
Faster Optimal Planning with Partial-Order Pruning

David Hall, Alon Cohen, David Burkett, and Dan Klein
EECS CS Division

University of California Berkeley
Berkeley, California 94720

{dlwh,dburkett,klein}@cs.berkeley.edu, aloni.cohen@gmail.com

Abstract

When planning problems have many kinds of resources
or high concurrency, each optimal state has exponen-
tially many minor variants, some of which are “bet-
ter” than others. Standard methods like A∗ cannot ef-
fectively exploit these minor relative differences, and
therefore must explore many redundant, clearly subopti-
mal plans. We describe a new optimal search algorithm
for planning that leverages a partial order relation be-
tween states. Under suitable conditions, states that are
dominated by other states with respect to this order can
be pruned while provably maintaining optimality. We
also describe a simple method for automatically discov-
ering compatible partial orders in both serial and con-
current domains. In our experiments we find that more
than 98% of search states can be pruned in some do-
mains.

Introduction
Planning problems differ from other search problems in a
number of ways. One important distinction is that there are
typically many planning states that are “similar” along one
or more dimensions. For instance, consider a job shop do-
main in which we are trying to assemble a set of products
from a set of components. Here, one search state might have
the same number of widgets—but fewer sprockets—than an-
other. Assuming in this example that more is always better
and that the two states can be reached at the same time, we
can safely discard the latter, dominated state, instead focus-
ing our search on the better state.

These kinds of similar, but clearly suboptimal, states are
particularly common in concurrent domains, where the plan-
ner must make decisions about whether or not to expend all
resources now, or wait some amount of time for a currently
running action to finish. Because of the sheer number of de-
cisions to be made, many states end up falling irreparably
behind their optimal variants.

In this paper, we seek to formalize this notion, using
Pareto dominance to prune states that are strictly dominated
by some other state. More specifically, we give conditions
under which we can expand only those states in the skyline,
that is, states that are not dominated by any other state. Our

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

system, Skyplan, is a refinement of Uniform Cost Search
or A∗ (Hart, Nilsson, and Raphael, 1968) that expands only
those states that are in the skyline. Because heuristics like
those used in A∗ cannot directly compare two states to one
another, Skyplan speeds up search in a way that is orthogo-
nal to the traditional heuristics used in A∗.

The central idea underlying our approach is to define a
partial order relationship between states in the search space.
This partial order has an intuitive interpretation: one state
dominates another if it has no fewer “good” resources (e.g.
job shop outputs) than another, no more “bad” resources
(e.g. labor expended or time taken), and it is better in one
or more ways.

In our analysis, we prove that our algorithm is both com-
plete and optimal with a suitable partial order. Moreover, we
prove that Skyplan is optimally efficient in the same sense as
A∗. That is, given a fixed partial order, there is no complete
and optimal algorithm that can expand fewer search nodes
(up to breaking ties).

In addition to proving the correctness of our approach, we
also show how to automatically infer a compatible partial
order from a problem specification such as PDDL (Ghallab
et al., 1998; Fox and Long, 2003). This procedure is fairly
intuitive: one simply needs to determine which resources or
propositions are uniformly good or bad, and—for domains
with durative actions—which actions have uniformly good
or bad final effects.

In our experiments, we compare Skyplan to a similar im-
plementation of A∗ in several standard domains. In addi-
tion, we introduce a new domain, based on the popular video
game StarCraft. Skyplan performs especially well in this lat-
ter domain, cutting the branching factor by more than 90%
compared to A∗, and run times by more than a factor of 80.

Skyplan
In this work, we focus on planning with additive costs, us-
ing the conventional formulation as search within a weighted
directed graph. A planning problem consists of a directed
graphG with planning states n. States are linked by directed
edges with an associated cost function cost(ns, nt) ∈ R+.
There is also a privileged initial state s, along with a set of
goal states F . We define g(n) to be the cost of the shortest
path from s to a state n. Our goal is to find a path from s to
some state nf ∈ F with the lowest g cost.

0
1
2
3
4
5
6
7
8
9

0 2 4 6 8 10 12

Sp
ro

ck
et

s

Widgets

Skyline

Prunable

Figure 1: An example set of states in a two-resource plan-
ning domain. If all pictured states have the same cost, then
only those shown as circles are worth exploring; the X’s can
be safely pruned.

Partial Orders
We will further assume that our graph is endowed with a
partial order � that relates states to one another, with the
intuitive semantics that m � n if n is at least as good as
m in every way. For example, in our sprockets and widgets
example, m � n if m has no more widgets and no more
sprockets than n and if g(m) ≥ g(n). For any set of states
N , we define the skyline of that set as skyline(N) = {m :
¬∃n ∈ N : m � n}.

For example, in Figure 1, we consider a domain with two
resources, widgets and sprockets. If having more widgets
and more sprockets is always better, then all states that are
not at one of the upper-right corners of the skyline are strictly
dominated by one or more of the states that are. Thus, if all
states have the same cost, we can safely remove these dom-
inated states (represented by X’s) from search.

Our goal is to define an optimal search algorithm that can
exploit this partial order to reduce the search space by only
expanding states n that are weakly Pareto optimal. That is,
we wish to expand only those states that are on the skyline.
In the next section, we will define this algorithm, and in the
subsequent sections, we will give a useful sufficient condi-
tion under which we can exploit a partial order while pre-
serving correctness of optimal graph search algorithms.

