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Abstract
We present a novel method for creating A∗ esti-
mates for structured search problems originally de-
scribed in Haghighi, DeNero, & Klein (2007). In
our approach, we project a complex model onto
multiple simpler models for which exact inference
is efficient. We use an optimization framework to
estimate parameters for these projections in a way
which bounds the true costs. Similar to Klein &
Manning (2003), we then combine completion es-
timates from the simpler models to guide search
in the original complex model. We apply our ap-
proach to bitext parsing and demonstrate its effec-
tiveness.

Introduction
Inference tasks in natural language processing (NLP)
often involve searching for an optimal output from a
large set of structured outputs. Example output spaces
include sentences (machine translation and automatic
speech recognition), partitions (coreference analysis),
and trees (syntactic parsing). For many complex mod-
els, selecting the highest scoring output for a given ob-
servation is slow or even intractable.

One general technique to increase efficiency while
preserving optimality is A∗ search (Hart, Nilsson, &
Raphael 1968); however, successfully using A∗ search
is challenging in practice. The design of admissible (or
nearly admissible) heuristics which are both effective
(close to actual completion costs) and also efficient to
compute is a difficult, open problem in most domains.
As a result, most work on search has focused on non-
optimal methods, such as beam search or pruning based
on approximate models (Collins 1999), though in cer-
tain cases admissible heuristics are known (Zhang &
Gildea 2006). For example, Klein & Manning (2003)
show a class of projection-based A∗ estimates, but their
application is limited to models which have a very re-
strictive kind of score decomposition. In this work, we
broaden their projection-based technique to give A∗ es-
timates for models which do not factor in this restricted
way.

Like Klein & Manning (2003), we focus on search
problems where there are multiple projections or
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Figure 1: Example cost factoring: Each cell of the matrix is a
local configuration composed of two projections (the row and
column of the cell). In (a), the top matrix is an example cost
matrix, which specifies the cost of each local configuration.
The bottom matrix represents our factored estimates, where
each entry is the sum of the configuration projections. For
this example, the actual cost matrix can be decomposed ex-
actly into two projections. In (b), the top cost matrix cannot
be exactly decomposed along two dimensions. Our factored
cost matrix has the property that each factored cost estimate
is below the actual configuration cost. Although our factor-
ization is no longer tight, it still can be used to produce an
admissible heuristic.

“views” of the output structure. We use general opti-
mization techniques (Boyd & Vandenberghe 2005) to
approximately factor a model over these projections.
Solutions to the projected problems yield heuristics for
the original model. This approach is flexible, provid-
ing either admissible or nearly admissible heuristics,
depending on the details of the optimization problem
solved. Furthermore, our approach allows a modeler
explicit control over the trade-off between the tightness
of the heuristic and its degree of inadmissibility (if any).
We describe our technique in general and then apply it
to the task of bitext parsing in NLP.

General Approach
The search problem is to find a minimal cost path from
the start state to a goal state, where the path cost is the
sum of the costs of the edges in the path. When infer-
ring an optimal structure under a probabilistic model,
the cost of an edge is typically a negative log proba-
bility which depends only on some local configuration



type. We will use a to refer to a local configuration and
use c(a) to refer to its cost. Because edge costs are sen-
sitive only to local configurations, the cost of a path P
is

∑
a∈P c(a). A∗ search requires a heuristic function,

which is an estimate h(s) of the completion cost, the
cost of a best path from state s to a goal.

In this work, following Klein & Manning (2003), we
consider problems with projections or “views,” which
define mappings to simpler state and configuration
spaces. Formally, a projection π is a mapping from
states to some coarser domain. A state projection in-
duces projections of edges and of the entire graph π(G).

We are particularly interested in search problems
with multiple projections {π1, . . . , π`} where each pro-
jection, πi, has the following properties: its state projec-
tions induce well-defined projections of the local con-
figurations πi(a) used for scoring, and the projected
search problem admits a simpler inference procedure
than the original.

In defining projections, we have not yet dealt with
the projected scoring function. Suppose that the cost
of local configurations decomposes along projections as
well,

c (a) =
∑̀
i=1

c(πi(a)) , ∀a ∈ A (1)

where A is the set of all local configurations.
A toy example of a score decomposition in the con-

text of a Markov process over two-part states is shown
in figure 1(a), where the costs of the joint transitions
equal the sum of costs of their projections. Under the
strong assumption of equation (1), Klein & Manning
(2003) give an admissible A∗ bound. They note that the
cost of a path decomposes as a sum of projected path
costs. Hence, the following is an admissible A∗ heuris-
tic for our problem,

h(s) =
∑̀
i=1

h∗i (πi(s)) (2)

where h∗i (πi(s)) denote the optimal completion costs in
the projected search graph πi(G). That is, the comple-
tion cost of a state bounds the sum of the completion
costs in each projection.

