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Abstract

We present a discriminative model for de-
tecting disfluencies in spoken language tran-
scripts. Structurally, our model is a semi-
Markov conditional random field with features
targeting characteristics unique to speech re-
pairs. This gives a significant performance
improvement over standard chain-structured
CRFs that have been employed in past work.
We then incorporate prosodic features over
silences and relative word duration into our
semi-CRF model, resulting in further perfor-
mance gains; moreover, these features are not
easily replaced by discrete prosodic indica-
tors such as ToBI breaks. Our final sys-
tem, the semi-CRF with prosodic information,
achieves an F-score of 85.4, which is 1.3 F1

better than the best prior reported F-score on
this dataset.

1 Introduction

Spoken language is fundamentally different from
written language in that it contains frequent disflu-
encies, or parts of an utterance that are corrected
by the speaker. Removing these disfluencies is de-
sirable in order to clean the input for use in down-
stream NLP tasks. However, automatically identify-
ing disfluencies is challenging for a number of rea-
sons. First, disfluencies are a syntactic phenomenon,
but defy standard context-free parsing models due
to their parallel substructures (Johnson and Char-
niak, 2004), causing researchers to employ other
approaches such as pipelines of sequence models
(Qian and Liu, 2013) or incremental syntactic sys-
tems (Honnibal and Johnson, 2014). Second, hu-
man processing of spoken language is complex and
mixes acoustic and syntactic indicators (Cutler et al.,
1997), so an automatic system must employ fea-
tures targeting all levels of the perceptual stack to

in  the    upper     school                          upper  four   grades 

Fluent Fluent Disfluent 
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Figure 1: Example of a disfluency where the speaker
corrected upper school. Our model considers both tran-
scribed text and the acoustic signal and predicts disfluen-
cies as complete chunks using a semi-Markov conditional
random field.

achieve high performance. In spite of this, the pri-
mary thread of work in the NLP community has fo-
cused on identifying disfluencies based only on lex-
icosyntactic cues (Heeman and Allen, 1994; Char-
niak and Johnson, 2001; Snover et al., 2004; Ra-
sooli and Tetreault, 2013). A separate line of work
has therefore attempted to build systems that lever-
age prosody as well as lexical information (Shriberg
et al., 1997; Liu et al., 2003; Kim et al., 2004; Liu et
al., 2006), though often with mixed success.

In this work, we present a model for disfluency
detection that improves upon model structures used
in past work and leverages additional prosodic in-
formation. Our model is a semi-Markov conditional
random field that distinguishes disfluent chunks (to
be deleted) from fluent chunks (everything else), as
shown in Figure 1. By making chunk-level predic-
tions, we can incorporate not only standard token-
level features but also features that can consider the
entire reparandum and the start of the repair, en-
abling our model to easily capture parallelism be-
tween these two parts of the utterance.1 This frame-

1The reparandum and repair are important concepts that we
will refer to in this paper, but the model does not distinguish the
repair from other fluent text which follows.



work also enables novel prosodic features that com-
pute pauses and word duration based on alignments
to the speech signal itself, allowing the model to cap-
ture acoustic cues like pauses and hesitations that
have proven useful for disfluency detection in ear-
lier work (Shriberg et al., 1997). Such informa-
tion has been exploited by NLP systems in the past
via ToBI break indices (Silverman et al., 1992), a
mid-level prosodic abstraction that might be indica-
tive of disfluencies. These have been incorporated
into syntactic parsers with some success (Kahn et
al., 2005; Dreyer and Shafran, 2007; Huang and
Harper, 2010), but we find that using features on
predicted breaks is ineffective compared to directly
using acoustic indicators.

Our implementation of a baseline CRF model al-
ready achieves results comparable to those of a high-
performance system based on pipelined inference
(Qian and Liu, 2013). Our semi-CRF with span fea-
tures improves on this, and adding prosodic indica-
tors gives additional gains. Our final system gets an
F-score of 85.4, which is 1.3 F1 better than the best
prior reported F-score on this dataset (Honnibal and
Johnson, 2014).

2 Experimental Setup

Throughout this work, we make use of the Switch-
board corpus using the train/test splits specified by
Johnson and Charniak (2004) and used in other
work. We use the provided transcripts and gold
alignments between the text and the speech signal.
We follow the same preprocessing regimen as past
work: we remove partial words, punctuation, and
capitalization to make the input more realistic.2 Fi-
nally, we use predicted POS tags from the Berkeley
parser (Petrov et al., 2006) trained on Switchboard.