We are not the first to suggest the use of Pareto optimality
or skyline queries in the context of planning. For example,
the non-optimal Metric-FF planner (Hoffmann, 2003) em-
ployed a more limited notion of dominance, requiring that
all propositions be the same between two states, the domain
to be monotonically “good” in all resources, and that the
dominating state has no fewer resources along any axis. Our
notion of dominance is more general. That is, we are able to
find more powerful partial orders in more general domains.

In another satisficing planner, Röger and Helmert (2010)
combined multiple heuristics by only expanding those states
which were currently Pareto optimal with respect to the cur-
rent open set. By contrast, we seek to prune search states
while still maintaining optimality.

Still others have employed fairly different notions of par-
tial orders while maintaining completeness and optimality.

Algorithm 1 Skyplan based on uniform cost search
1: procedure UCSSKYPLAN(s,G, F,�)
2: Initialize Open = {〈s, 0〉}, Closed = {}
3: while Open is not empty do
4: Pop the min cost state m = 〈m, c〉 ∈ Open
5: m→ Closed
6: if m ∈ F then
7: return the path tom following back pointers
8: end if
9: if @n ∈ Open ∪ Closed,m � n then

10: for m′ ∈ succ(m) do
11: m′ ← 〈m′, c+ cost(m,m′)〉
12: m′ → Open
13: end for
14: end if
15: end while
16: fail
17: end procedure

These methods largely fall into a category known as “par-
tial order reduction techniques,” which have their origins
in computer aided verification. This class includes expan-
sion cores (Chen and Yao, 2009; Xu et al., 2011), which
select only “relevant” actions for any given state, commu-
tativity pruning (Geffner and Haslum, 2000), which prunes
redundant permutations of partial plans, and stratified plan-
ning (Chen, Xu, and Yao, 2009), which identifies layers of
the planning problem and only considers actions appropriate
to a given layer. Wehrle and Helmert (2012) recently showed
that all of these techniques are special cases of more general
techniques from computer aided verification, namely sleep
sets (Godefroid, 1996) and stubborn sets (Valmari, 1992).
These methods are largely orthogonal to our approach; in-
deed, we use a version of expansion cores in our system.

Algorithm
Skyplan is a fairly easy modification of a standard opti-
mal search algorithm like Uniform Cost Search or A∗. For
the sake of exposition, we focus on Uniform Cost Search,
though A∗ or any optimal graph search algorithm can be
modified in the same way.1

Skyplan is defined in Algorithm 1. Essentially, we run
Uniform Cost Search as normal, except that we only expand
states that are not strictly dominated by another state that
we have either expanded or enqueued for expansion. That
is, we only expand nodes that are in the skyline of the nodes
we know about so far.

Compatibility
Not just any partial order on states can be used to preserve
optimality. As a perverse example, we can define a partial
order under which all states on an optimal path are domi-
nated by non-optimal states. Thus, we need to define a prop-
erty under which a partial order is compatible with a search

1In our experiments we use either A∗ or Hierarchical A∗ (Holte
et al., 1996).

0

5

10

15

20

25

0 2 4 6 8 10 12

W
id

ge
ts

Time

s

n

m

F

n0

n00

n000

m000

m00

m0
⌫
⌫

⌫

⌫

Figure 2: Abstract representation of search with compatible
partial orders. The shaded area represents the goal region.
Both m and n are reachable from the start state. Because n
is a better state than m, and n’s successors “stay ahead” of
m’s, we can safely avoid expanding m while still preserving
optimality.

graph. While a broad class of partial orders might work, we
have identified a sufficient condition that is especially appli-
cable to planning problems. Figure 2 illustrates compatibil-
ity for a simple graph. If our goal is to accumulate at least 18
widgets, then n is clearly better than m as it has more wid-
gets in less time. Moreover, none of m’s successors reach a
point better than all of n’s successors. Because paths through
n continue to “stay ahead” of those passing through m, we
can safely prune m.

We formalize this intuition as follows:
Definition 1 (Compatibility). A partial order � is compati-
ble if for all states m � n,

1. g(n) ≤ g(m), and
2. ∀m′ ∈ succ(m) ∃n′ ∈ succ(n) such that m′ � n′ and

cost(n, n′) ≤ cost(m,m′), and
3. If m ∈ F , then n ∈ F

This recursive definition of compatibility essentially
means that if a statem is dominated by a state n, then it must
be the case that m is no cheaper than n and that n’s succes-
sors “stay ahead” of m’s. Finally, F must be closed with
respect to �: every state that dominates a goal state must
also be a goal. It is worth mentioning that there is always a
compatible partial ordering: the trivial order with m � n for
all states m and n with m 6= n.

In planning problems, defining a compatible partial or-
der is usually quite easy, so long as cost functions are addi-
tive. Actions are often defined in terms of partial states with
constant costs (e.g. time elapsed), and so compatibility is
easily checked. After proving the correctness and optimality
of Skyplan, we discuss a standard structure for these partial
orders, as well as how to automatically infer a compatible
partial order from the specification of a planning problem.

Analysis
In this section, we show that Skyplan is complete, optimal,
and optimally efficient for any compatible partial order when

used in conjunction with an optimal search algorithm like
Uniform Cost Search or A∗. Before proving the main results
of this section, we prove a useful lemma.

