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Abstract

The tree-transducer grammars that arise in
current syntactic machine translation systems
are large, flat, and highly lexicalized. We ad-
dress the problem of parsing efficiently with
such grammars in three ways. First, we
present a pair of grammar transformations
that admit an efficient cubic-time CKY-style
parsing algorithm despite leaving most of the
grammar in n-ary form. Second, we show
how the number of intermediate symbols gen-
erated by this transformation can be substan-
tially reduced through binarization choices.
Finally, we describe a two-pass coarse-to-fine
parsing approach that prunes the search space
using predictions from a subset of the origi-
nal grammar. In all, parsing time reduces by
81%. We also describe a coarse-to-fine prun-
ing scheme for forest-based language model
reranking that allows a 100-fold increase in
beam size while reducing decoding time. The
resulting translations improve by 1.3 BLEU.

1 Introduction

Current approaches to syntactic machine translation
typically include two statistical models: a syntac-
tic transfer model and an n-gram language model.
Recent innovations have greatly improved the effi-
ciency of language model integration through multi-
pass techniques, such as forest reranking (Huang
and Chiang, 2007), local search (Venugopal et al.,
2007), and coarse-to-fine pruning (Petrov et al.,
2008; Zhang and Gildea, 2008). Meanwhile, trans-
lation grammars have grown in complexity from
simple inversion transduction grammars (Wu, 1997)
to general tree-to-string transducers (Galley et al.,

2004) and have increased in size by including more
synchronous tree fragments (Galley et al., 2006;
Marcu et al., 2006; DeNeefe et al., 2007). As a result
of these trends, the syntactic component of machine
translation decoding can now account for a substan-
tial portion of total decoding time. In this paper,
we focus on efficient methods for parsing with very
large tree-to-string grammars, which have flat n-ary
rules with many adjacent non-terminals, as in Fig-
ure 1. These grammars are sufficiently complex that
the purely syntactic pass of our multi-pass decoder is
the compute-time bottleneck under some conditions.

Given that parsing is well-studied in the mono-
lingual case, it is worth asking why MT grammars
are not simply like those used for syntactic analy-
sis. There are several good reasons. The most im-
portant is that MT grammars must do both analysis
and generation. To generate, it is natural to mem-
orize larger lexical chunks, and so rules are highly
lexicalized. Second, syntax diverges between lan-
guages, and each divergence expands the minimal
domain of translation rules, so rules are large and
flat. Finally, we see most rules very few times, so
it is challenging to subcategorize non-terminals to
the degree done in analytic parsing. This paper de-
velops encodings, algorithms, and pruning strategies
for such grammars.

We first investigate the qualitative properties of
MT grammars, then present a sequence of parsing
methods adapted to their broad characteristics. We
give normal forms which are more appropriate than
Chomsky normal form, leaving the rules mostly flat.
We then describe a CKY-like algorithm which ap-
plies such rules efficiently, working directly over the
n-ary forms in cubic time. We show how thoughtful
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Figure 1: (a) A synchronous transducer rule has co-
indexed non-terminals on the source and target side. In-
ternal grammatical structure of the target side has been
omitted. (b) The source-side projection of the rule is a
monolingual source-language rule with target-side gram-
mar symbols. (c) A training sentence pair is annotated
with a target-side parse tree and a word alignment, which
license this rule to be extracted.

binarization can further increase parsing speed, and
we present a new coarse-to-fine scheme that uses
rule subsets rather than symbol clustering to build
a coarse grammar projection. These techniques re-
duce parsing time by 81% in aggregate. Finally,
we demonstrate that we can accelerate forest-based
reranking with a language model by pruning with
information from the parsing pass. This approach
enables a 100-fold increase in maximum beam size,
improving translation quality by 1.3 BLEU while
decreasing total decoding time.

2 Tree Transducer Grammars

Tree-to-string transducer grammars consist of
weighted rules like the one depicted in Figure 1.
Each n-ary rule consists of a root symbol, a se-
quence of lexical items and non-terminals on the
source-side, and a fragment of a syntax tree on
the target side. Each non-terminal on the source
side corresponds to a unique one on the target side.
Aligned non-terminals share a grammar symbol de-
rived from a target-side monolingual grammar.

These grammars are learned from word-aligned
sentence pairs annotated with target-side phrase
structure trees. Extraction proceeds by using word
alignments to find correspondences between target-
side constituents and source-side word spans, then
discovering transducer rules that match these con-
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Figure 2: Transducer grammars are composed of very flat
rules. Above, the histogram shows rule counts for each
rule size among the 332,000 rules that apply to an indi-
vidual 30-word sentence. The size of a rule is the total
number of non-terminals and lexical items in its source-
side yield.

stituent alignments (Galley et al., 2004). Given this
correspondence, an array of extraction procedures
yields rules that are well-suited to machine trans-
lation (Galley et al., 2006; DeNeefe et al., 2007;
Marcu et al., 2006). Rule weights are estimated
by discriminatively combining relative frequency
counts and other rule features.

