Better Word Alignment with Supervised ITG Models

Aria Haghighi, John Blitzer, John DeNero, and Dan Klein UC Berkeley

- 2002 Chinese-English NIST data
 - 150 labeled training examples
 - 191 test examples

- 2002 Chinese-English NIST data
 - 150 labeled training examples
 - 191 test examples
- Evaluation
 - Prec, Recall over gold alignments
 - BLEU end-to-end

Optimal AER

$\frac{\text{Optimal AER}}{\mathcal{A}}$ 0.0

$\frac{\text{Optimal AER}}{\mathcal{A}}$ 0.0

$\frac{\text{Optimal AER}}{\mathcal{A}}$ 0.0

Inversion Transduction Grammar (ITG)

Inversion Transduction Grammar (ITG)

$$X \to \langle f, e \rangle, \langle f, \epsilon \rangle, \langle \epsilon, e \rangle$$

University of California Or A - C N C O Berkeley

Inversion Transduction Grammar (ITG)

$$X \to \langle f, e \rangle, \langle f, \epsilon \rangle, \langle \epsilon, e \rangle \quad f \square$$

[Wu, '97]

P

Inversion Transduction Grammar (ITG)

$$X \to \langle f, e \rangle, \langle f, \epsilon \rangle, \langle \epsilon, e \rangle \qquad f \square$$

$X \to X^{(L)} X^{(R)}$

ρ

California California N C P Berkeley

Inversion Transduction Grammar (ITG)

$$X \to \langle f, e \rangle, \langle f, \epsilon \rangle, \langle \epsilon, e \rangle \qquad f \square$$

 $X \to X^{(L)} X^{(R)}$

 $X^{(L)}$ $X^{(R)}$

Ω

[Wu, '97]

Inversion Transduction Grammar (ITG)

$$X \to \langle f, e \rangle, \langle f, \epsilon \rangle, \langle \epsilon, e \rangle \qquad \begin{array}{c} e \\ f \end{array}$$

$$X \to X^{(L)} X^{(R)}$$

$$\frac{X^{(L)}}{X^{(R)}}$$

 $X \rightsquigarrow X^{(L)} X^{(R)}$

[Wu, '97]

Inversion Transduction Grammar (ITG)

$$X \to \langle f, e \rangle, \langle f, \epsilon \rangle, \langle \epsilon, e \rangle \qquad f$$

$$X \to X^{(L)} X^{(R)}$$

$$\frac{X^{(L)}}{X^{(R)}}$$

 $X^{(L)}$

 $X^{(R)}$

$$X \rightsquigarrow X^{(L)} X^{(R)}$$

[Wu, '97]

$\begin{array}{l} \begin{array}{c} \text{Optimal AER} \\ \mathcal{A} & 0.0 \\ \mathcal{A}_{1-1} & 10.1 \end{array}$

Block ITG (BITG)

Block ITG (BITG)

$$X \to \langle \overline{f}, e \rangle, \langle f, \overline{e} \rangle$$

Block ITG (BITG)

$$X \to \langle \overline{f}, e \rangle, \langle f, \overline{e} \rangle$$

University of California Or A - C N C O Berkeley

Block ITG (BITG) e \overline{e} $X \to \langle f, e \rangle, \langle f, \overline{e} \rangle$ Ī $X^{(L)}$ $X \to X^{(L)} X^{(R)}$ $X^{(R)}$ $X^{(R)}$ $X \rightsquigarrow X^{(L)} X^{(R)}$

 $X^{(L)}$

Optimal AER

 $L(\mathbf{a}^*, \mathbf{a}) = \#$ of missing sure alignments + # of incorrect alignments

 $L(\mathbf{a}^*, \mathbf{a}) = \# \text{ of missing sure alignments} + \# \text{ of incorrect alignments}$

 $L(\mathbf{a}^*, \mathbf{a}) = \# \text{ of missing sure alignments } + \# \text{ of incorrect alignments}$