Lemma 1. Let p be a path to a goal, let m be one state in
p, and let pm: be the suffix of the path starting from m, and
|p| be the length of p in terms of the number of states. If n
is a state with m � n, then there is a corresponding path q
that reaches a goal state through n with |qn:| ≤ |pm:| and
cost(q) ≤ cost(p).

Proof. pm: = (m,m1, . . . ,mk) with mk a goal state. By
condition (2) of compatibility, ∃n1 ∈ succ(n) with n1 �
m1 and cost(n, n1) ≤ cost(m,m1). Similarly, ∃n2, . . . , nk

with ni � mi and ni+1 ∈ succ(ni) with total cost ≤
cost(pm:). By condition (3) of compatibility, nk ∈ F . By
condition (1), there is a path from s to n with g(n) ≤ g(m).
The above argument extends this path to the goal state nk
and completes the proof of the lemma.

This lemma states that if m � n, then there is a path
from n to a goal state that is no longer and no more costly
than any such path fromm. While we usually consider states
being pruned by other states, the lemma allows us to equiva-
lently reason about paths being pruned by other paths. In the
following proof, we use these notions interchangeably.

Claim 1. Completeness. If � is a compatible partial order,
Skyplan is complete.

Proof. Suppose otherwise, then all paths to all goals must
have been pruned. This would require a cycle of paths
pruning each other: paths p1, . . . , pk such that p(i+1) mod k

pruned pi. For all paths, let n(i+1) mod k ∈ p(i+1) mod k be
the state which pruned pi and mi ∈ pi the corresponding
state which was pruned (∀i : mi � n(i+1) mod k).

Because each mi was pruned before being expanded,
ni 6= mi nor any state succeeding mi in pimi:. Hence
pini: ⊇ pimi: =⇒ |pini:| > |pimi:|. By the lemma, we also
have |pimi:| ≥ |p

(i+1) mod k
n(i+1) mod k:|. Combining the inequalities

yields: |p1m1:| ≥ |p2n2:| > |p2m2:| > · · · > |pkmk:
| > |p1m1:|, a

contradiction.

Claim 2. Optimality. If� is a compatible partial order, Sky-
plan is optimal.

Proof. Let p∗ be the last optimal path that was pruned dur-
ing a run of Skyplan. By the proof of Claim 1 and the lemma
there is some path p′ that is not pruned with cost(p′) ≤
cost(p∗). Thus, p′ is optimal as well.

By leveraging the information contained in the partial or-
der, Skyplan is able to achieve optimal plans while expand-
ing fewer states in general. But is Skyplan using this added
information in the best possible manner? It is easy to see that
any state expanded by Skyplan must not be dominated by
any other state in the graph: otherwise Closed would con-
tain such a dominating state when the about-to-be-expanded
state was popped, thereby pruning it. This turns out to be
enough to prove the following:

Claim 3. Optimal Efficiency. For any compatible partial or-
der �, Skyplan is optimally efficient.

Proof. (We prove the claim on the set of graphs for which
all paths have unique costs: n 6= m =⇒ g(n) 6= g(m).
This proof is similar to the analogous proof for A∗ in Hart,
Nilsson, and Raphael (1968). The generalization to graphs
with ties is also analogous, and we omit it in the interest of
space.)

Suppose otherwise. Then, there must exist an optimal al-
gorithm B and a search problem (G,�) on which B expands
(calls the successor function on) strictly fewer states than
Skyplan. Let n∗ be a state expanded in Skyplan but not by B
on the problem (G,�), and let fB be the goal state returned
by B. We construct a new graph G′ by adding a single goal
state f∗ to G and an associated edge from n∗ to f∗ of cost
ε (with ε < g(fB) − g(n∗)). On G′ we apply the original
partial order � with n � m if either n or m is f∗.

We must show that � is compatible on G′. Let m,n ∈
G′ such that m � n. By construction, neither m nor n is
f∗. Conditions (1) and (3) are clearly true in G′ because
they are true in G. Furthermore, if m 6= n∗ condition (2) is
true because succG′(m) = succG(m). But as we observed
above, no state expanded in Skyplan is dominated by any
other state. Thus, m 6= n∗.

Except for the fact that n∗ has an additional successor,
G′ is otherwise identical to G. By assumption, B never ex-
amined the successors of n∗, and must therefore follow the
same execution path on the graphG′, returning the goal state
fB . But by construction, f∗ is a lower-cost goal in G′, con-
tradicting the assumed optimality of B.

Inferring Partial Orders
Now that we have a definition of compatible partial or-
ders and an algorithm that can take advantage of them, all
we need is a method for finding them. Of course, one can
construct compatible partial orders by hand using domain
knowledge, but that is not always desirable. In this section,
we show how to automatically infer a compatible partial or-
der from a sequential planning problem domain’s specifica-
tion, such as those available in PDDL (Ghallab et al., 1998;
Fox and Long, 2003). In the next section, we will extend
this procedure to a broad class of concurrent domains with
durative actions.

Planning States
When planning with resources, a basic planning state n can
be viewed as a mapping from resource types to values. That
is, for a given resource r, n(r) ∈ R is the quantity of that
resource available at state n. Most planning state representa-
tions also require some notion of boolean propositions, but
in order to simplify the exposition, for the purposes of defin-
ing a partial order we view these as special resources that
always take values in {0, 1}.