A transducer grammar G can be projected onto its
source language, inducing a monolingual grammar.
If we weight each rule by the maximum weight of its
projecting synchronous rules, then parsing with this
projected grammar maximizes the translation model
score for a source sentence. We need not even con-
sider the target side of transducer rules until integrat-
ing an n-gram language model or other non-local
features of the target language.

We conduct experiments with a grammar ex-
tracted from 220 million words of Arabic-English
bitext, extracting rules with up to 6 non-terminals. A
histogram of the size of rules applicable to a typical
30-word sentence appears in Figure 2. The grammar
includes 149 grammatical symbols, an augmentation
of the Penn Treebank symbol set. To evaluate, we
decoded 300 sentences of up to 40 words in length
from the NIST05 Arabic-English test set.

3 Efficient Grammar Encodings

Monolingual parsing with a source-projected trans-
ducer grammar is a natural first pass in multi-pass
decoding. These grammars are qualitatively dif-
ferent from syntactic analysis grammars, such as
the lexicalized grammars of Charniak (1997) or the
heavily state-split grammars of Petrov et al. (2006).



In this section, we develop an appropriate grammar
encoding that enables efficient parsing.

It is problematic to convert these grammars into
Chomsky normal form, which CKY requires. Be-
cause transducer rules are very flat and contain spe-
cific lexical items, binarization introduces a large
number of intermediate grammar symbols. Rule size
and lexicalization affect parsing complexity whether
the grammar is binarized explicitly (Zhang et al.,
2006) or implicitly binarized using Early-style inter-
mediate symbols (Zollmann et al., 2006). Moreover,
the resulting binary rules cannot be Markovized to
merge symbols, as in Klein and Manning (2003), be-
cause each rule is associated with a target-side tree
that cannot be abstracted.

We also do not restrict the form of rules in the
grammar, a common technique in syntactic machine
translation. For instance, Zollmann et al. (2006)
follow Chiang (2005) in disallowing adjacent non-
terminals. Watanabe et al. (2006) limit grammars
to Griebach-Normal form. However, general tree
transducer grammars provide excellent translation
performance (Galley et al., 2006), and so we focus
on parsing with all available rules.

3.1 Lexical Normal Form
Sequences of consecutive non-terminals complicate
parsing because they require a search over non-
terminal boundaries when applied to a sentence
span. We transform the grammar to ensure that all
rules containing lexical items (lexical rules) do not
contain sequences of non-terminals. We allow both
unary and binary non-lexical rules.

Let L be the set of lexical items and V the set
of non-terminal symbols in the original grammar.
Then, lexical normal form (LNF) limits productions
to two forms:

Non-lexical: X → X1(X2)
Lexical: X → (X1)α(X2)

α = w+(Xiw
+)∗

Above, all Xi ∈ V and w+ ∈ L+. Symbols in
parentheses are optional. The nucleus α of lexical
rules is a mixed sequence that has lexical items on
each end and no adjacent non-terminals.

Converting a grammar into LNF requires two
steps. In the sequence elimination step, for every
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Figure 3: We transform the original grammar by first
eliminating non-terminal sequences in lexical rules.
Next, we binarize, adding a minimal number of inter-
mediate grammar symbols and binary non-lexical rules.
Finally, anchored LNF further transforms lexical rules
to begin and end with lexical items by introducing ad-
ditional symbols.

lexical rule we replace each sequence of consecutive
non-terminals X1 . . . Xn with the intermediate sym-
bol X1+. . .+Xn (abbreviated X1:n) and introduce a
non-lexical rule X1+. . .+Xn → X1 . . . Xn. In the
binarization step, we introduce further intermediate
symbols and rules to binarize all non-lexical rules
in the grammar, including those added by sequence
elimination.

3.2 Non-terminal Binarization

Exactly how we binarize non-lexical rules affects the
total number of intermediate symbols introduced by
the LNF transformation.

Binarization involves selecting a set of symbols
that will allow us to assemble the right-hand side
X1 . . . Xn of every non-lexical rule using binary
productions. This symbol set must at least include
the left-hand side of every rule in the grammar
(lexical and non-lexical), including the intermediate
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duced to the grammar through LNF binarization depends
upon the policy for binarizing type sequences. This ex-
periment shows results from transforming a grammar that
has already been filtered for a particular short sentence.
Both the greedy and optimal binarizations use far fewer
symbols than naive binarizations.

symbols X1:n introduced by sequence elimination.
To ensure that a symbol sequence X1 . . . Xn can

be constructed, we select a split point k and add in-
termediate types X1:k and Xk+1:n to the grammar.
We must also ensure that the sequences X1 . . . Xk

and Xk+1 . . . Xn can be constructed. As baselines,
we used left-branching (where k = 1 always) and
right-branching (where k = n− 1) binarizations.