3 Model

Past work on disfluency detection has employed
CRFs to predict disfluencies using a IOBES tag set
(Qian and Liu, 2013). An example of this is shown
in Figure 2. One major shortcoming of this model is
that beginning and ending of a disfluency are not de-
cided jointly: because features in the CRF are local

2As described in Honnibal and Johnson (2014), we com-
puted features over sentences with filler words (um and uh) and
the phrases I mean and you know removed.

to emissions and transitions, features in this model
cannot recognize that a proposed disfluency begins
with upper and ends before another occurrence of
upper (see Figure 1). Identifying instances of this
parallelism is key to accurately predicting disflu-
encies. Past work has captured information about
repeats using token-level features (Qian and Liu,
2013), but these still apply to either the beginning
or ending of a disfluency in isolation. Such features
are naturally less effective on longer disfluencies as
well, and roughly 15% of tokens occurring in disflu-
encies are in disfluencies of length 5 or greater. The
presence of these longer disfluencies suggests using
a more powerful semi-CRF model as we describe in
the next section.

3.1 Semi-CRF Model

The model that we propose in this work is a semi-
Markov conditional random field (Sarawagi and Co-
hen, 2004). Given a sentence x = (x1, . . . , xn)
the model considers sequences of labeled spans
s̄ = ((`1, b1, e1), (`2, b2, e2), . . . , (`k, bk, ek)),
where `i ∈ {Fluent,Disfluent} is a label for each
span and bi, ei ∈ {0, 1 . . . n} are fenceposts for each
span such that bi < ei and ei = bi+1. The model
places distributions over these sequences given the
sentence as follows:

pθ(s̄|x) ∝ exp

(
θ>

k∑
i=1

f(x, (`i, bi, ei))

)
(1)

where f is a feature function that computes features
for a span given the input sentence. In our model we
constrain the transitions so that fluent spans can only
be followed by disfluent spans. For this task, the
spans we are predicting correspond directly to the
reparanda of disfluencies, since these are the parts
of the input sentences that should be removed. Note
that our feature function can jointly inspect both the
beginning and ending of the disfluency; we will de-
scribe the features of this form more specifically in
Section 3.2.2.

To train our model, we maximize conditional
log likelihood of the training data augmented with
a loss function via softmax-margin (Gimpel and
Smith, 2010). Specifically, during training, we max-
imize L(θ) =

∑d
i=1 log p′θ(s̄|x), where p′θ(s̄|x) =

pθ(s̄|x) exp (`(s̄, s̄∗)). We take the loss function



to determine  how  you address  how  you weigh… 
TO       VB       WRB  PRP    VBP     WRB  PRP  VBP 

       O        O           B       I        E         O     O      O 

Unigrams: determine, how, you 
Bigrams: (determine, how), (how, you) 
POS Unigrams: VB, WRB, PRP 
POS Bigrams: (VB, WRB), (WRB, PRP) 

Distance: 3 
Word+Distance: (3, how) 
POS Bigram: (WRB, PRP) 

Duplicate 

Figure 2: Token features for CRF and semi-CRF models.

` to be token-level asymmetric Hamming distance
(where the output is viewed as binary edited/non-
edited). We optimize with the AdaGrad algorithm
of Duchi et al. (2011) with L2 regularization.

3.2 Features

Features in our semi-CRF factor over spans, which
cover the reparandum of a proposed disfluency,
and thus generally end at the beginning of the re-
pair. This means that they can look at information
throughout the reparandum as well as the repair by
looking at content following the span. Many of our
features are inspired by those in Qian and Liu (2013)
and Honnibal and Johnson (2014). We use a combi-
nation of features that are fired for each token within
a span, and features that consider properties of the
span as a whole.