Also note that for planning problems, the cost of a state
is just a resource like any other. For example, in many do-
mains, the cost is equivalent to time, which most actions in-
crement as one of their effects. Thus, though we have been
so far using g(n) to refer to the cost of the optimal path to a

state, in this section we will abuse notation slightly and treat
g(n) as an observable property of the state itself, with the
understanding that a path with a different cost would have
reached a different state.

Basic Partial Orders
If we want to determine whether a state n dominatesm, then
we need to know two things: first, does n have lower cost;
and second, does n have a more “useful” set of resources?
The first criterion is easy to check, but the second requires
more careful consideration of what it means for a resource
to be useful or not.

There are basically two ways in which the value of a par-
ticular resource can matter: it can either contribute to satisfy-
ing the goal test n ∈ F , or it can contribute to satisfying the
precondition of some action that might get us closer to the
goal. In both cases, we are concerned with the relationship
between the value of a particular resource r, and a particular
boolean predicate b. In general, we want to know when it
helps to have more (or less) of a particular resource, leading
us to the following classification of predicates based on how
they interact with a given resource. Let b(n) be the value of
the predicate b in state n.

Definition 2 (r-Dependent). A predicate b is r-dependent if
∃n, n′ with b(n) = true and b(n′) = false, but where n and
n′ are identical except that n(r) 6= n′(r).

Definition 3 (r-Positive). A predicate b is r-positive if b is r-
dependent and ∀n, n′ identical except n(r) < n′(r), b(n)⇒
b(n′).

Note that this additionally implies the contrapositive:
∀n, n′ identical except n(r) > n′(r), ¬b(n)⇒ ¬b(n′)
Definition 4 (r-Negative). A predicate b is r-negative if b
is r-dependent and ∀n, n′ identical except n(r) > n′(r),
b(n)⇒ b(n′).

For example, the predicate “n(r) ≥ 1” is r-positive, the
predicate “n(r) ≤ 0” is r-negative, the predicate “n(r1) ≥
n(r2)” is r1-positive, but r2-negative, and the predicate
“1 ≤ n(r) ≤ 2” is r-dependent, but neither r-positive nor
r-negative.

Using these definitions, we can construct a partial order
based on three parts of the problem definition:

1. The set of (grounded, where applicable) resources.

2. The set of possible (grounded) actions, particularly their
preconditions.

3. The goal test: n ∈ F .

LetB be the set of all relevant predicates, that is, the set of
preconditions for each action plus the goal test. We partition
all resources into four disjoint sets: R+, R−, R=, and R∅,
according to the following criteria:

• r ∈ R+ if ∀b ∈ B, b is r-dependent implies that b is r-
positive, and ∃ at least one b ∈ B that is r-positive.

• r ∈ R− if ∀b ∈ B, b is r-dependent implies that b is r-
negative, and ∃ at least one b ∈ B that is r-negative.

• r ∈ R= if ∃b ∈ B that is r-dependent but not r-positive
or r-negative, or if ∃b1, b2 ∈ B with b1 r-positive and b2
r-negative.

• r ∈ R∅ if ∀b ∈ B, b is not r-dependent.

These sets are fairly intuitive. For instance, resources in
R+ are better the more you have of them (e.g. widgets),
while resources in R= have a complex relationship with the
problem, and so it is not safe to prune a state n unless it has
the exact same value as its potential dominator for that re-
source. R∅ consists of those resources that have no effect on
any condition in the problem. With these sets in mind, we
can define the partial order �R:

Definition 5 (�R). For planning states n andm, we say that
m �R n if and only if:

1. g(m) ≥ g(n),
2. ∀r ∈ R+,m(r) ≤ n(r),
3. ∀r ∈ R−,m(r) ≥ n(r), and
4. ∀r ∈ R=,m(r) = n(r)

Claim 4. If action costs and effects do not depend on the
current state, then �R is compatible.

Proof. Condition 1 of Definition 1 follows directly from
condition 1 of Definition 5.

To verify condition 3 of Definition 1, we only need to con-
sider resources r for which the goal test is r-dependent, as
changes in other resources will not affect the outcome of the
test. If the goal test is r-positive, then r ∈ R+ or r ∈ R=, so
m(r) ≤ n(r). If the goal test is r-negative, then r ∈ R− or
r ∈ R=, so m(r) ≥ n(r). If the goal test is neither (but is r-
dependent), then r ∈ R=, so m(r) = n(r). Taken together,
these conditions ensure that n ∈ F ⇒ m ∈ F .

Finally, to verify condition 2 of Definition 1, observe that
some particular action results in the transition from n to n′.
By the argument above, if the precondition of this action
holds for m, then it also holds for n. Let n′ be the result of
taking this action from n. By assumption, the cost is identi-
cal and the change in resources from n to n′ is also identi-
cal to that from m to m′. Thus, for all r, n′(r) − m′(r) =
n(r)−m(r). Therefore, m′ �R n′.

A few remarks are in order with regard to this inferred
ordering. First, there are occasionally resources that are usu-
ally beneficial, but they might have some high upper limit.
For instance, we might like to have as many widgets as pos-
sible, except that we have only a large but finite amount of
storage space for them. In this case, we would not be able to
prune based on the number of widgets: its resource would be
inR=, because there are in some sense two resources: “wid-
gets” and “free space for widgets.” However, if the maxi-
mum number of widgets is indeed so high that we suspect
that we will not reach it in search, we can treat it as though
there was no limit. If we do hit the limit, we then have to re-
enqueue all nodes pruned based on widget count, and back
off to the safer partial order.

