
Prototype-Driven 
Grammar Induction
Aria Haghighi and Dan Klein
Computer Science Division
     University of California Berkeley






 Grammar Induction


Grammar Engineer
EM
Data

Output
























































Picture yourself as a grammar engineer…
Imagine you’re asked to design a parser for some exotic language which doesn’t yet have a large annotated treebank. Say Russian or Japenese.
What would you do?
Well, you look at the language and decide what the phrase types are as well as how to analyze constructions with these phrase types. 
In short, you develop an annotation which you’d like the parser to adhere to. 
Since you don’t have labeled data, you decide that using an unsupervised learning is a good starting point.
You take your unlabeled data, and feed into the EM algorithm, and hope that it discovers the structure you had in mind. 
You examine the output, and lo and behold, the output doesn’t look anything like the model you wanted to learn.
This talk is about what you can do next. How you can efficiently guide a system to learn the model you intend it to learn. 




Central Questions
How do we specify what we want to learn?




How do we fix observed errors? 
NPs are things 
like DT NN
That’s not quite it!

In particular, we’ll be exploing two questions.
The first, how can we specify what we’d like our model to learn. What the semantics of the target symbols are?
The second, when our system makes an error, how can fix it?




Experimental Set-up
Binary Grammar

{ X1, X2, … Xn}  plus POS tags      


Data
	WSJ-10    [7k sentences]
	Evaluate on Labeled F1
	Grammar Upper Bound: 86.1

	

Xj 
 Xi
Xk

We’ll be exploring these questions through a series of experiments in English Grammar Induction. 
In particular, we’ll be inducing binary grammars over nonterminals and POS tags. 
The data we’ll be using…….
Like prior work, we use gold POS tags……
Unlike prior work, we induce labeled trees, and use labeled F1
We should note upper bound




Unconstrained PCFG Induction
Learn PCFG with EM
	Inside-Outside Algorithm
	Lari & Young [90]

Results




0   i                 j         n
 (Inside)
 (Outside)



As we mentioned, an unsupervised system is a reasonable place to begin, 
This means using the inside-outside algorithm and inducing a PCFG and hoping it looks like the treebank standard.
This experiment was done by Lari and Young, and the results were abysmal then, and unfortunately are still abysmal.





Encoding Knowledge

	

What’s an NP?

Semi-Supervised Learning

One option is to provide fully labeled trees.
Disadvantage: Defining the meaning of symbols recursively, in terms of other symbols the system doesn’t understand




 Encoding Knowledge


What’s an NP?

For  instance,
	DT NN
	JJ NNS
	NNP NNP 
     
Prototype Learning


Prototype Learning: Concrete observations!




 Prototype List
	
	


Declarative specification
Manual consruction
Didn’t model everything







 How to use prototypes?
NP
PP
VP
 VBD
  sat
  IN
  in
  DT
  the
  NN
  tree
¦
¦


NP
	Phrase	Prototype
	NP	DT NN
	PP	IN DT NN
	VP	VBD IN DT NN

 DT
The
NN
koala
 DT
The
 NN
koala
    JJ
 hungry









Constrain so that if there is a constituent, we call it the prototype
Substituatble




Distributional Similarity


 (DT JJ NN)

Clark ‘01
Klein & Manning ‘01
 (DT NN)
 (JJ NNS)
 (NNP NNP)

NP
 (VBD DT NN)
 (MD VB NN)
 (VBN IN NN)

VP
 (IN NN)
 (IN PRP)
 (TO CD CD)

PP

{ ¦ __ VBD : 0.3,
  VBD __ ¦ : 0.2, 
   IN __ VBD: 0.1, ….. }

 proto=NP






Distributional Similarity


 (IN DT)

 (DT NN)
 (JJ NNS)
 (NNP NNP)

NP
 (VBD DT NN)
 (MD VB NN)
 (VBN IN NN)

VP
 (IN NN)
 (IN PRP)
 (TO CD CD)

PP

 proto=NONE






 


 DT
The
 NN
koala
 VBD
  sat
  IN
  in
  DT
  the
  NN
  tree
¦
¦


    JJ
 hungry

Prototype CFG+ Model


 proto=NP

proto=NONE

Each span emits a feature…




Prototype CFG+ Model 


NP
PP
VP
 DT
The
 NN
koala
 VBD
  sat
  IN
  in
  DT
  the
  NN
  tree
¦
¦
S


    JJ
 hungry
NP
NP
P (DT NP | NP)


P (proto=NP | NP)



CFG Rule 
Proto Feature

PCFG+(T,F) = X(i,j)! 2 T P(| X) P(pi,j | X)






Prototype CFG+ Induction
Experimental Set-Up
	Add Prototypes
	BLIPP corpus

Results

Unlabeled F1
      66.9

Bottleneck…Unalebeled F1





Constituent-Context Model


 DT
The
 NN
koala
 VBD
  sat
  IN
  in
  DT
  the
  NN
  tree
¦
¦
    JJ
 hungry
Klein & Manning ‘02
+
-
P(VBD IN DT NN | +) 

P(NN __ ¦ | +) 

Yield
Context
P(NN VBD| -) 
P(JJ __ IN | -) 






Constituent-Context Model



Bracketing Matrix
PCCM (B, F’) = 
(i,j) P(Bi,j) P(yi,j | Bi,j) P(ci,j | Bi,j )
 DT
The
 NN
koala
 VBD
  sat
  IN
  in
  DT
  the
  NN
  tree
¦
¦
    JJ
 hungry

Yield
Context






 
 Intersected Model
Different Aspects of Syntax







Intersected EM   [Klein 2005, Liang et. al. ‘06]

     P(T, F, F’) = PCCM(B(T), F’)  PCFG+(T,F)



CCM
CFG
PP
NP


NP






Grammar Induction Experiments
Intersected CFG+ and CCM
Add CCM brackets
Results







Reacting to Errors
Possessive NPs




Our Tree
Target Tree

Add right vs. wrong tree….
Introduce the NP-POS category
What’s the new analysis




 Reacting to Errors
Add Category: NP-POS     NN POS
New Analysis






Error Analysis
Modal VPs




Our Tree
Target Tree






 Reacting to Errors
Add Category: VP-INF     VB NN
New Analysis






 Fixing Errors 
Supplement Prototypes
	NP-POS and VP-INF

Results

Unlabeled F1
      78.2







 Results Summary


26.3
65.1
86.1
62.2
56.8
0
50
100
PCFG
PROTO
PROTO
CCM
Best
Upper
Bound
Labeled F1
¼ 50%
Error reduction
From PCFG to BEST

Side By Side w/ Gold Constraints




 Conclusion
	Prototype-Driven Learning

Flexible Weakly Supervised Framework

	Merged distributional clustering  techniques with structured models






	







Thank You!
http://www.cs.berkeley.edu/~aria42






 Lots of numbers








 More numbers








 Yet more numbers








