconstruction, we
identify a problem in which the EM objective be-
comes degenerate under highly expressive models.
In particular, we find that neural models are able
to express not just complex phonological changes,
but also inconsistent ones (i.e., predicting vastly
different edits in similar contexts), undermining
their ability to distinguish between good and bad
hypotheses. From a linguistic perspective, phono-
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Figure 1: Overview of our paper. (a) We model the evolution of word forms as a generative process which applies
many character-level edits to the ancestral form, producing a distribution over the output word form y and edit
sequence ∆. (b) Using a dynamic program, we can compute the distribution over output words, p(y | x). We model
this for every language branch l ∈ L. (c) Our method uses EM to infer ancestral forms. For the E-step, we want
to sample from the posterior distribution, where y is observed but x is not. (f) With samples from the previous
step fixed, we use another dynamic program to compute expected edit counts. (e) In the M-step, we use these edit
counts to train our character-level edit models q, parameterized as recurrent neural networks. q determines the edit
probabilities in (c) and thus influences the next round of samples. (d) After several EM iterations, we take the
maximum likelihood word forms as the final reconstructions.

logical change should exhibit regularities due to
the constraints of the human articulatory and cogni-
tive faculties (Kiparsky, 1965), so we build a bias
towards regular changes into our method by us-
ing a specialized model architecture and learning
algorithm. We outline our approach in Figure 1.

Our work enables neural models to effec-
tively learn reconstructions under expectation-
maximization. In Section 5, we describe a special-
ized neural architecture with monotonic alignment
constraints. In Section 6.4, we motivate training
deliberately underfitted models. Then, in Section 7,
we conduct experiments and show a significant
improvement over the previously best perform-
ing method. Finally, we conduct ablation exper-
iments and attribute the improvement to (1) the
ability to model longer contexts and (2) a training
process that is well-regularized for learning un-
der EM. We release our code at https://github.
com/AndreHe02/historical_release.

2 Related Work

Our work directly extends a series of previous
approaches to unsupervised protolanguage recon-

struction that model the probabilities of phoneme-
level edits from ancestral forms to their descen-
dants (Bouchard-Côté et al., 2007a,b, 2009, 2013).
These edits include substitutions, insertions, and
deletions, with probabilities conditioned on the lo-
cal context. The edit model parameters and un-
known ancestral forms are jointly learned with
expectation-maximization. The main difference
between models in previous work is in parame-
terization and conditioning: Bouchard-Côté et al.
(2007a) used a multinomial model conditioned
on immediate neighbors of the edited phoneme;
Bouchard-Côté et al. (2007b) used a featurized
log-linear model with similar conditioning; and
Bouchard-Côté et al. (2009) introduced marked-
ness features that condition on the previous out-
put phoneme. Bouchard-Côté et al. (2009) also
shared parameters across branches so that the mod-
els could learn global patterns. Bouchard-Côté
et al. (2013) used essentially the same model but
ran more comprehensive experiments on a larger
dataset.

Since the expectation step of EM is intractable
over a space of strings, past work resort to a Monte-
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Carlo EM algorithm where the likelihood is op-
timized with respect to sample ancestral forms.
However, this sampling step is still the bottleneck
of the method as it requires computing data likeli-
hoods for a large set of proposed reconstructions.
Bouchard-Côté et al. (2007a) proposed a single-
sequence resampling method, but this approach
propagated information too slowly in deep phyloge-
netic trees, so Bouchard-Côté et al. (2009) replaced
it with a method known as ancestry resampling
(Bouchard-Côté et al., 2008). This method samples
an entire ancestry at a time, defined as a thin slice of
aligned substrings across the tree that are believed
to have descended from a common substring of
the proto-word. Changes since the Bouchard-Côté
et al. (2009) work, including shared parameters and
ancestry resampling, are primarily concerned with
reconstruction in large phylogenetic trees. While
they improve reconstruction quality drastically on
the Austronesian dataset, these modifications did
not bring a statistically significant improvement on
the task of reconstructing Latin from a family of
Romance languages (Bouchard-Côté et al., 2009).
This is likely due to the Romance family consisting
of a shallow tree of a few languages, where the
main concern is learning more complex changes on
each branch. Therefore, in this work we compare
our model to that of Bouchard-Côté et al. (2009)
but keep the single sequence resampling method
from Bouchard-Côté et al. (2007a).