Second, it may not be the best ordering for a given prob-
lem. Consider a domain in which we can use sprockets to
make a transmogrifier, but not widgets. However, suppose

there is a free conversion from widgets to sprockets, and
vice versa—because sprockets are in fact just upside-down
widgets. In this case, sprockets and widgets are interchange-
able, and so we can actually prune based on the sum of their
count. However, the method just described is incapable of
realizing this relationship. In general, it is intractable to find
the optimal partial ordering. That said, we suspect that such
perverse examples are uncommon.

Partial Orders and Concurrency
In classical planning domains, constructing a search graph
is straightforward, with transitions corresponding directly
to the simple actions available to the agent. However, in
planning domains that permit multiple simultaneous actions,
the state space and the search graph need to be augmented
slightly for planning to still work properly as a search prob-
lem. In this work, we use the concurrent planning framework
described in Bacchus and Ady (2001). First, we briefly de-
scribe this representation, and then describe the extension of
the partial order inference to concurrent domains.

Modeling Concurrency
The main modification is that each action no longer nec-
essarily makes only atomic modifications to a state. In-
stead, action effects now have three parts: effects that take
place immediately upon beginning the action, the duration
required before the action completes, and effects that take
place when the action ends. In order to keep track of actions
whose completion effects haven’t occurred yet, basic states
are augmented with an action queue. An action queue is a
multiset of (a, t) pairs, where a is an in-progress action, and
t is the length of time until that action completes.

The search graph also needs to be modified to handle in-
progress actions. First, in this work, we assume that the cost
function used in concurrent planning domains is Ca + λT ,
where Ca is the accumulated cost of all basic actions taken,
T is the total amount of time elapsed, and λ > 0 is a scal-
ing constant. The search graph still contains transitions for
all basic actions whose preconditions are satisfied, each with
the same cost. However, the construction of the ending state
n′ is different: when performing action a, only the immedi-
ate effects are applied, and then the pair (a, da) is added to
the action queue, where da is the duration of a. In addition
to the transitions for basic actions, we also need a set of spe-
cial transitions elapse time(k). The cost of this transition is
λk, and the effects are:

1. For every pair (a, t) on the action queue with t ≤ k, the
completion effects of a are applied.

2. All pairs (a, t) with t ≤ k are removed from the action
queue.

3. All pairs (a, t) with t > k are replaced with (a, t− k).

Inferring Partial Orders with Action Queues
In concurrent domains, in addition to a collection of re-
sources, the state contains a queue of in-progress actions.
Here, we’ll construct a new partial order �Q that takes the

action queue into account. To simplify the exposition, we as-
sume that all actions have beneficial completion effects. For-
mally, this means that any resource whose value is increased
at completion is in R+ or R∅, and any resource whose value
is decreased is in R− or R∅. The extension to more general
action effects is straightforward.

Intuitively, a state n can only be better than a state m if
its action queue finishes faster than m’s, or if n already has
more resources thanmwill have. We formalize this intuition
as follows:
Definition 6 (�Q). Let q(m) denote the action queue for
state m. For planning states m and n, we say that m �Q n
if and only if m �R n, and also ∀(a, t) ∈ q(m), at least one
of the following conditions holds:

1. ∃ a distinct (a, t′) ∈ q(n) with t′ ≤ t.
2. ∀r affected by the completion effects of a, the change

fromm(r) to n(r) is at least as big as that produced by all
actions currently enqueued that are not satisfied by condi-
tion 1.
The notion of a distinct pair (a, t′) is important, as the

same action can appear multiple times in the same action
queue. For example, let a be an action whose completion ef-
fect is “Gain 5 r”. If q(m) = {(a, 10), (a, 20)} then q(n) =
{(a, 10), (a, 15)} meets this condition, but q(n) = {(a, 5)}
does not, unless n(r) ≥ m(r) + 5. Similarly, q(n) = {}
does not meet the condition unless n(r) ≥ m(r) + 10.
Claim 5. If action costs and effects do not depend on the
state, and all action completion effects are beneficial, then
�Q is compatible.

Proof. The proof of Claim 4 already covers conditions 1
and 3 of Definition 1. There are two types of transitions we
need to handle for condition 2: basic action transitions, and
elapse time transitions. Basic actions are also mostly cov-
ered by the proof of Claim 4; the only difference is that the
action queues are modified. q(m) and q(m′) differ only in
the addition of (a, da), and likewise for q(n) and q(n′). This
new addition is covered by the first case in Definition 6, and
m �Q n implies that the rest of q(m′) is matched by n′, so
we also have m′ �Q n′.

As for the elapse time transitions, assume that m′ is
reached by following elapse time(k) from m. If we follow
elapse time(k) from n, we incur the same cost and n′ has
the following two properties. First, for every (a, t) ∈ q(m)
with t ≤ k that is completed as part of the transition, either:

1. n already had a corresponding resource advantage over n
and thus m′ does not overtake n′, or

2. ∃(a, t′) ∈ q(n) with t′ ≤ t ≤ k, and so this action com-
pletes and n′ gets a corresponding resource improvement.

