
Prototype-Driven
Grammar Induction
Aria Haghighi and Dan Klein
Computer Science Division
 University of California Berkeley

 Grammar Induction

Grammar Engineer
EM
Data

Output

Picture yourself as a grammar engineer…
Imagine you’re asked to design a parser for some exotic language which doesn’t yet have a large annotated treebank. Say Russian or Japenese.
What would you do?
Well, you look at the language and decide what the phrase types are as well as how to analyze constructions with these phrase types.
In short, you develop an annotation which you’d like the parser to adhere to.
Since you don’t have labeled data, you decide that using an unsupervised learning is a good starting point.
You take your unlabeled data, and feed into the EM algorithm, and hope that it discovers the structure you had in mind.
You examine the output, and lo and behold, the output doesn’t look anything like the model you wanted to learn.
This talk is about what you can do next. How you can efficiently guide a system to learn the model you intend it to learn.

Central Questions
How do we specify what we want to learn?

How do we fix observed errors?
NPs are things
like DT NN
That’s not quite it!

In particular, we’ll be exploing two questions.
The first, how can we specify what we’d like our model to learn. What the semantics of the target symbols are?
The second, when our system makes an error, how can fix it?

Experimental Set-up
Binary Grammar

{ X1, X2, … Xn} plus POS tags

Data
	WSJ-10 [7k sentences]
	Evaluate on Labeled F1
	Grammar Upper Bound: 86.1

	

Xj
 Xi
Xk

We’ll be exploring these questions through a series of experiments in English Grammar Induction.
In particular, we’ll be inducing binary grammars over nonterminals and POS tags.
The data we’ll be using…….
Like prior work, we use gold POS tags……
Unlike prior work, we induce labeled trees, and use labeled F1
We should note upper bound

Unconstrained PCFG Induction
Learn PCFG with EM
	Inside-Outside Algorithm
	Lari & Young [90]

Results

0 i j n
 (Inside)
 (Outside)

As we mentioned, an unsupervised system is a reasonable place to begin,
This means using the inside-outside algorithm and inducing a PCFG and hoping it looks like the treebank standard.
This experiment was done by Lari and Young, and the results were abysmal then, and unfortunately are still abysmal.

Encoding Knowledge

	

What’s an NP?

Semi-Supervised Learning

One option is to provide fully labeled trees.
Disadvantage: Defining the meaning of symbols recursively, in terms of other symbols the system doesn’t understand

 Encoding Knowledge

What’s an NP?

For instance,
	DT NN
	JJ NNS
	NNP NNP

Prototype Learning

Prototype Learning: Concrete observations!

 Prototype List
	
	

Declarative specification
Manual consruction
Didn’t model everything

 How to use prototypes?
NP
PP
VP
 VBD
 sat
 IN
 in
 DT
 the
 NN
 tree
¦
¦

NP
	Phrase	Prototype
	NP	DT NN
	PP	IN DT NN
	VP	VBD IN DT NN

 DT
The
NN
koala
 DT
The
 NN
koala
 JJ
 hungry

Constrain so that if there is a constituent, we call it the prototype
Substituatble

Distributional Similarity

 (DT JJ NN)

Clark ‘01
Klein & Manning ‘01
 (DT NN)
 (JJ NNS)
 (NNP NNP)

NP
 (VBD DT NN)
 (MD VB NN)
 (VBN IN NN)

VP
 (IN NN)
 (IN PRP)
 (TO CD CD)

PP

{ ¦ __ VBD : 0.3,
 VBD __ ¦ : 0.2,
 IN __ VBD: 0.1, ….. }

 proto=NP

Distributional Similarity

 (IN DT)

 (DT NN)
 (JJ NNS)
 (NNP NNP)

NP
 (VBD DT NN)
 (MD VB NN)
 (VBN IN NN)

VP
 (IN NN)
 (IN PRP)
 (TO CD CD)

PP

 proto=NONE

 DT
The
 NN
koala
 VBD
 sat
 IN
 in
 DT
 the
 NN
 tree
¦
¦

 JJ
 hungry

Prototype CFG+ Model

 proto=NP

proto=NONE

Each span emits a feature…

Prototype CFG+ Model

NP
PP
VP
 DT
The
 NN
koala
 VBD
 sat
 IN
 in
 DT
 the
 NN
 tree
¦
¦
S

 JJ
 hungry
NP
NP
P (DT NP | NP)

P (proto=NP | NP)

CFG Rule
Proto Feature

PCFG+(T,F) = X(i,j)! 2 T P(| X) P(pi,j | X)

Prototype CFG+ Induction
Experimental Set-Up
	Add Prototypes
	BLIPP corpus

Results

Unlabeled F1
 66.9

Bottleneck…Unalebeled F1

Constituent-Context Model

 DT
The
 NN
koala
 VBD
 sat
 IN
 in
 DT
 the
 NN
 tree
¦
¦
 JJ
 hungry
Klein & Manning ‘02
+
-
P(VBD IN DT NN | +)

P(NN __ ¦ | +)

Yield
Context
P(NN VBD| -)
P(JJ __ IN | -)

Constituent-Context Model

Bracketing Matrix
PCCM (B, F’) =
(i,j) P(Bi,j) P(yi,j | Bi,j) P(ci,j | Bi,j)
 DT
The
 NN
koala
 VBD
 sat
 IN
 in
 DT
 the
 NN
 tree
¦
¦
 JJ
 hungry

Yield
Context

 Intersected Model
Different Aspects of Syntax

Intersected EM [Klein 2005, Liang et. al. ‘06]

 P(T, F, F’) = PCCM(B(T), F’) PCFG+(T,F)

CCM
CFG
PP
NP

NP

Grammar Induction Experiments
Intersected CFG+ and CCM
Add CCM brackets
Results

Reacting to Errors
Possessive NPs

Our Tree
Target Tree

Add right vs. wrong tree….
Introduce the NP-POS category
What’s the new analysis

 Reacting to Errors
Add Category: NP-POS NN POS
New Analysis

Error Analysis
Modal VPs

Our Tree
Target Tree

 Reacting to Errors
Add Category: VP-INF VB NN
New Analysis

 Fixing Errors
Supplement Prototypes
	NP-POS and VP-INF

Results

Unlabeled F1
 78.2

 Results Summary

26.3
65.1
86.1
62.2
56.8
0
50
100
PCFG
PROTO
PROTO
CCM
Best
Upper
Bound
Labeled F1
¼ 50%
Error reduction
From PCFG to BEST

Side By Side w/ Gold Constraints

 Conclusion
	Prototype-Driven Learning

Flexible Weakly Supervised Framework

	Merged distributional clustering techniques with structured models

	

Thank You!
http://www.cs.berkeley.edu/~aria42

 Lots of numbers

 More numbers

 Yet more numbers