 $\mathbf{a}\in\mathcal{A}'$

 $\mathbf{w}^T \phi(\mathbf{a})$

 $\phi_{13} = \{ PartialDictMatch(Indonesia, 印)=true, Dice(Indonesia, 印) = 0.85, LinearDistance = 2, \}$

$$\mathbf{w'}^T \phi(\mathbf{a}^*) \ge \mathbf{w'}^T \phi(\hat{\mathbf{a}}) + L(\mathbf{a}^*, \hat{\mathbf{a}})$$

 \mathbf{a}^*

Viterbi Inference
Learning Alignments

I-I ITG BITG

- MIRA Trained
- Viterbi Inference
- Simple Features
 - Dice
 - Lexical
 - Distance
 - Dictionary

University of California

A

Learning Alignments

I-I ITG BITG

University of California

Likelihood Training

$P_{\mathbf{w}}(\mathbf{a}|\mathbf{x}) \propto \exp\{\mathbf{w}^T \phi(\mathbf{a})\}$

$$P_{\mathbf{w}}(\mathbf{a}|\mathbf{x}) \propto \exp\{\mathbf{w}^{T}\phi(\mathbf{a})\}$$
$$Z_{\mathbf{w}}(\mathbf{x}) = \sum_{\mathbf{a}\in\mathcal{A}'} \exp\{\mathbf{w}^{T}\phi(\mathbf{a})\}$$

 $P_{\mathbf{w}}(\mathbf{a}|\mathbf{x}) \propto \exp\{\mathbf{w}^T \phi(\mathbf{a})\}$ $Z_{\mathbf{w}}(\mathbf{x}) = \sum \sum \exp\{\mathbf{w}^T \phi(\mathbf{a})\}$ $\mathbf{a} \in \mathcal{A}'$

 $P_{\mathbf{w}}(\mathbf{a}|\mathbf{x}) \propto \exp\{\mathbf{w}^{T}\phi(\mathbf{a})\}$ $Z_{\mathbf{w}}(\mathbf{x}) = \sum \sum \exp\{\mathbf{w}^T \phi(\mathbf{a})\}$ $\mathbf{a} \in \mathcal{A}'$

サビ

 $P_{\mathbf{w}}(\mathbf{a}|\mathbf{x}) \propto \exp\{\mathbf{w}^T \phi(\mathbf{a})\}$ $Z_{\mathbf{w}}(\mathbf{x}) = \sum \sum \exp\{\mathbf{w}^T \phi(\mathbf{a})\}$ $\mathbf{a} \in \mathcal{A}'$

 \mathcal{A}_{1-1}

 $P_{\mathbf{w}}(\mathbf{a}|\mathbf{x}) \propto \exp\{\mathbf{w}^T \phi(\mathbf{a})\}$ $Z_{\mathbf{w}}(\mathbf{x}) = \sum \sum \exp\{\mathbf{w}^T \phi(\mathbf{a})\}$ $\mathbf{a} \in \mathcal{A}'$ \mathcal{A}_{1-1} \mathcal{A}_{ITG}

Source

Cost under

 $P_{\mathbf{w}}(\mathbf{a}|\mathbf{x}) \propto \exp\{\mathbf{w}^T \phi(\mathbf{a})\}$ $Z_{\mathbf{w}}(\mathbf{x}) = \sum \sum \exp\{\mathbf{w}^T \phi(\mathbf{a})\}$ $\mathbf{a} \in \mathcal{A}'$ \mathcal{A}_{1-1} \mathcal{A}_{ITG} \mathcal{A}_{BITG} rarget Source Source l'arget

 $P_{\mathbf{w}}(\mathbf{a}|\mathbf{x}) \propto \exp\{\mathbf{w}^{T}\phi(\mathbf{a})\}$

 $P_{\mathbf{w}}(\mathbf{a}|\mathbf{x}) \propto \exp\{\mathbf{w}^T \phi(\mathbf{a})\}$ $\max_{\mathbf{w}} \sum \log P_{\mathbf{w}}(\mathbf{a}_i^* | \mathbf{x}_i)$