Second, for every pair (a, t) ∈ q(n) with t > k there is now
a pair (a, t− k) in q(n′). But in m′, one of three conditions
holds:

1. n already had a corresponding resource advantage over
m, so n′ preserves this advantage over m′, or

2. ∃(a, t′) ∈ q(n) with k < t′ ≤ t, so (a, t′ − k) is in q(n′),
or

3. ∃(a, t′) ∈ q(n) with t′ ≤ k ≤ t, so n′ has gained the
necessary resource advantage over m′.

Taken altogether, we once again get m′ �Q n′.

Skyplan in Practice
Stepping back, the basic outline of our system is fairly
straightforward. Given a planning problem, Skyplan infers
the partial order and we then use that partial order in a stan-
dard graph search.

There are a few pragmatic details of our system that can
substantially affect performance that are worth mentioning.
One is our choice of Hierarchical A∗ (Holte et al., 1996)
as base search algorithm. The other is the somewhat more
mundane question of how best to implement a skyline query
for our setting. In this section, we discuss each in turn.

Hierarchical A∗

While skyline pruning works with any optimal search proce-
dure, this pruning method has a particular synergy with the
Hierarchical A∗ algorithm. Hierarchical A∗ works by iden-
tifying a series of relaxations to the search space, and uses
each level of relaxation as the (admissible and consistent)
heuristic for the corresponding lower level.

One particularly easy way to apply this algorithm to plan-
ning is to define the relaxations only in terms of relaxations
to the goal test. That is, one can simply take a subset of the
goal conditions at each level without any further relaxations
of the state space.

If we use this series of projections, we can actually main-
tain a single skyline for all levels of the hierarchy so long
as we use the partial order�R defined on the original search
problem (that is, with the full goal test). Thus, when expand-
ing a state, we can prune any of its successors if they are
dominated by a state at any level of the hierarchy. In partic-
ular, the combination of Hierarchical A∗ and skyline pruning
means that the projected searches give us two sources of in-
formation: how far a state is from a (partial) goal, and which
states are not possibly on the optimal path to the full goal.

Implementing Skyline Pruning
The implementation of the skyline is somewhat delicate.
There is some work in this area in the database literature, but
these are not designed for online applications (Börzsönyi,
Kossmann, and Stocker, 2001; Tan, Eng, and Ooi, 2001) or
are for fairly low dimensional states (Kossmann, Ramsak,
and Rost, 2002), and so they are not useful here.

The obvious, naı̈ve solution is to maintain a list of all
elements in the current skyline, and to check all of these
elements when deciding whether or not to add an element
to the skyline. Unfortunately, this check is clearly linear in
the number of states (which means we must make quadrati-
cally many checks). In practice, this runtime can overwhelm
the benefit obtained from pruning the branching factor, es-
pecially if the number of states pruned is small.

However, note that in high dimensions most states are
clearly not related to one another. They might both have
different positive propositions, with one not having strictly

Problem Nodes Popped Time (s)
HA∗ Skyplan HA∗ Skyplan

Pegsol 1 25 25 1.11 1.09
Pegsol 2 246 170 10.26 6.86
Pegsol 3 670 435 28.0 17.4
Pegsol 4 592 587 37.2 36.3
Pegsol 5 1553 636 86.4 31.2
Pegsol 6 5695 2450 312 128
Pegsol 7 589 328 31.3 16.8
Pegsol 8 199,361 113,848 12,813 7271
Pegsol 9 48,668 15,268 3750 1179

Pegsol 10 272,112 197,165 21,108 15,138
Openstacks 1 205 205 0.061 0.064
Openstacks 2 588 588 0.320 0.320
Openstacks 3 2022 2022 1.37 1.31
Openstacks 4 53,630 53,630 46.7 51.3
Openstacks 5 201,437 201,437 259 288

Table 1: Results on sequential domains. Times are averaged
over 10 runs, except for Pegsol 10, which was averaged over
5 runs.
more than another. Therefore, we can quickly do a “coarse”
version of a skyline query by having a list of sets, one for
each resource or proposition in R+ (which in practice in-
cludes most resources), that contains all states in the sky-
line that have a positive value for that resource. Then, when
deciding whether or not a new state is dominated, we can
simply intersect these sets, and then run the check on those
states in the intersection. Because most states in practice are
dominated by very few (or sometimes no) states, this inter-
section is much smaller than the entire skyline. So, while
this optimization does not decrease the asymptotic runtime,
in practice it is several orders of magnitude faster.

Experiments
We empirically evaluated Skyplan in two settings: a collec-
tion of standard domains from the International Planning
Competitions, and a new domain based on the video game
StarCraft. In the first setting, we note that the competitions
have not focused on optimal planning in time-sensitive do-
mains with concurrency. Instead, the goals for problems in
these competitions are either to find the optimal plan in a
small domain without concurrency, or to find a good, satis-
ficing plan in larger domains with concurrency.2 We conduct
experiments from domains of both types.

These standard domains are largely concerned with dis-
crete objects rather than ever-growing resources. Therefore,
even the concurrent domains require a still rather modest
amount of concurrency, with even the most complex prob-
lems never permitting more than a dozen simultaneous ac-
tions. Nevertheless, Skyplan can perform quite well in some
of these domains, while in others it does not perform as well.

Skyplan performs best in domains with a large amount of
concurrency, much more than is available in most standard
planning domains. Therefore, we also ran experiments in a
more realistic resource acquisition setting modeled on the
video game StarCraft. Because this domain involves manip-

2Still other configurations exist, but these are further afield from
our current interest.