Previous work also exists on the related task
of supervised protolanguage reconstruction. This
is an easier task because models can be directly
trained on gold reconstructions. Meloni et al.
(2021) trained a GRU-based encoder-decoder ar-
chitecture on cognates from a family of five Ro-
mance languages to predict their Latin ancestors
and achieved low error from the ground truth. An-
other similar supervised character-level sequence-
to-sequence task is the prediction of morphological
inflection. Recent work on this task by Aharoni
and Goldberg (2016) improved output quality from
out-of-the-box encoder-decoders by modifying the
architecture to use hard monotonic attention, con-
straining the decoder’s attention to obey left-to-
right alignments between source and target strings.
In our work, we find that character-level alignments
is also an important inductive bias for unsupervised
reconstruction.

3 Task Description

In the task of protolanguage reconstruction, our
goal is to predict the IPA representation of a list
of words in an ancestral language. We have ac-
cess to their cognates in several modern languages,
which we believe to have evolved from their ances-
tral forms via regular sound changes. Following
prior work (e.g., Bouchard-Côté et al., 2007a,b),
we do not observe any ancestral forms directly but
assume access to a simple (phoneme-level) bigram
language model of the protolanguage. We evaluate
the method by computing the average edit distance
between the model’s outputs and gold reconstruc-
tions by human experts.

Concretely, let Σ be the set of IPA phonemes.
We consider word forms that are strings of
phonemes in the set Σ∗. We assume there to be
a collection of cognate sets C across a set of mod-
ern languages L. A cognate set c ∈ C is in the
form {ycl : l ∈ L}, consisting of one word form for
each language l. We assume that cognates descend
from a common proto-word xc through language-
specific edit probabilities pl(yl | x). Initially, nei-
ther the ancestral forms {xc : c ∈ C} nor the edit
probabilities {pl(yl | x), l ∈ L} are known, and we
wish to infer them from just the observed cognate
sets C and a bigram model prior p(x).

4 Dataset

In our setup, L consists of four Romance languages,
and Latin is the protolanguage. We use the dataset
from Meloni et al. (2021), which is a revision of
the dataset of Dinu and Ciobanu (2014) with the
addition of cognates scraped from Wiktionary. The
original dataset contains 8799 cognates in Latin,
Italian, Spanish, Portuguese, French, and Roma-
nian. We follow Meloni et al. (2021) and use the
espeak library1 to convert the word forms from or-
thography into their IPA transcriptions. To keep the
dataset consistent with the closest prior work on the
unsupervised reconstruction of Latin (Bouchard-
Côté et al., 2009), we remove vowel length indi-
cators and suprasegmental features, keep only full
cognate sets, and drop the Romanian word forms.
The resulting dataset has an order of magnitude
more data (|C| = 3214 vs. 586) but is otherwise
very similar. We show example cognate sets in the
appendix.

1https://github.com/espeak-ng/espeak-ng
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5 Model

In this section, we describe our overall model of
the evolution of word forms. We organize the lan-
guages into a flat tree, with Latin at the root and
the other Romance languages l ∈ L as leaves. Fol-
lowing Bouchard-Côté et al. (2007a), our overall
model is generative and describes the production of
all word forms in the tree. Proto-words are first gen-
erated at the root according to a prior p(x), which
is specified as a bigram language model of Latin.
These forms are then rewritten into their modern
counterparts at the leaves through branch-specific
edit models denoted pl(yl | x).