In virtually all cases, however, configuration costs
will not decompose over projections, nor would we ex-
pect them to. This independence assumption under-
mines the motivation for assuming a joint model over
a complex structure with multiple projections. In the
central contribution of this work, we exploit the pro-
jection structure of our search problem without making
any assumption about cost decomposition.

Rather than assuming decomposition, we propose to
find scores for the projected configurations which are

pointwise admissible:

∑̀
i=1

φi(πi(a)) ≤ c(a), ∀a ∈ A (3)

Here, φi(πi(a)) represents the factored projection cost
of πi(a), the πi projection of configuration a. Given
pointwise admissibility, we can again apply the heuris-
tic recipe of equation (2). An example of factored pro-
jection costs are shown in figure 1(b), where no exact
decomposition exists, but a pointwise admissible lower
bound is easy to find.

Claim. If a set of factored projection costs
{φ1, . . . , φ`} satisfy pointwise admissibility, then
the heuristic from (2) is an admissible A∗ heuristic.

Proof. Assume a1, . . . , ak are configurations used to
optimally reach the goal from state s. Then,

h∗(s) =

kX
j=1

c(aj) ≥
kX

j=1

X̀
i=1

φi(πi(aj))

=
X̀
i=1

 
kX

j=1

φi(πi(aj))

!
≥
X̀
i=1

h∗i (πi(s)) = h(s)

The first inequality follows from pointwise admissi-
bility. The second inequality follows because each inner
sum is a completion cost for projected problem πi and
therefore h∗i (πi(s)) lower bounds it.

Factored Projections for Non-Factored Costs
We can find factored costs φi(πi(a)) which are point-
wise admissible by solving an optimization problem.
We think of our unknown factored costs as a block vec-
tor φ = [φ1, .., φ`], where vector φi is composed of the
factored costs, φi(πi(a)), for each configuration a ∈ A.
We can then find admissible factored costs by solving
the following optimization problem,

minimize
γ,φi

‖γ‖ (4)

such that, γa = c(a)−
∑̀
i=1

φi(πi(a)), ∀a ∈ A

γa ≥ 0, ∀a ∈ A

We can think of each γa as the amount by which the
cost of configuration a exceeds the factored projection
estimates (the pointwise A∗ gap). Requiring γa ≥ 0
insures pointwise admissibility. Minimizing the norm
of the γa variables encourages tighter bounds. In the
case where we minimize the 1-norm or ∞-norm, the
problem above reduces to a linear program, which can
be solved efficiently for a large number of variables and
constraints.
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We could imagine many ways of deciding amongst
the various admissible solutions. Viewing our proce-
dure decision-theoretically, by minimizing the norm of
the pointwise gaps we are effectively choosing a loss
function which decomposes along configuration types
and takes the form of the norm (i.e. linear or squared
losses). A complete investigation of the possibilities is
beyond the scope of this work, but it is worth pointing
out that in the end we will care only about the gap on
entire structures, not configurations, and individual con-
figuration factored costs need not even be admissible for
the overall heuristic to be admissible.

Notice that the number of constraints is |A|, the num-
ber of possible local configurations. For many search
problems, enumerating the possible configurations is
not feasible, and therefore neither is solving an opti-
mization problem with all of these constraints. We deal
with this situation in applying our technique to lex-
icalized parsing models (Haghighi, DeNero, & Klein
2007).

Nearly Admissible Heuristics
Sometimes, we might be willing to trade search opti-
mality for efficiency. In our approach, we can explic-
itly make this trade-off by designing an alternative opti-
mization problem which allows for slack in the admis-
sibility constraints. We solve the following soft version
of problem (4):

minimize
γ,φi

‖γ+‖+ C‖γ−‖2 (5)

such that, γa = c(a)−
∑̀
i=1

φi(πi(a)), ∀a ∈ A

where γ+ = max{0, γ} and γ− = max{0,−γ}
represent the component-wise positive and negative el-
ements of γ respectively. Each γ−a > 0 represents
a configuration where our factored projection estimate
exceeds the actual configuration cost. Since this situa-
tion may result in our heuristic becoming inadmissible
if they are used in the projected completion costs, we
more heavily penalize overestimating the cost by the
constant C.

We note that we can bound our search error in this
setting. Suppose γ−max = maxa∈A γ−a and that L∗ is
the length of the longest optimal solution for the orig-
inal problem. This ε-admissible heuristics (Ghallab &
Allard 1982) bounds our search error by L∗γ−max.1

Bitext Parsing
In bitext parsing, we jointly infer a synchronous phrase
structure tree over a sentence ws and its translation wt

(Melamed, Satta, & Wellington 2004; Wu 1997). Re-
cent advances in syntax-based machine translation have

1This bound may be very loose if L is large.
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Figure 2: (a) A tree-to-tree transducer rule. (b) An example
training sentence pair that yields rule (a).

sparked renewed community interest in this task (Zhang
& Gildea 2006; Galley et al. 2004).

