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Abstract

We investigate the empirical behavior of n-
gram discounts within and across domains.
When a language model is trained and evalu-
ated on two corpora from exactly the same do-
main, discounts are roughly constant, match-
ing the assumptions of modified Kneser-Ney
LMs. However, when training and test corpora
diverge, the empirical discount grows essen-
tially as a linear function of the n-gram count.
We adapt a Kneser-Ney language model to
incorporate such growing discounts, result-
ing in perplexity improvements over modified
Kneser-Ney and Jelinek-Mercer baselines.

1 Introduction

Discounting, or subtracting from the count of each
n-gram, is one of the core aspects of Kneser-Ney
language modeling (Kneser and Ney, 1995). For all
but the smallest n-gram counts, Kneser-Ney uses a
single discount, one that does not grow with the n-
gram count, because such constant-discounting was
seen in early experiments on held-out data (Church
and Gale, 1991). However, due to increasing com-
putational power and corpus sizes, language model-
ing today presents a different set of challenges than
it did 20 years ago. In particular, modeling cross-
domain effects has become increasingly more im-
portant (Klakow, 2000; Moore and Lewis, 2010),
and deployed systems must frequently process data
that is out-of-domain from the standpoint of the lan-
guage model.

In this work, we perform experiments on held-
out data to evaluate how discounting behaves in the

cross-domain setting. We find that, when training
and testing on corpora that are as similar as possi-
ble, empirical discounts indeed do not grow with n-
gram count, which validates the parametric assump-
tion of Kneser-Ney smoothing. However, when the
train and evaluation corpora differ, even slightly, dis-
counts generally exhibit linear growth in the count of
the n-gram, with the amount of growth being closely
correlated with the corpus divergence. Finally, we
build a language model exploiting a parametric form
of the growing discount and show perplexity gains of
up to 5.4% over modified Kneser-Ney.

2 Discount Analysis

Underlying discounting is the idea that n-grams will
occur fewer times in test data than they do in training
data. We investigate this quantitatively by conduct-
ing experiments similar in spirit to those of Church
and Gale (1991). Suppose that we have collected
counts on two corpora of the same size, which we
will call our train and test corpora. For an n-gram
w = (w1, ..., wn), let ktrain(w) denote the number of
occurrences of w in the training corpus, and ktest(w)
denote the number of occurrences of w in the test
corpus. We define the empirical discount of w to be
d(w) = ktrain(w) − ktest(w); this will be negative
when the n-gram occurs more in the test data than
in the training data. Let Wi = {w : ktrain(w) = i}
be the set of n-grams with count i in the training
corpus. We define the average empirical discount
function as

d̄(i) =
1

|Wi|
∑
w∈Wi

d(w)



Kneser-Ney implicitly makes two assumptions:
first, that discounts do not depend on n-gram count,
i.e. that d̄(i) is constant in i. Modified Kneser-Ney
relaxes this assumption slightly by having indepen-
dent parameters for 1-count, 2-count, and many-
count n-grams, but still assumes that d̄(i) is constant
for i greater than two. Second, by using the same
discount for all n-grams with a given count, Kneser-
Ney assumes that the distribution of d(w) for w in a
particular Wi is well-approximated by its mean. In
this section, we analyze whether or not the behavior
of the average empirical discount function supports
these two assumptions. We perform experiments on
various subsets of the documents in the English Gi-
gaword corpus, chiefly drawn from New York Times
(NYT) and Agence France Presse (AFP).1

2.1 Are Discounts Constant?
Similar corpora To begin, we consider the NYT
documents from Gigaword for the year 1995. In
order to create two corpora that are maximally
domain-similar, we randomly assign half of these
documents to train and half of them to test, yielding
train and test corpora of approximately 50M words
each, which we denote by NYT95 and NYT95′. Fig-
ure 1 shows the average empirical discounts d̄(i)
for trigrams on this pair of corpora. In this setting,
we recover the results of Church and Gale (1991)
in that discounts are approximately constant for n-
gram counts of two or greater.