 $P_{\mathbf{w}}(\mathbf{a}|\mathbf{x}) \propto \exp\{\mathbf{w}^{T}\phi(\mathbf{a})\}$ $\max_{\mathbf{w}} \sum \log P_{\mathbf{w}}(\mathbf{a}_i^* | \mathbf{x}_i)$

 $P_{\mathbf{w}}(\mathbf{a}|\mathbf{x}) \propto \exp\{\mathbf{w}^{T}\phi(\mathbf{a})\}$ $\max_{\mathbf{w}} \sum \log P_{\mathbf{w}}(\mathbf{a}_i^* | \mathbf{x}_i)$

 $P_{\mathbf{w}}(\mathbf{a}|\mathbf{x}) \propto \exp\{\mathbf{w}^{T}\phi(\mathbf{a})\}$ $\max_{\mathbf{w}} \sum \log P_{\mathbf{w}}(\mathbf{a}_i^* | \mathbf{x}_i)$

 $P_{\mathbf{w}}(\mathbf{a}|\mathbf{x}) \propto \exp\{\mathbf{w}^{T}\phi(\mathbf{a})\}$ $\max_{\mathbf{w}} \sum \log P_{\mathbf{w}}(\mathcal{M}(\mathbf{a}_i^*) | \mathbf{x}_i)$ 1

Margin

Likelihood

California C-A-C N C P Berkeley

Margin

Likelihood

Viterbi Inference
Margin

Likelihood

- Viterbi Inference
- Simple Features
 - Dice
 - Lexical
 - Distance
 - Dictionary

University of California

Precision Recall

University of California

University of California C A Learning Alignments P Berkeley

GIZA++

HMM [Fayan & Dorr, '06]

NeurAlign

Likelihood-BITG (+HMM)

University of California

rkelev

Precision

University of California

Precision

University of California

Precision

University of California

Precision

University of California

Decoder: JosHUa [Li et. al, 2009]

- Decoder: JosHUa [Li et. al, 2009]
- Data: FBIS 100k sents max length 40

California C-A-C N C P Berkeley End-to-End Experiments

- Decoder: JosHUa [Li et. al, 2009]
- Data: FBIS 100k sents max length 40
- LM: 5-gram on Eng. Gigaword Xinhua

California California N C P End-to-End Experiments Berkeley

- Decoder: JosHUa [Li et. al, 2009]
- Data: FBIS 100k sents max length 40
- LM: 5-gram on Eng. Gigaword Xinhua
- ► Tuning: 300 sents. of NIST MT04 test

California California N C P End-to-End Experiments Berkeley

- Decoder: JosHUa [Li et. al, 2009]
- Data: FBIS 100k sents max length 40
- LM: 5-gram on Eng. Gigaword Xinhua
- Tuning: 300 sents. of NIST MT04 test
- Test: NIST 2005 Chinese-English

- Decoder: JosHUa [Li et. al, 2009]
- Data: FBIS 100k sents max length 40
- LM: 5-gram on Eng. Gigaword Xinhua
- Tuning: 300 sents. of NIST MT04 test
- Test: NIST 2005 Chinese-English

Alignments	Recall	Prec	BLEU
GIZA++	84	62	23.22
HMM	77	79	23.05
LL-BITG	83	81	24.32

University of

Blocks are important, ITG tractable

Blocks are important, ITG tractable

Normal form and oracle projection allow for likelihood training

- Blocks are important, ITG tractable
- Normal form and oracle projection allow for likelihood training
- Word alignment improvements yield BLEU improvements

- Blocks are important, ITG tractable
- Normal form and oracle projection allow for likelihood training
- Word alignment improvements yield BLEU improvements

- Blocks are important, ITG tractable
- Normal form and oracle projection allow for likelihood training
- Word alignment improvements yield BLEU improvements

Software available @ nlp.cs.berkeley.edu

Thanks!