In using neural networks to parameterize the edit
models, our preliminary experiments suggested
that standard encoder-decoder architectures are un-
likely to learn reasonable hypotheses when trained
with expectation maximization. We identified this
as a degeneracy problem: the space of possible
changes expressible by these models is too large for
unsupervised reconstruction to be feasible. Hence,
we enforce the inductive bias that the output word
form is produced from a sequence of local edits;
these edits are conditioned on the global context so
that the overall model is still highly flexible.

In particular, to construct the word-level edit
models, we first use a neural network to model
context-sensitive, character-level edits. We then
construct the word-level distribution via an iterative
procedure that samples many character-level edits.
We describe these components in the reverse order
as the character-level distributions are clearer in
the context of the edit process: in Section 5.1, we
describe the edit process, while Section 5.2 details
how we model the underlying character-level edits.

5.1 Word-Level Edit Process

Given an ancestral form, our model transduces the
input string from left to right and chooses edits
to apply to each character. For a given character,
the model first predicts a substitution outcome to
replace it with. A special outcome is to delete the
character, in which case the model skips to editing
the next character. Otherwise, the model enters an
insertion phase, where it sequentially inserts char-
acters until predicting a special token that ends the
insertion phase. After a deletion or end-of-insertion
token occurs, the model moves on to editing the
next input character. We describe the generative
process in pseudocode in Figure 2.

The models qsub and qins are our character-level

Input: An ancestral word form x
Output: A modern form y and lists of edits ∆

1: function EDIT(x)
2: y′ ← [ ]
3: ∆← [ ]
4: for j = 1, . . . , len(x) do
5: ▷ Sample substitution outcome
6: Sample ω ∼ qsub(· | x, i, y′)
7: ∆. append((sub, ω, x, i, y′))
8: if ω ̸= <del> then
9: do

10: y′. append(ω)
11: ▷ Sample insertion outcomes
12: Sample ω ∼ qins(· | x, i, y′)
13: ∆. append((ins, ω, x, i, y′))
14: while ω ̸= <end>
15: end if
16: end for
17: return y′ as y, ∆
18: end function

Figure 2: Pseudocode describing the generative process
behind p(y,∆ | x). Each input character is potentially
deleted or substituted, with zero or more characters
inserted afterwards. The probabilities of edits are spec-
ified by the character-level edit models qsub and qins
(5.2). Each edit in the list ∆ is represented as a tuple
(op, ω, x, i, y′), where op ∈ {sub, ins}, ω ∈ Σ, and
(x, i, y′) make up the context of the edit.

edit models, and they control the outcome of substi-
tutions and insertions, conditioned on x, the input
string, i, the index of the current character, and y′,
the output prefix generated so far. The distribution
qsub is defined over Σ∪{<del>} and qins is defined
over Σ∪{<end>}. Models in previous work can be
seen as special cases of this framework, but they are
limited to a 1-character input window around the
current index, x[i−1 : i+1], and a 1-character his-
tory in the output, y′[−1] (e.g., in Bouchard-Côté
et al., 2009).

The generative process defines a distribution
p(y,∆ | x) over the resulting modern form and edit
sequences. But what we actually want to model
is the distribution over modern word forms them-
selves – for this purpose, we use a dynamic pro-
gram to sum over valid edit sequences:

p(y | x) =
∑
∆

p(y,∆ | x)

where ∆ represents edits from x into y (see Ap-
pendix A.2 for more details). The edit procedure,



character-level models, and dynamic program to-
gether give a conditional distribution over modern
forms. Note that we have one such model for each
language branch.