Problem Nodes Popped Time (s)
HA∗ Skyplan HA∗ Skyplan

Pegsol 1 29 29 0.697 0.643
Pegsol 2 320 244 5.92 4.65
Pegsol 3 983 694 19.0 13.5
Pegsol 4 6133 1766 176.7 51.8
Pegsol 5 2178 1147 51.5 25.1
Pegsol 6 25,171 10,448 727 287

Woodworking 1 722 427 0.103 0.051
Woodworking 2 5030 2838 0.527 0.431
Woodworking 3 19,279 11,395 1.99 1.96
Woodworking 4 272,863 132,487 51.1 49.9
Woodworking 5 2,626,520 1,312,511 588 2044

Openstacks 1 3,872,619 70,644 437.2 23.4

Table 2: Results on temporal satisficing domains. Times are
averaged over 10 runs.
ulating large numbers of resources at the same time, Sky-
plan’s strengths will be more readily apparent.

We implemented two versions of Skyplan and the rele-
vant baselines, one for the generic PDDL-based domains,
and one specialized to the Starcraft domain.3 The two Sky-
plan and A∗ implementations differ primarily in the heuris-
tics used. Our generic implementation uses a hierarchical
A∗ implementation (with skyline pruning), with no heuris-
tic at the base level. In StarCraft, we use a special heuristic
crafted to this domain. The heuristic is essentially a critical
path heuristic that ignores resource costs, taking into account
only the time to complete actions. Both implementations use
a variant of expansion cores (Chen and Yao, 2009; Xu et al.,
2011) to prune irrelevant actions.

Finally, we note that no available open source planning
system can handle both temporal problems and problems
with resources. As these properties are key motivations for
our approach, we instead constructed our own baselines. The
most obvious baseline is to use A∗ without skyline prun-
ing. In addition, for Starcraft we compare to a non-optimal
greedy baseline. This planner determines which structures
and units are required to reach the goal and builds the most
costly structures and units first, taking dependencies into ac-
count.

The IPC Domains
We evaluated Skyplan on problems from three different do-
mains that were released with the 2008 International Plan-
ning Competition: Pegsol (peg solitaire), Woodworking, and
Openstacks. Of these, Pegsol and Openstacks each appeared
in both sequential and temporal versions, and we evaluated
on both. These particular domains were chosen because the
initial problems from each domain were simple enough to be
solved by basic optimal planners. For all problems, we mea-
sured the number of nodes popped (including those popped
during the recursive searches used for heuristic computa-
tion) and the total time taken by each algorithm.4 The results
for the sequential variants are shown in Table ??, and those
for the temporal ones are in Table ??.

3Source for the generic implementation is available at
http://overmind.cs.berkeley.edu/skyplan.

4All these experiments were run on isolated 2.67GHz Intel
Xeon processors.

Planner 7 SCVs 1 Marine 1 Firebat 1 Marine, 1 Firebat 2 Command Centers
Nodes Time Cost Nodes Time Cost Nodes Time Cost Nodes Time Cost Nodes Time Cost

A∗ 3.1k 0.27 1.0 11.7k 1.34 1.0 >809k >1800 * >655k >1800 * >768k >1800 *
Skyplan 233 0.12 1.0 405 0.22 1.0 97k 21.9 1.0 509k 393 1.0 26k 209 1.0
Greedy 0.03 1.0 0.06 3.3 0.06 2.4 0.09 2.4 0.06 2.1

Table 3: Results on the StarCraft domain. Times are in seconds. Asterisks indicate that A∗ timed out after more than 30 minutes
of execution.

Skyplan is typically faster than Hierarchical A∗, prun-
ing as many as 98% of the nodes that A∗ expands, though
the overhead of maintaining the skyline means that for this
problem (the first temporal Openstacks problem), expand-
ing fewer than 1/50th of the nodes results in a slightly less
than 20x speedup. The Pegsol domains also showed con-
sistent improvement, usually expanding fewer than half the
nodes, and achieving commensurate speedups, particularly
in the temporal variant. Results from the sequential Open-
stacks domain demonstrate that when the partial order fails
to successfully prune many (or any) nodes, Skyplan’s over-
head eventually results in a slowdown vs A∗. The overhead
is superlinear with respect to the size of the fringe, as exem-
plified in the Woodworking domain, where Skyplan’s mod-
est initial success gives way to the result in problem 5 where,
due to the extremely high number of nodes, Skyplan’s 50%
pruning rate is inadequate to combat the overhead, and the
net effect of using Skyplan is an almost 4x slowdown.

The StarCraft Domain
StarCraft® is a real time strategy game created by Blizzard
Entertainment, and one of the most competitive and popular
games in the world. The game involves the accumulation of
resources (minerals and gas), which are gathered by work-
ers. These resources are then spent to build structures (e.g. a
barracks), which are then in turn used to build military units.
The ultimate goal is to build an army to defeat an opponent.
Skyplan is designed to take advantage of this sort of struc-
ture, suggesting that it will perform well in this environment.

There are many aspects of this game that are worth model-
ing from an artificial intelligence perspective in general and
from planning in particular. The game lends itself to par-
tial observability, planning against an adversary, highly con-
current plans, and online planning. Indeed, Churchill and
Buro (2011) recently described an online planning system
designed for use in an artificial intelligence agent, and Chan
et al. (2007) earlier developed an online planner for a similar
open source game called Wargus.