California

http://nlp.cs.berkeley.edu

$$m^* = \min_{\mathbf{a} \in \mathcal{A}_{ITG}} L(\mathbf{a}^*, \mathbf{a})$$
$$\mathcal{M}(\mathbf{a}^*) = \{\mathbf{a} \in \mathcal{A}_{ITG} \text{ s.t. } L(\mathbf{a}^*, \mathbf{a}) = m^*\}$$

Contentian Contention Criterion

California C-A-C N C OL Berkeley

California California N C P Berkeley Berkeley

Adding Joint HMM posteriors from DeNero et. al. (2007)

	MIRA						Likelihood								
		1-1			ITG			BITG			BITG-	S	-	BITG-1	N
Features	P	R	AER	P	R	AER	P	R	AER	P	R	AER	P	R	AER
Dice, dist,															
blcks, dict, lex	85.7	63.7	26.8	86.2	65.8	25.2	85.0	73.3	21.1	85.7	73.7	20.6	85.3	74.8	20.1
+HMM	90.5	69.4	21.2	91.2	70.1	20.3	90.2	80.1	15.0	87.3	82.8	14.9	88.2	83.0	14.4

TODO: Keynote Chart

Using JosHUa decoder (HIERO)

Alignm	Translations			
Model	Prec	Rec	Rules	BLEU
GIZA++	62	84	1.9M	23.22
Joint HMM	79	77	4.0M	23.05
Viterbi ITG	90	80	3.8M	24.28
Posterior ITG	81	83	4.2M	24.32

TODO: Keynote Chart

Contention of California Content of California N C O A CONTENT Alignment Families

University of California A Alignment Families P Berkelev

University of California A Alignment Families P Berkelev

University of California A Alignment Families P Berkelev

University of California A Alignment Families P Berkeley

University of California A Alignment Families P Berkeley

University of California **Alignment Families** Berkelev

A
California C-A-C N C O Berkeley

California C-A-C N C O Berkeley

California California N C P A G Alignment Families Berkeley

 $\mathbf{a}\in\mathcal{A}$

 $\mathbf{a}\in\mathcal{A}$

 $s(\mathbf{a}) = \mathbf{w}^T \phi(\mathbf{a})$

California California N C O Berkeley

California Control A-C N C O MIRA: Margin Criterion Berkeley

 $s_{\mathbf{w}}(\mathbf{a}^*) \ge s_{\mathbf{w}}(\mathbf{\hat{a}}) + L(\mathbf{a}^*, \mathbf{\hat{a}})$

California Control A-C N C O Berkeley MIRA: Margin Criterion

California C-A-C N C O Berkeley MIRA: Margin Criterion

 $\mathbf{\hat{a}} = \arg \max_{\mathbf{a} \in \mathcal{A}_{1-1}} s_{\mathbf{w}_t}(\mathbf{a}) + \lambda L(\mathbf{a}_p^*, \mathbf{a})$

California C-A-C N C P Berkeley MIRA: Margin Criterion

 $\mathbf{w}_{t+1} = \arg\min_{\mathbf{w}} \|\mathbf{w} - \mathbf{w}_t\|^2$

s.t. $\hat{\mathbf{a}} = \arg \max_{\mathbf{a} \in \mathcal{A}_{1-1}} s_{\mathbf{w}_t}(\mathbf{a}) + \lambda L(\mathbf{a}_p^*, \mathbf{a})$

$$s_{\mathbf{w}_{t+1}}(\mathbf{a}^*) \ge s_{\mathbf{w}_{t+1}}(\mathbf{\hat{a}}) + L(\mathbf{a}_p^*, \mathbf{\hat{a}})$$

Precision

Precision

Recall

Precision

Learning Alignments

Precision

University of California

Learning Alignments

Precision

University of California

Berkelev

{ Dice(*i*,*j*), Dictionary(*i*,*j*), LogFreqDiff(*i*,*j*),... }