5.2 Character-Level Model

We now describe the architecture behind qsub and
qins, which model the distribution over character-
level edits conditioned on the appropriate inputs.
Our model leverages the entire input context and
output history by using recurrent neural networks.
The input string x is encoded with a bidirectional
LSTM, and we take the embedding at the current
index, denoted h(x)[i]. The output prefix y′ is en-
coded with a unidirectional LSTM, and we take
the final embedding, which we call g(y′)[−1]. The
sum of these two embeddings h(x)[i] + g(y′)[−1]
encodes the full context of an edit – we apply two
different classification heads to predict the substitu-
tion distribution qsub and the insertion distribution
qins. We note that the flow of information in our
model is similar to the hard monotonic attention
model of Aharoni and Goldberg (2016), which used
an encoder-decoder architecture with a hard left-to-
right attention constraint for supervised learning of
morphological inflections. Figure 3 illustrates the
model architecture with an example prediction.

6 Learning Algorithm

The problem of unsupervised reconstruction is to
infer the ancestral word forms {xc : c ∈ C} and
edit models {pl(yl | x) : l ∈ L} when given the
modern cognates {ycl : c ∈ C, l ∈ L}. We use a
Monte-Carlo EM algorithm to learn the reconstruc-
tions and model parameters. During the E-step,
we seek to sample ancestral forms from the cur-
rent model’s posterior distribution, conditioned on
observed modern forms; during the M-step, we
train the edit models to maximize the likelihood of
these samples. We alternate between the E and M
steps for several iterations; then in the final round,
instead of sampling, we take the maximum likeli-
hood strings as predicted reconstructions.

6.1 Sampling Step

The goal of the E-step is to sample ancestral forms
from the current model’s posterior distribution,
p(xc | {ycl , l ∈ L}). In general, this distribution
cannot be computed directly; but for given sam-
ples of x, we can compute a value that is propor-
tional to their posterior probability. At the begin-

ning of an E-step, we have the current edit models
{pl(yl | x) : l ∈ L}, observed modern forms
{yl : l ∈ L}, and the ancestral form prior p(x).
For a given ancestral word form x, we can use
Bayes’ rule to compute a joint probability that is
proportional to its posterior probability (our model
assumes conditionally independent branches):

p(x | {yl, l ∈ L})

=
p(x, {yl, l ∈ L})
p({yl, l ∈ L})

∝ p(x, {yl, l ∈ L})

= p(x)
∏
l∈L

p(yl | x)

(1)

Following previous work, we use Metropolis-
Hastings to sample from the posterior distribution
without computing the normalization factor. We
iteratively replace the current word form x with a
candidate drawn from a set of proposals, with prob-
ability proportional to the joint probability com-
puted above. We repeat this process for each cog-
nate set to obtain a set of sample ancestral forms
{xc : c ∈ C}.

During Metropolis-Hastings, the cylindrical pro-
posal strategy in Bouchard-Côté et al. (2008) con-
siders candidates within a 1-edit-distance ball of
the current sample, but this strategy is inefficient
since the number of proposals is scales linearly
with both the string length and vocabulary size,
and the sample changes by only one edit per round.
We develop a new proposal strategy which exploits
the low edit distance between cognates. Our ap-
proach considers all strings on a minimum edit path
from the current sample to a modern form. This
allows the current sample to move many steps at
a time towards one of its modern cognates. See
Figure 5 in the appendix for an illustration.

6.2 Maximization Step
With samples from the previous step {xc : c ∈ C}
fixed, the goal of the M-step is to train our edit
models to maximize data likelihood. The models
on each branch are independent, so we train them
separately. For each branch l, we wish to optimize∑

c∈C
p(ycl | xc)

This is a standard sequence-to-sequence training
objective, where the training set is simply ancestral
forms xc from the E-step and modern forms ycl
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Figure 3: Architecture diagram of the character-level edit model, denoted qsub/ins(ω | x, i, y′). The distribution of
outcomes is dependent on both the input string and output history. Here our model is shown predicting edits for I
when the input is prEsIO and the current output is pess. The model predicts substitutions if the input character I has
not produced any outputs yet; otherwise it predicts characters to insert. Note that deletion <del> and end-of-insertion
<end> are special outcomes of substitution and insertion.

from the dataset. However, since we do not directly
model the conditional distribution of output strings
(5.2), we need the underlying edit sequences to
train our character-level edit models qsub and qins.