Divergent corpora In addition to these two cor-
pora, which were produced from a single contigu-
ous batch of documents, we consider testing on cor-
pus pairs with varying degrees of domain difference.
We construct additional corpora NYT96, NYT06,
AFP95, AFP96, and AFP06, by taking 50M words
from documents in the indicated years of NYT
and AFP data. We then collect training counts on
NYT95 and alternately take each of our five new cor-
pora as the test data. Figure 1 also shows the average
empirical discount curves for these train/test pairs.
Even within NYT newswire data, we see growing
discounts when the train and test corpora are drawn

1Gigaword is drawn from six newswire sources and contains
both miscellaneous text and complete, contiguous documents,
sorted chronologically. Our experiments deal exclusively with
the document text, which constitutes the majority of Gigaword
and is of higher quality than the miscellaneous text.
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Figure 1: Average empirical trigram discounts d̄(i) for
six configurations, training on NYT95 and testing on the
indicated corpora. For each n-gram count k, we compute
the average number of occurrences in test for all n-grams
occurring k times in training data, then report k minus
this quantity as the discount. Bigrams and bigram types
exhibit similar discount relationships.

from different years, and between the NYT and AFP
newswire, discounts grow even more quickly. We
observed these trends continuing steadily up into n-
gram counts in the hundreds, beyond which point it
becomes difficult to robustly estimate discounts due
to fewer n-gram types in this count range.

This result is surprising in light of the constant
discounts observed for the NYT95/NYT95′ pair.
Goodman (2001) proposes that discounts arise from
document-level “burstiness” in a corpus, because
language often repeats itself locally within a doc-
ument, and Moore and Quirk (2009) suggest that
discounting also corrects for quantization error due
to estimating a continuous distribution using a dis-
crete maximum likelihood estimator (MLE). Both
of these factors are at play in the NYT95/NYT95′

experiment, and yet only a small, constant discount
is observed. Our growing discounts must therefore
be caused by other, larger-scale phenomena, such as
shifts in the subjects of news articles over time or in
the style of the writing between newswire sources.
The increasing rate of discount growth as the source
changes and temporal divergence increases lends
credence to this hypothesis.

2.2 Nonuniformity of Discounts

Figure 1 considers discounting in terms of averaged
discounts for each count, which tests one assump-
tion of modified Kneser-Ney, that discounts are a
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Figure 2: Empirical probability mass functions of occur-
rences in the test data for trigrams that appeared 10 times
in training data. Discounting by a single value is plau-
sible in the case of similar train and test corpora, where
the mean of the distribution (8.50) is close to the median
(8.0), but not in the case of divergent corpora, where the
mean (6.04) and median (1.0) are very different.

constant function of n-gram counts. In Figure 2, we
investigate the second assumption, namely that the
distribution over discounts for a given n-gram count
is well-approximated by its mean. For similar cor-
pora, this seems to be true, with a histogram of test
counts for trigrams of count 10 that is nearly sym-
metric. For divergent corpora, the data exhibit high
skew: almost 40% of the trigrams simply never ap-
pear in the test data, and the distribution has very
high standard deviation (17.0) due to a heavy tail
(not shown). Using a discount that depends only on
the n-gram count is less appropriate in this case.

In combination with the growing discounts of sec-
tion 2.1, these results point to the fact that modified
Kneser-Ney does not faithfully model the discount-
ing in even a mildly cross-domain setting.

2.3 Correlation of Divergence and Discounts

Intuitively, corpora that are more temporally distant
within a particular newswire source should perhaps
be slightly more distinct, and still a higher degree of
divergence should exist between corpora from dif-
ferent newswire sources. From Figure 1, we see that
this notion agrees with the relative sizes of the ob-
served discounts. We now ask whether growth in
discounts is correlated with train/test dissimilarity in
a more quantitative way. For a given pair of cor-
pora, we canonicalize the degree of discounting by
selecting the point d̄(30), the average empirical dis-

 0

 5

 10

 15

-500 -400 -300

D
is

co
u
n
t 

fo
r 

co
u
n
t-

3
0
 t

ri
g
ra

m
s

Log likelihood difference (in millions)

Figure 3: Log likelihood difference versus average empir-
ical discount of trigrams with training count 30 (d̄(30))
for the train/test pairs. More negative values of the log
likelihood indicate more dissimilar corpora, as the trained
model is doing less well relative to the jackknife model.

count for n-grams occurring 30 times in training.2

To measure divergence between the corpus pair, we
compute the difference between the log likelihood
of the test corpus under the train corpus language
model (using basic Kneser-Ney) and the likelihood
of the test corpus under a jackknife language model
from the test itself, which holds out and scores each
test n-gram in turn. This dissimilarity metric resem-
bles the cross-entropy difference used by Moore and
Lewis (2010) to subsample for domain adaptation.