3.2.1 Token Features
Figure 2 depicts the token-level word features

we employ in both our basic CRF and our semi-
CRF models. Similar to standard sequence model-
ing tasks, we fire word and predicted part-of-speech
unigrams and bigrams in a window around the cur-
rent token. In addition, we fire features on repeated
words and part-of-speech tags in order to capture the
fact that the repair is typically a partial copy of the
reparandum, with possibly a word or two switched
out. Specifically, we fire features on the distance
to any duplicate words or parts-of-speech in a win-
dow around the current token, conjoined with the

        Fluent                    Disfluent                        Fluent 

to determine how you address  how you weigh… 

Surrounding POS: (VB, WRB)	  	  

Ending POS: (VBP, WRB)	  	  Beginning POS: (VB, WRB)	  	  

Word duplicate length: 2 
POS duplicate length: 3 

TO       VB      WRB PRP   VBP     WRB PRP  VBP 

Figure 3: Span features for semi-CRF model.

word identity itself or its POS tag (see the Dupli-
cate box in Figure 2). We also fire similar features
for POS tags since substituted words in the repair
frequently have the same tag (compare address and
weigh). Finally, we include a duplicate bigram fea-
ture that fires if the bigram formed from the current
and next words is repeated later on. When this hap-
pens, we fire an indicator for the POS tags of the
bigram. In Figure 2, this feature is fired for the word
how because how you is repeated later on, and con-
tains the POS tag bigram (WRB, PRP).

Table 1 shows the results for using these features
in a CRF model run on the development set.3

3.2.2 Span Features
In addition to features that fire for each individual

token, the semi-CRF model allows for the inclusion
of features that look at characteristics of the pro-
posed span as a whole, allowing us to consider the
repair directly by firing features targeting the words
following the span. These are shown in Figure 3.
Critically, repeated sequences of words and parts-
of-speech are now featurized in a coordinated way,
making it less likely that spurious repeated content
will cause the model to falsely posit a disfluency.

We first fire an indicator of whether or not the en-
tire proposed span is later repeated, conjoined with
the length of the span. Because many disfluencies

3We created our development set by randomly sampling
documents from the training set. Compared to the development
set of Johnson and Charniak (2004), this more closely matches
the disfluency distribution of the corpus: their development set
has 0.53 disfluent tokens per sentence, while our set has 0.38
per sentence, and the training set has 0.37 per sentence.



Prec. Rec. F1

CRF 84.0 82.1 83.0
Semi-CRF 88.6 81.7 85.0

Semi-CRF + Prosody 89.5 82.7 86.0

Table 1: Disfluency results on the development set.
Adding span features on top of a CRF baseline im-
proves performance, and including raw acoustic informa-
tion gives further performance gains.

are just repeated phrases, and longer phrases are
generally not repeated verbatim in fluent language,
this feature is a strong indicator of disfluencies when
it fires on longer spans. For similar reasons, we fire
features for the length of the longest repeated se-
quences of words and POS tags (the bottom box in
Figure 3). In addition to general repeated words, we
fire a separate feature for the number of uncommon
words (appearing less than 50 times in the training
data) contained in the span that are repeated later in
the sentence; consider upper from Figure 1, which
would be unlikely to be repeated on its own as com-
pared to stopwords. Lastly, we include features on
the POS tag bigrams surrounding each span bound-
ary (top of Figure 3), as well as the bigram formed
from the POS tags immediately before and after the
span. These features aim to capture the idea that
a disfluency is a mistake with a disjuncture before
the repair, so the ending bigram will generally not
be a commonly seen fluent pair, and the POS tags
surrounding the reparandum should be fluent if the
reparandum were removed.

Table 1 shows that the additional features enabled
by the CRF significantly improve performance on
top of the basic CRF model.

4 Exploiting Acoustic Information

Section 3 discussed a primarily structural improve-
ment to disfluency detection. Henceforth, we will
use the semi-CRF model exclusively and discuss
two methods of incorporating acoustic duration in-
formation that might be predictive of disfluencies.
Our results will show that features targeting raw
acoustic properties of the signal (Section 4.1) are
quite effective, while using ToBI breaks as a discrete
indicator to import the same information does not
give benefits (Section 4.2)

Pause: 1313ms 

Long; 2.5x average duration for of 

that   kind  of                                     to   me      it    is     more 

Figure 4: Raw acoustic features. The combination of a
long pause and considerably longer than average duration
for of is a strong indicator of a disfluency.

4.1 Raw Acoustic Features

The first way we implemented this information was
in the form of raw prosodic features related to pauses
between words and word duration. To compute
these features, we make use of the alignment be-
tween the speech signal and the raw text. Pauses are
then simply identified by looking for pairs of words
whose alignments are not flush. The specific fea-
tures used are indicators of the existence of a pause
immediately before or after a span, and the total
number of pauses contained within a span. Word
duration is computed based on the deviation of a
word’s length from its average length averaged over
all occurrences in the corpus.4 We fire duration fea-
tures similar to the pause features, namely indicators
of whether the duration of the first and last words in
a span deviate beyond some threshold from the aver-
age, and the total number of such deviations within
a span. As displayed in Table 1, adding these raw
features results in improved performance on top of
the gains from the semi-CRF model.