Given an input-output pair x and y, we com-
pute the probabilities of underlying edits us-
ing a dynamic program similar to the forward-
backward algorithm for HMMs (see A.3 for more
details). Concretely, for each possible substitution
(sub, ω, x, i, y′) defined as in Figure 2, the dynamic
program computes

p((sub, ω, x, i, y′) ∈ ∆ | x, y)

which is the probability of the edit occur-
ring, conditioned on the initial and resultant
strings. We average over cognate pairs to obtain
p((sub, ω, x, i, y′) ∈ ∆) and train the substitution
model qsub(ω | x, i, y′) to fit this distribution. We
compute insertion probabilities and train the inser-
tion model in the same way.

We bootstrap the neural models qsub and qins by
using samples from the classical method. Before
the first maximization step, we train a model from
Bouchard-Côté et al. (2009) for three EM iterations.
We use samples from the model to compute the first
round of edit probabilities. Once the neural model
is trained on these probabilities, we no longer rely
on the classical model. Note that this does not bias
the comparison in Section 7.1 in our favor because
the classical models reach peak performance in less
than five EM iterations and would not benefit from
additional rounds of training.

6.3 Inference

After performing 10 EM iterations, we obtain re-
constructions by taking the maximum likelihood
word forms under the model. In the E-step, we
sample xc ∼ p(xc | {ycl : l ∈ L}), but now we
want xc = argmax p(xc | {ycl : l ∈ L}). We
approximate this with an algorithm nearly identi-
cal to the E-step, except that we always select the
highest probability candidate (instead of sampling)
in Metropolis-Hastings iterations.

6.4 Underfitting the Model

In prior work, models are trained to convergence
in the M-step of EM. For example, the multino-
mial model of Bouchard-Côté et al. (2007a) has
a closed-form MLE solution, and the log-linear
model of Bouchard-Côté et al. (2009) has a con-
vex objective that is optimized with L-BFGS. In
our experiments, we notice that training the neural
model to convergence during M-steps will cause a
degeneracy problem where reconstruction quality
quickly plateaus and fails to improve over future
EM iterations.

This degeneracy problem is crucially different
from overfitting in the usual sense. In supervised
learning, overfitting occurs when the model begins
to fit spurious signals in the training data and devi-
ates away from the true data distribution. On the
other hand, precisely fitting the underlying distribu-
tion would cause our EM algorithm to get stuck – if
in a M-step the model fully learns the distribution
from which samples were drawn, then the next E-
step will draw samples from the same distribution,
and the learning process stagnates.



Our solution is to deliberately underfit in the
M-step. Intuitively, this gives more time for infor-
mation to mix between the branches before the edit
models converge to a common posterior distribu-
tion. We do this by training the model for only a
small number of epochs in every M-step. We find
that a fixed 5 epochs per step works well, which is
far from the number of epochs needed for conver-
gence. Our experiments in Section 7.3 show that
this change significantly improves performance
even when our model is restricted to the same local
context as in Bouchard-Côté et al. (2009).

7 Experiments

7.1 Comparison to Previous Models

We evaluate the performance of our model by com-
puting the average edit distance between its outputs
and gold Latin reconstructions.

We experimented with several variations of the
models used in prior work (Bouchard-Côté et al.,
2007a,b, 2009) and chose the configuration which
maximized performance on our dataset, referring to
it as the classical baseline. In particular, we found
that extending the multinomial model in Bouchard-
Côté et al. (2007a) to be conditioned on adjacent
input characters and the previous output character
as in Bouchard-Côté et al. (2009) performed bet-
ter than using the model from the latter directly,
which used a log-linear parameterization. Given
that we use an order of magnitude more data, we
attribute this to the fact that the multinomial model
is more flexible and does not suffer from a short-
age of training data in our case. We confirm that
this modified model outperforms Bouchard-Côté
et al. (2007a,b) on the original dataset. For the
learning algorithm, we keep the single sequence
resampling algorithm from these papers. Although
the more recent Bouchard-Côté et al. (2009, 2013)
used ancestral resampling, the algorithm is focused
on propagating information through large language
trees, so it did not achieve a statistically significant
improvement on the Romance languages, which
only had a few nodes (Bouchard-Côté et al., 2009).