Here, we focus instead on planning opening build orders.
Much like Chess, there are a large number of different open-
ings, some of which are known to be better than others. In
StarCraft, openings can be either more aggressive or more
“economic” (i.e. aimed at producing lots of resources), and
typically are designed to get a specific composition of build-
ings and units as quickly as possible. In practice, the first
several minutes of the game are played largely indepen-
dent of what the opponent is doing, unless certain surprise
“cheese” openings are observed. Moreover, shaving seconds
off an opening can be the difference between an easy early
win and a loss. Thus, coming up with an optimal build order
for a given composition is useful, if it is feasible.

One crucial aspect of StarCraft is that workers are both the
resource gatherers and the builders of buildings. Combined
with StarCraft being a “real time” game, this property re-
sults in an extremely high branching factor in the game tree.
However, many of the possible combinations are clearly not
optimal: it is usually (but not always) a bad idea to have
your workers remain idle. This aspect of the game results in
a large number of highly similar states, most of which are
worse than others.

Our specification of StarCraft differs from that of
Churchill and Buro (2011) precisely in how we handle gath-
ering resources. For simplicity, they assume a linearization
of resource gathering, with resources gathered at a contin-
uous rate. However, resources are actually gathered in dis-
crete amounts. By more accurately modeling resource col-
lection, we can find more accurate plans, particularly in the
early game, where seconds are so critical.

Results in the StarCraft Domain We selected a number
of early game units and resource combinations as goals for
our planners. We compared Skyplan against an A∗ planner
and our nonoptimal Greedy planner, measuring plan length
and total planning time taken by each algorithm, and the
number of nodes expanded in Skyplan and A∗.

The results are in Table 2. As mentioned above, the na-
ture of the domain allows for aggressive pruning, reducing
the branching factor by as much as 90%. This results in dra-
matic speedups over A∗ on all problems tested. In each ex-
periment, Skyplan expands fewer than 10% of the nodes that
A∗ expands, expanding as few as 4% as many nodes. In the
simplest problems, Skyplan takes half as long as A∗; on the
most complex problems, Skyplan takes less than 2% the time
of A∗. In every case, the Greedy planner discovers a satisfic-
ing plan in less than 100ms, but these plans cost up to three
times more than optimal.

Conclusion

Planning in highly concurrent domains can be particularly
challenging for standard search-based planners, but by re-
stricting attention to only those states that could conceiv-
ably be part of an optimal plan, Skyplan can efficiently solve
problems that A∗ alone could not solve. Furthermore, since
geometrically pruning the state space achieves speedups in
a way that is orthogonal to heuristic domain knowledge,
this gain should stack well with improved A∗ approaches.
There is overhead introduced by the optimality-preserving
skyline, but further innovations in data structures for state
space pruning could obviate this problem, perhaps trading
guaranteed optimality for improvements in asymptotic com-
plexity.

References
Bacchus, F., and Ady, M. 2001. Planning with resources

and concurrency: A forward chaining approach. In IJCAI,
volume 17, 417–424.

Börzsönyi, S.; Kossmann, D.; and Stocker, K. 2001. The
skyline operator. In ICDE, 421–430.

Chan, H.; Fern, A.; Ray, S.; Wilson, N.; and Ventura, C.
2007. Online planning for resource production in real-
time strategy games. In ICAPS, 65–72.

Chen, Y., and Yao, G. 2009. Completeness and optimality
preserving reduction for planning. In IJCAI, 1659–1664.

Chen, Y.; Xu, Y.; and Yao, G. 2009. Stratified planning. In
International Joint Conference on Artificial Intelligence.

Churchill, D., and Buro, M. 2011. Build order optimization
in StarCraft. In AIIDE.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
pddl for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.

Geffner, P., and Haslum, P. 2000. Admissible heuristics for
optimal planning. In AI Planning Systems, 140–149.

Ghallab, M.; Aeronautiques, C.; Isi, C.; Wilkins, D.; et al.
1998. PDDL—the planning domain definition language.
Technical report.

Godefroid, P. 1996. Partial-Order Methods for the Ver-
ification of Concurrent Systems - An Approach to the
State-Explosion Problem, volume 1032 of Lecture Notes
in Computer Science. Springer.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems, Science, and Cy-
bernetics SSC-4(2):100–107.

Hoffmann, J. 2003. Metric-ff planning system: Translating
“ignoring delete lists” to numeric state variables. Journal
Of Artificial Intelligence Research 20.

Holte, R.; Perez, M.; Zimmer, R.; and MacDonald, A. 1996.
Hierarchical A*: Searching abstraction hierarchies effi-
ciently. In National Conference on Artificial Intelligence,
530–535.

Kossmann, D.; Ramsak, F.; and Rost, S. 2002. Shooting
stars in the sky: An online algorithm for skyline queries.
In VLDB, 275–286.

Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning.
Alternation 10(100s):1000s.

Tan, K.-L.; Eng, P.-K.; and Ooi, B. C. 2001. Efficient pro-
gressive skyline computation. In VLDB, 301–310.

Valmari, A. 1992. A stubborn attack on state explosion.
Formal Methods in System Design 1:297–322.

Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
ICAPS.

Xu, Y.; Chen, Y.; Lu, Q.; and Huang, R. 2011. Theory and
algorithms for partial order based reduction in planning.
CoRR abs/1106.5427.