4.2 ToBI Features

In addition to the raw acoustic features, we also
tried utilizing discrete indicators of acoustic infor-
mation, specifically ToBI break indices (Silverman
et al., 1992). Previous work has shown perfor-
mance improvements resulting from the use of such
discrete information in other tasks, such as pars-
ing (Kahn et al., 2005; Dreyer and Shafran, 2007;
Huang and Harper, 2010). We chose to focus specif-
ically on ToBI breaks rather than on ToBI tones be-
cause tonal information has appeared relatively less

4Note that this averages over multiple speakers as well.



Disfluency
Prec. Rec. F1

Baseline 88.61 81.69 85.01
AuToBI 3, 4 88.46 81.92 85.06

CRF ToBI 88.42 81.96 85.07
Raw acoustic 89.53 82.74 86.00

Table 2: Disfluency results with predicted ToBI fea-
tures on the development set. We compare our baseline
semi-CRF system (Baseline) with systems that incorpo-
rate prosody via predictions from the AuToBI system of
Rosenberg (2010) and from our CRF ToBI predictor, as
well as the full system using raw acoustic features.

useful for this task (Shriberg et al., 1997). More-
over, the ToBI break specification (Hirschberg and
Beckman, 1992) stipulates a category for strong dis-
juncture with a pause (2) as well as a pause marker
(p), both of which correlate well with disfluencies
on gold-annotated ToBI data.

To investigate whether this correlation translates
into a performance improvement for a disfluency de-
tection system like ours, we add features targeting
ToBI annotations as follows: for each word in a pro-
posed disfluent span, we fire a feature indicating the
break index on the fencepost following that word,
conjoined with where that word is in the span (be-
ginning, middle, or end).

We try two different ways of generating the break
indices used by these features. The first is using
the AuToBI system of Rosenberg (2010), a state-of-
the-art automatic ToBI prediction systems based on
acoustic information which focuses particularly on
detecting occurrences of 3 and 4. Second, we use
the subset of Switchboard labeled with ToBI breaks
(Taylor et al., 2003) to train a CRF-based ToBI pre-
dictor. This model employs both acoustic and lexi-
cal features, which are both useful for ToBI predic-
tion despite breaks being a seemingly more acoustic
phenomenon (Rosenberg, 2010). The acoustic indi-
cators that we use are similar to the ones described
in Section 4 and our lexical features consist of a set
of standard surface features similar to those used in
Section 3.2.1.

In Table 2 we see that neither source of predicted
ToBI breaks does much to improve performance. In
particular, the gains from using raw acoustic features
are substantially greater despite the fact that the pre-

Prec. Rec. F1

Johnson and Charniak (2004) − − 79.7
Qian and Liu (2013) − − 83.7

Honnibal and Johnson (2014) − − 84.1
CRF 88.7 78.8 83.4

Semi-CRF 90.1 80.0 84.8
Semi-CRF + Prosody 90.0 81.2 85.4

Table 3: Disfluency prediction results on the test set; our
base system outperforms that of Honnibal and Johnson
(2014), a state-of-the-art system on this dataset, and in-
corporating prosody further improves performance.

dictions were made in part using similar raw acous-
tic features. This is somewhat surprising, since in-
tuitively, ToBI should be capturing information very
similar to what pauses and word durations capture,
particularly when it is predicted based partially on
these phenomena. However, our learned ToBI pre-
dictor only gets roughly 50 F1 on break prediction,
so ToBI prediction is clearly a hard task even with
sophisticated features. The fact that ToBI cannot
be derived from acoustic features also indicates that
it may draw on information posterior to signal pro-
cessing, such as syntactic and semantic cues. Fi-
nally, pauses are also simply more prevalent in the
data than ToBI markers of interest: there are roughly
40,000 pauses on the ToBI-annotated subset of the
dataset, yet there are fewer than 10,000 2 or p break
indices. The ToBI predictor is therefore trained to
ignore information that may be relevant for disflu-
ency detection.

5 Results and Conclusion

Table 3 shows results on the Switchboard test set.
Our final system substantially outperforms the re-
sults of prior work, and we see that this is a result
of both incorporating span features via a semi-CRF
as well as incorporating prosodic indicators.
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