We also include an untrained baseline to show
how these methods compare to a model not trained
with EM at all. The untrained baseline evaluates
the performance of a model initialized with fixed
probabilities of self-substitutions, substitutions, in-
sertions, and deletions, regardless of the context.
We do not run any EM steps and take strings with
the highest posterior probability under this model

as reconstructions. We find that this baseline sig-
nificantly outperforms the centroids baseline from
previous work (4.88), so we use it as the new base-
line in this work.

During training, we notice that different mod-
els take a different number of EM iterations to
train, and some deteriorate in reconstruction qual-
ity if trained for too many iterations. Therefore, we
trained all models for 10 EM iterations and report
the quality of the best round of reconstructions in
Figure 4. Since it may be impossible in practice to
do early stopping without gold reconstructions, we
also computed the final reconstruction quality for
our models, but we observe only a minimal change
in results (≈ 0.02 edit distance). Due to variance
in the results, we report the mean and standard
deviation across five runs of our method.

7.2 Ablation: Underfitting

In this section, we describe an ablation experiment
on the effect of under-training in the maximiza-
tion step. Let n represent the number of training
epochs during each maximization step. Also, let
k represent the amount of context that our models
have access to. When predicting an edit, the model
can see k characters to the left and right of the cur-
rent input character (i.e., the window has length
2k+1) and k+1 characters into the output history.
Everything outside this range is masked out. Our
standard model uses n = 5 and k =∞.

For this experiment, we set the context size to
k = 0 and run our method with n ∈ {5, 10, 20, 30}.
The resulting reconstruction qualities are shown
in Figure 4. Note that when k = 0, our model
is conditioned on the same information as that of
Bouchard-Côté et al. (2009). When n = 30, the
model is effectively trained to convergence in every
M-step. It completely fits the conditional distribu-
tion of edits in the samples, so it should learn the
same probabilities as the multinomial model base-
line. Indeed, the model with n = 30 and k = 0
achieves an edit distance of 3.61, which is very
close to the 3.63 baseline. Given that this con-
figuration is effectively equivalent to the classical
method, we can incrementally observe the improve-
ment from moving towards n = 5 (our default).

By reducing the number of epochs per maximiza-
tion step (n), we observe a large improvement from
3.61 to 3.47. The general motivation for under-
training the model was given in Section 6.4. The re-
maining improvement comes from additional con-



Figure 4: (Left) Our method significantly outperforms the classical baseline from Bouchard-Côté et al. (2009).
Although the improvement is only a 7% reduction in terms of edit distance, we reduce the error rate by 70% as much
as the classical model did from an untrained baseline. (Middle) Reducing the number of epochs per maximization
step underfits the model but results in better reconstructions in the long run. (Right) When the learning algorithm is
well-regularized, conditioning edit probabilities on wider contexts results in more accurate reconstructions.

text, as we will demonstrate in the next subsection
by moving towards k =∞.

7.3 Ablation: Context Length

In this section, we describe an ablation experiment
on the effect of modeling longer contexts. Keeping
n = 5 fixed and using k as defined in the previ-
ous subsection, we run our method three times for
each of k ∈ {0, 2, 5, 10,∞} and report the average
reconstruction quality in Figure 4.