We compute this canonicalization for each of
twenty pairs of corpora, with each corpus contain-
ing 240M trigram tokens between train and test. The
corpus pairs were chosen to span varying numbers
of newswire sources and lengths of time in order to
capture a wide range of corpus divergences. Our re-
sults are plotted in Figure 3. The log likelihood dif-
ference and d̄(30) are negatively correlated with a
correlation coefficient value of r = −0.88, which
strongly supports our hypothesis that higher diver-
gence yields higher discounting. One explanation
for the remaining variance is that the trigram dis-
count curve depends on the difference between the
number of bigram types in the train and test corpora,
which can be as large as 10%: observing more bi-
gram contexts in training fragments the token counts

2One could also imagine instead canonicalizing the curves
by using either the exponent or slope parameters from a fitted
power law as in section 3. However, there was sufficient non-
linearity in the average empirical discount curves that neither of
these parameters was an accurate proxy for d̄(i).



and leads to smaller observed discounts.

2.4 Related Work

The results of section 2.1 point to a remarkably per-
vasive phenomenon of growing empirical discounts,
except in the case of extremely similar corpora.
Growing discounts of this sort were previously sug-
gested by the model of Teh (2006). However, we
claim that the discounting phenomenon in our data is
fundamentally different from his model’s prediction.
In the held-out experiments of section 2.1, growing
discounts only emerge when one evaluates against a
dissimilar held-out corpus, whereas his model would
predict discount growth even in NYT95/NYT95′,
where we do not observe it.

Adaptation across corpora has also been ad-
dressed before. Bellegarda (2004) describes a range
of techniques, from interpolation at either the count
level or the model level (Bacchiani and Roark, 2003;
Bacchiani et al., 2006) to using explicit models of
syntax or semantics. Hsu and Glass (2008) employ
a log-linear model for multiplicatively discounting
n-grams in Kneser-Ney; when they include the log-
count of an n-gram as the only feature, they achieve
75% of their overall word error rate reduction, sug-
gesting that predicting discounts based on n-gram
count can substantially improve the model. Their
work also improves on the second assumption of
Kneser-Ney, that of the inadequacy of the average
empirical discount as a discount constant, by em-
ploying various other features in order to provide
other criteria on which to discount n-grams.

Taking a different approach, both Klakow (2000)
and Moore and Lewis (2010) use subsampling to
select the domain-relevant portion of a large, gen-
eral corpus given a small in-domain corpus. This
can be interpreted as a form of hard discounting,
and implicitly models both growing discounts, since
frequent n-grams will appear in more of the re-
jected sentences, and nonuniform discounting over
n-grams of each count, since the sentences are cho-
sen according to a likelihood criterion. Although
we do not consider this second point in constructing
our language model, an advantage of our approach
over subsampling is that we use our entire training
corpus, and in so doing compromise between min-
imizing errors from data sparsity and accommodat-
ing domain shifts to the extent possible.

3 A Growing Discount Language Model

We now implement and evaluate a language model
that incorporates growing discounts.

3.1 Methods

Instead of using a fixed discount for most n-gram
counts, as prescribed by modified Kneser-Ney, we
discount by an increasing parametric function of the
n-gram count. We use a tune set to compute an av-
erage empirical discount curve d̄(i), and fit a func-
tion of the form f(x) = a + bxc to this curve using
weighted least-L1-loss regression, with the weight
for each point proportional to i|Wi|, the total to-
ken counts of n-grams occurring that many times
in training. To improve the fit of the model, we
use dedicated parameters for count-1 and count-2 n-
grams as in modified Kneser-Ney, yielding a model
with five parameters per n-gram order. We call this
model GDLM. We also instantiate this model with
c fixed to one, so that the model is strictly linear
(GDLM-LIN).

As baselines for comparison, we use basic inter-
polated Kneser-Ney (KNLM), with one discount pa-
rameter per n-gram order, and modified interpolated
Kneser-Ney (MKNLM), with three parameters per
n-gram order, as described in (Chen and Goodman,
1998). We also compare against Jelinek-Mercer
smoothing (JMLM), which interpolates the undis-
counted MLEs from every order. According to Chen
and Goodman (1998), it is common to use different
interpolation weights depending on the history count
of an n-gram, since MLEs based on many samples
are presumed to be more accurate than those with
few samples. We used five history count buckets so
that JMLM would have the same number of param-
eters as GDLM.