We also tested a greedy binarization approach,
choosing k to minimize the number of grammar
symbols introduced. We first try to select k such that
both X1:k and Xk+1:n are already in the grammar.
If no such k exists, we select k such that one of the
intermediate types generated is already used. If no
such k exists again, we choose k =

⌊
1
2n

⌋
. This pol-

icy only creates new intermediate types when nec-
essary. Song et al. (2008) propose a similar greedy
approach to binarization that uses corpus statistics to
select common types rather than explicitly reusing
types that have already been introduced.

Finally, we computed an optimal binarization that
explicitly minimizes the number of symbols in the
resulting grammar. We cast the minimization as an
integer linear program (ILP). Let V be the set of
all base non-terminal symbols in the grammar. We
introduce an indicator variable TY for each symbol
Y ∈ V + to indicate that Y is used in the grammar.
Y can be either a base non-terminal symbol Xi or
an intermediate symbol X1:n. We also introduce in-
dicators AY,Z for each pairs of symbols, indicating
that both Y and Z are used in the grammar. Let
L ⊆ V + be the set of left-hand side symbols for
all lexical and non-lexical rules already in the gram-

mar. Let R be the set of symbol sequences on the
right-hand side of all non-lexical rules. Then, the
ILP takes the form:

min
∑

Y ∈V +

TY (1)

s.t. TY = 1 ∀ Y ∈ L (2)

1 ≤
∑

k

AX1:k,Xk+1:n
∀ X1 . . . Xn ∈ R (3)

TX1:n ≤
∑

k

AX1:k,Xk+1:n
∀ X1:n (4)

AY,Z ≤ TY , AY,Z ≤ TZ ∀ Y, Z (5)

The solution to this ILP indicates which symbols
appear in a minimal binarization. Equation 1 explic-
itly minimizes the number of symbols. Equation 2
ensures that all symbols already in the grammar re-
main in the grammar.

Equation 3 does not require that a symbol repre-
sent the entire right-hand side of each non-lexical
rule, but does ensure that each right-hand side se-
quence can be built from two subsequence symbols.
Equation 4 ensures that any included intermediate
type can also be built from two subsequence types.
Finally, Equation 5 ensures that if a pair is used, each
member of the pair is included. This program can be
optimized with an off-the-shelf ILP solver.1

Figure 4 shows the number of intermediate gram-
mar symbols needed for the four binarization poli-
cies described above for a short sentence. Our ILP
solver could only find optimal solutions for very
short sentences (which have small grammars after
relativization). Because greedy requires very little
time to compute and generates symbol counts that
are close to optimal when both can be computed, we
use it for our remaining experiments.

3.3 Anchored Lexical Normal Form

We also consider a further grammar transformation,
anchored lexical normal form (ALNF), in which the
yield of lexical rules must begin and end with a lex-
ical item. As shown in the following section, ALNF
improves parsing performance over LNF by shifting
work from lexical rule applications to non-lexical

1We used lp solve: http://sourceforge.net/projects/lpsolve.



rule applications. ALNF consists of rules with the
following two forms:

Non-lexical: X → X1(X2)
Lexical: X → w+(Xiw

+)∗

To convert a grammar into ALNF, we first transform
it into LNF, then introduce additional binary rules
that split off non-terminal symbols from the ends of
lexical rules, as shown in Figure 3.

4 Efficient CKY Parsing

We now describe a CKY-style parsing algorithm for
grammars in LNF. The dynamic program is orga-
nized into spans Sij and computes the Viterbi score
w(i, j, X) for each edge Sij [X], the weight of the
maximum parse over words i+1 to j, rooted at sym-
bol X . For each Sij , computation proceeds in three
phases: binary, lexical, and unary.

4.1 Applying Non-lexical Binary Rules
For a span Sij , we first apply the binary non-lexical
rules just as in standard CKY, computing an interme-
diate Viterbi score wb(i, j, X). Let ωr be the weight
of rule r. Then, wb(i, j, X) =

max
r=X→X1X2

ωr
j−1
max
k=i+1

w(i, k,X1) · w(k, j,X2).

The quantities w(i, k,X1) and w(k, j,X2) will have
already been computed by the dynamic program.
The work in this phase is cubic in sentence length.

4.2 Applying Lexical Rules
On the other hand, lexical rules in LNF can be ap-
plied without binarization, because they only apply
to particular spans that contain the appropriate lexi-
cal items. For a given Sij , we first compute all the le-
gal mappings of each rule onto the span. A mapping
consists of a correspondence between non-terminals
in the rule and subspans of Sij . In practice, there
is typically only one way that a lexical rule in LNF
can map onto a span, because most lexical items will
appear only once in the span.