Our results show that being able to model longer
contexts does monotonically improve performance.
The improvement is most drastic when expanding
to a short context window (k = 2). These findings
are consistent with the knowledge that most (but
not all) sound changes are either universal or con-
ditioned only on nearby context (Campbell, 2013;
Hock, 2021). With unlimited context length, our
reconstruction quality reaches 3.38. Therefore, we
attribute the overall improvement in our method to
the changes of (1) modeling longer contexts and (2)
underfitting edit models to learn more effectively
with expectation-maximization.

8 Discussion

In this paper, we present a neural architecture
and EM-based learning algorithm for the unsuper-
vised reconstruction of protolanguage word forms.
Given that previous work only modeled locally-
conditioned sound changes, our approach is mo-
tivated by the fact that sound changes can be in-
fluenced by rich and sometimes non-local phono-

logical contexts. Compared to modern sequence
to sequence models, we also seek to regularize
the hypothesis space and thus preserve the struc-
ture of character-level edits from classical models.
On a dataset of Romance languages, our method
achieves a significant improvement from previous
methods, indicating that both richness and regular-
ity are required in modeling phonological change.

We expect that more work will be required to
scale our method to larger and qualitatively differ-
ent language families. For example, the Austrone-
sian language dataset of Greenhill et al. (2008)
contains order of magnitudes more modern lan-
guages (637 vs. 5) but significantly less words per
language (224 vs. 3214) – efficiently propagat-
ing information across the large tree may be more
important than training highly parameterized edit
models in these settings. Indeed, Bouchard-Côté
et al. (2009, 2013) produce high quality reconstruc-
tions on the Austronesian dataset by using ancestral
resampling and sharing model parameters across
branches. These improvements are not immedi-
ately compatible with our neural model; therefore,
we leave it as future work to scale our method to
settings like the Austronesian languages.
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A Appendix

A.1 Dataset
We describe the origin of our dataset and our pre-
processing steps in Section 4. We show examples
of some cognate sets in Table 1, along with sample
reconstructions from our best model.

A.2 Forward Dynamic Program
The forward dynamic program computes the to-
tal probability of a output word form p(y | x),
marginalized over possible edit sequences ∆. We
first run inference with our neural models qsub
and qins to pre-compute the probabilities of all
possible edits. For i ∈ [len(x)], j ∈ [len(y)],
op ∈ {sub, ins, del, end}, let C = (x, i, y[:j]) be
the context of the edit (and the input to the network).
We compute:

δop(i, j) :=


qop(y[j] | C) op ∈ {sub, ins}
qsub(<del> | C) op = del
qins(<end> | C) op = end

To compute the probability of editing x into y, we
define the subproblem fop(i, j) as the total proba-
bility of editing x[:i] into y[:j] such that the next
operation is op. The recurrence can therefore be
written as:

fins(i, j) =δins(i, j − 1)fins(i, j − 1)

+ δsub(i, j − 1)fsub(i, j − 1)

fsub(i, j) =δend(i− 1, j)fins(i− 1, j)

+ δdel(i− 1, j)fsub(i− 1, j)

Which is in accordance with the dynamics de-
scribed in Section 5.1. The desired result is p(y |
x) = fsub(len(x), len(y)). We end on a substitu-
tion because it implies that the insertion for the
final character has properly terminated.

A.3 Backward Dynamic Program
The backward dynamic program computes the
probability that an edit (op, ω, x, i, y′) has occured,
given the input string x and output string y. We
run the forward dynamic program first and use the
notation δ and f as defined in Appendix A.2.

Define gop(i, j) as the posterior probability that
the edit process has been in a state where the next
operation is op and it just edited x[:i] into y[:j].
This is the same event as that of fop(i, j), but condi-
tioned on the fact that the final output is y. The base
case is therefore gsub(len(x), len(y)) = 1. The

dynamic program propagates probabilities back-
wards:

gins(i, j) =
δins(i, j)fins(i, j)

fins(i, j + 1)
gins(i, j + 1)

+
δend(i, j)fins(i, j)

fsub(i+ 1, j)
gsub(i+ 1, j)

gsub(i, j) =
δsub(i, j)fsub(i, j)

fins(i, j + 1)
gins(i, j + 1)