All five models are trigram models with type
counts at the lower orders and independent discount
or interpolation parameters for each order. Param-
eters for GDLM, MKNLM, and KNLM are initial-
ized based on estimates from d̄(i): the regression
thereof for GDLM, and raw discounts for MKNLM
and KNLM. The parameters of JMLM are initialized
to constants independent of the data. These initial-
izations are all heuristic and not guaranteed to be
optimal, so we then iterate through the parameters
of each model several times and perform line search



Train NYT00+01 Train AFP02+05+06
Voc. 157K 50K 157K 50K

GDLM(*) 151 131 258 209
GDLM-LIN(*) 151 132 259 210

JMLM 165 143 274 221
MKNLM 152 132 273 221

KNLM 159 138 300 241

Table 1: Perplexities of the growing discounts language
model (GDLM) and its purely linear variant (GDLM-
LIN), which are contributions of this work, versus
the modified Kneser-Ney (MKNLM), basic Kneser-Ney
(KNLM), and Jelinek-Mercer (JMLM) baselines. We
report results for in-domain (NYT00+01) and out-of-
domain (AFP02+05+06) training corpora, for two meth-
ods of closing the vocabulary.

in each to optimize tune-set perplexity.
For evaluation, we train, tune, and test on three

disjoint corpora. We consider two different train-
ing sets: one of 110M words of NYT from 2000
and 2001 (NYT00+01), and one of 110M words of
AFP from 2002, 2005, and 2006 (AFP02+05+06).
In both cases, we compute d̄(i) and tune parameters
on 110M words of NYT from 2002 and 2003, and
do our final perplexity evaluation on 4M words of
NYT from 2004. This gives us both in-domain and
out-of-domain results for our new language model.
Our tune set is chosen to be large so that we can
initialize parameters based on the average empirical
discount curve; in practice, one could compute em-
pirical discounts based on a smaller tune set with the
counts scaled up proportionately, or simply initialize
to constant values.

We use two different methods to handle out-of-
vocabulary (OOV) words: one scheme replaces any
unigram token occurring fewer than five times in
training with an UNK token, yielding a vocabulary
of approximately 157K words, and the other scheme
only keeps the top 50K words in the vocabulary.
The count truncation method has OOV rates of 0.9%
and 1.9% in the NYT/NYT and NYT/AFP settings,
respectively, and the constant-size vocabulary has
OOV rates of 2% and 3.6%.

3.2 Results

Perplexity results are given in Table 1. As expected,
for in-domain data, GDLM performs comparably to
MKNLM, since the discounts do not grow and so
there is little to be gained by choosing a param-

eterization that permits this. Out-of-domain, our
model outperforms MKNLM and JMLM by approx-
imately 5% for both vocabulary sizes. The out-
of-domain perplexity values are competitive with
those of Rosenfeld (1996), who trained on New York
Times data and tested on AP News data under simi-
lar conditions, and even more aggressive closing of
the vocabulary. Moore and Lewis (2010) achieve
lower perplexities, but they use in-domain training
data that we do not include in our setting.

We briefly highlight some interesting features of
these results. In the small vocabulary cross-domain
setting, for GDLM-LIN, we find

dtri(i) = 1.31 + 0.27i, dbi(i) = 1.34 + 0.05i

as the trigram and bigram discount functions that
minimize tune set perplexity. For GDLM,

dtri(i) = 1.19 + 0.32i0.45, dbi(i) = 0.86 + 0.56i0.86

In both cases, a growing discount is indeed learned
from the tuning procedure, demonstrating the im-
portance of this in our model. Modeling nonlin-
ear discount growth in GDLM yields only a small
marginal improvement over the linear discounting
model GDLM-LIN, so we prefer GDLM-LIN for its
simplicity.

A somewhat surprising result is the strong per-
formance of JMLM relative to MKNLM on the di-
vergent corpus pair. We conjecture that this is be-
cause the bucketed parameterization of JMLM gives
it the freedom to change interpolation weights with
n-gram count, whereas MKNLM has essentially a
fixed discount. This suggests that modified Kneser-
Ney as it is usually parameterized may be a particu-
larly poor choice in cross-domain settings.

Overall, these results show that the growing dis-
count phenomenon detailed in section 2, beyond
simply being present in out-of-domain held-out data,
provides the basis for a new discounting scheme that
allows us to improve perplexity relative to modified
Kneser-Ney and Jelinek-Mercer baselines.
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