Bitext parsing is a natural candidate task for our
approximate factoring technique. A synchronous tree
projects monolingual phrase structure trees onto each
sentence, which can each be scored independently by a
weighted context-free grammar (WCFG), providing our
heuristic. However, the costs assigned by a weighted
synchronous grammar (WSG) do not typically factor
into independent monolingual WCFGs. We can, how-
ever, produce a useful surrogate: a pair of monolingual
WCFGs with structures projected by a WSG and rule
weights that, when combined, uniformly underestimate
the weights of the WSG.

A Synchronous Grammar Formalism
We demonstrate our technique by parsing using the syn-
chronous grammar formalism of tree-to-tree transduc-
ers (Knight & Graehl 2004). The weighted grammar
rules model a generative process wherein an aligned
pair of nonterminals jointly generate two ordered lists
of children, which may contain either terminals or non-
terminals. The non-terminals in each list must align
one-to-one to the non-terminals in the other, while the
terminals are placed freely on either side. Figure 2(a)
shows an example rule. We can learn such a syn-
chronous grammar by projecting English syntax onto a
foreign language via a word-level alignment, as shown
in figure 2(b). 2

Parsing with a synchronous grammar via a dynamic
program requires time O(n6) in the length of the sen-
tence (Wu 1997). This high complexity makes exhaus-

2Our grammar extraction protocol follows Galley et al.
(2004). Given a sentence-aligned corpus we fix a word align-
ment using GIZA++ (Och & Ney 2000) and parses of the
English sentences with a parser based on Klein & Manning
(2003). We score these extracted synchronous rules using rel-
ative frequency estimates.

3



tive parsing infeasible for all but the shortest sentences.
In contrast, monolingual CFG parsing is only O(n3).

A∗ Parsing
We now consider inferring the optimal parse under a
WSG using A∗. The states are rooted bispans, denoted:

X [i, j] :: Y [k, l]
States represent a joint parse over subspans [i, j] of ws

and [k, l] of wt rooted by the nonterminals X and Y re-
spectively. Given a WSG G, the algorithm prioritizes
a state s by the sum of its inside cost βG(s) (the nega-
tive log of its inside probability) and its outside estimate
α̂(s), or completion cost.3 We are guaranteed the opti-
mal parse under G if our heuristic α̂(s) is never greater
than αG(s), the true outside cost of s. We achieve this
bound by enforcing point-wise admissibility in the pro-
jections of G that yield α̂(s), described below.

Projecting the Synchronous Grammar
G projects a pair of monolingual CFGs Gs and Gt given
by splitting each synchronous rule

r =
(

X
Y

)
→

(
α β
γ δ

)
into two rules: πs(r) = X→αβ and πt(r) = Y→γδ.

To learn pointwise admissible costs for the rules in Gs

and Gt, we solve the following optimization problem: 4

minimize
γ,φs,φt

‖γ‖1

such that, γr = c(r)− [φs(πs(r)) + φt(πt(r))]
for all synchronous rules r ∈ G
φs ≥ 0, φt ≥ 0, γ ≥ 0

We then compute an admissible heuristic by parsing
with Gs and Gt. Each synchronous state s = X [i, j] ::
Y [k, l] projects a pair of monolingual rooted spans.
The heuristic we propose sums the independent outside
costs of these spans in each monolingual projection:

α̂(s) = αs(X [i, j]) + αt(Y [k, l])

Experiments
We parsed 1200 English-Spanish sentences using a tree-
to-tree transduction grammar learned from 40,000 sen-
tence pairs. Figure 3(a) show that A∗ expands substan-
tially fewer states while searching for the optimal parse
with our heuristic. The exhaustive curve shows edge ex-
pansions using the null heuristic. The intermediate re-
sult, labeled English only, used only the English mono-
lingual outside score as a heuristic. Similar results us-
ing only Spanish demonstrate that both projections con-
tribute to parsing efficiency. All three curves in Figure
3 represent running times for finding the optimal parse.

3All inside and outside costs are Viterbi, not summed.
4The stated objective is merely one reasonable choice

among many possibilities which requires pointwise admissi-
bility and encourages tight estimates.
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Figure 3: Parsing efficiency results show that the use of a suit-
able heuristic improves performance substantially, and both
projections are required to maximize performance.

Conclusion
We have presented a technique for creating A∗ esti-
mates for inference in complex models. Our technique
can be used to generate provably admissible estimates
when all search transitions can be enumerated, and an
effective heuristic even for problems where all transi-
tions cannot be efficiently enumerated. In the future we
plan to investigate alternative objective functions and
error-driven methods for learning heuristic bounds.
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