+
δdel(i, j)fsub(i, j)

fsub(i+ 1, j)
gsub(i+ 1, j)

Essentially, each state receives probability mass
from possible future states, weighed by its contri-
bution in the forward probabilities. Finally, we
recover the posterior probabilities of edits, denoted
as δ′:

δ′sub(i, j) =
fsub(i, j)gins(i, j + 1)

fins(i, j + 1)
δsub(i, j)

δ′ins(i, j) =
fins(i, j)gins(i, j + 1)

fins(i, j + 1)
δins(i, j)

δ′del(i, j) =
fsub(i, j)gsub(i+ 1, j)

fsub(i+ 1, j)
δdel(i, j)

δ′end(i, j) =
fins(i, j)gsub(i+ 1, j)

fsub(i+ 1, j)
δend(i, j)

Each δ′op(i, j) corresponds to the same edit as
δop(i, j), and so we obtain p((op, ω, x, i, y′) ∈ ∆ |
x, y) for all possible edits.

A.4 Hyperparameters and Setup
For our edit models, the input encoder is a bidi-
rectional LSTM with 50 input dimensions, 50 hid-
den dimensions, and 1 layer. The output encoder
is a unidirectional LSTM with the same config-
uration. The dimension 50 was found through
a hyperparameter search over models of d ∈
{10, 25, 50, 100, 200} dimensions. For training,
we use the Adam optimizer with a fixed learning
rate of 0.01. All experiments were run on a sin-
gle Quadro RTX 6000 GPU; however, GPU-based
computations are not the bottleneck of our method.
A single run of our standard method takes about 2
hours.

A.5 Limitations
A major limitation of this work is that our method
was designed for large cognate datasets with few
languages. It may not be possible to train these
highly parameterized edit models on datasets with



French Italian Spanish Portuguese Latin (Target) Reconstruction
ablatif ablativo aBlatiBo 5l5tivU ablatIwUs ablativU
idKolik draUliko iDRauliko idôaUlikU hydraUlIkUs idraUlikU
inEfabl ineffabile inefaBle in1favEl InEffabIlIs inEfablE
mAda mandato mandato m5NdatUm mandatUm mandatU
pKEsjO pessione pResjon pô1s5U prEssIO prEssO
pKOkKee prokreare pRokReaR pôukôiaô prOkrEarE prOkrear
vokabylEK vokabolario bokaBulaRjo vuk5bulaRjU wOkabUlarIUm vokabylarEU
ekonomi ekonomia ekonomia ekunumi5 OIkOnOmIa ekunomia
fekyl fekola fekula fEkul5 faIkUla fEkyla
lamine lamina lamina l5min5 lamIna lamina

Table 1: IPA transcriptions for several cognate sets after our preprocessing steps, along with gold labels and example
reconstructions from our best performing unsupervised reconstruction model

more languages but fewer datapoints per lan-
guage (e.g. the Austronesian dataset from Green-
hill et al. (2008)), and reconstruction in these
datasets may benefit more from having efficient
sampling algorithms and sharing parameters across
branches (Bouchard-Côté et al., 2009). Given the
large amount of noise in the Romance language
dataset, we also do not overcome the restriction
in Bouchard-Côté et al. (2007a) of relying on a
bigram language model of Latin. Moreover, in-
specting learned sound changes is more difficult
when using a neural model, so we leave a quali-
tative evaluation of unsupervised reconstructions
from neural methods to future work.



absEns

absEnt

assEns

absEne

absEnse

assEnt

assEne

absEnte

assEnse

assEnte

s→ t

s→ e

b→ s

+e

b→ s

Figure 5: Example of possible proposals when the current reconstruction is absEns, and it has a modern cognate
assEnte. We only show edit paths between the current sample and its Italian cognate here, but candidates can also be
on paths between the current sample and its other modern cognates.