Let m be a legal mapping and r its corresponding
rule. Let S

(i)
k` [X] be the edge mapped to the ith non-

terminal of r under m, and ωr the weight of r. Then,

wl(i, j, X) = max
m

ωr

∏
S

(i)
k` [X]

w(k, `, X).

Again, w(k, `, X) will have been computed by the
dynamic program. Assuming only a constant num-
ber of mappings per rule per span, the work in this
phase is quadratic. We can then merge wl and wb:

w(i, j, X) = max(wl(i, j, X), wb(i, j, X)).

To efficiently compute mappings, we store lexi-
cal rules in a trie (or suffix array) – a searchable
graph that indexes rules according to their sequence
of lexical items and non-terminals. This data struc-
ture has been used similarly to index whole training
sentences for efficient retrieval (Lopez, 2007). To
find all rules that map onto a span, we traverse the
trie using depth-first search.

4.3 Applying Unary Rules
Unary non-lexical rules are applied after lexical
rules and non-lexical binary rules.

w(i, j, X) = max
r:r=X→X1

ωrw(i, j, X1).

While this definition is recursive, we allow only one
unary rule application per symbol X at each span
to prevent infinite derivations. This choice does not
limit the generality of our algorithm: chains of unar-
ies can always be collapsed via a unary closure.

4.4 Bounding Split Points for Binary Rules
Non-lexical binary rules can in principle apply to
any span Sij where j − i ≥ 2, using any split point
k such that i < k < j. In practice, however, many
rules cannot apply to many (i, k, j) triples because
the symbols for their children have not been con-
structed successfully over the subspans Sik and Skj .
Therefore, the precise looping order over rules and
split points can influence computation time.

We found the following nested looping order for
the binary phase of processing an edge Sij [X] gave
the fastest parsing times for these grammars:

1. Loop over symbols X1 for the left child

2. Loop over all rules X → X1X2 containing X1

3. Loop over split points k : i < k < j

4. Update wb(i, j, X) as necessary

This looping order allows for early stopping via
additional bookkeeping in the algorithm. We track
the following statistics as we parse:



Grammar Bound checks Parsing time
LNF no 264
LNF yes 181
ALNF yes 104

Table 1: Adding bound checks to CKY and transforming
the grammar from LNF to anchored LNF reduce parsing
time by 61% for 300 sentences of length 40 or less. No
approximations have been applied, so all three scenarios
produce no search errors. Parsing time is in minutes.

minEND(i,X), maxEND(i,X): The minimum and
maximum position k for which symbol X was
successfully built over Sik.

minSTART(j, X), maxSTART(j, X): The minimum
and maximum position k for which symbol X
was successfully built over Skj .

We then bound k by mink and maxk in the inner
loop using these statistics. If ever mink > maxk,
then the loop is terminated early.

1. set mink = i + 1,maxk = j − 1

2. loop over symbols X1 for the left child
mink = max(mink,minEND(i,X1))
maxk = min(maxk,maxEND(i,X1))

3. loop over rules X → X1X2

mink = max(mink,minSTART(j, X2))
maxk = min(maxk,maxSTART(j, X2))

4. loop over split points k : mink ≤ k ≤ maxk

5. update wb(i, j, X) as necessary

In this way, we eliminate unnecessary work by
avoiding split points that we know beforehand can-
not contribute to wb(i, j, X).

4.5 Parsing Time Results
Table 1 shows the decrease in parsing time from in-
cluding these bound checks, as well as switching
from lexical normal form to anchored LNF.

Using ALNF rather than LNF increases the num-
ber of grammar symbols and non-lexical binary
rules, but makes parsing more efficient in three
ways. First, it decreases the number of spans for
which a lexical rule has a legal mapping. In this way,
ALNF effectively shifts work from the lexical phase
to the binary phase. Second, ALNF reduces the time

spent searching the trie for mappings, because the
first transition into the trie must use an edge with a
lexical item. Finally, ALNF improves the frequency
that, when a lexical rule matches a span, we have
successfully built every edge Sk`[X] in the mapping
for that rule. This frequency increases from 45% to
96% with ALNF.

5 Coarse-to-Fine Search

We now consider two coarse-to-fine approximate
search procedures for parsing with these grammars.
Our first approach clusters grammar symbols to-
gether during the coarse parsing pass, following
work in analytic parsing (Charniak and Caraballo,
1998; Petrov and Klein, 2007). We collapse all
intermediate non-terminal grammar symbols (e.g.,
NP) to a single coarse symbol X, while pre-terminal
symbols (e.g., NN) are hand-clustered into 7 classes
(nouns, verbals, adjectives, punctuation, etc.). We
then project the rules of the original grammar into
this simplified symbol set, weighting each rule of
the coarse grammar by the maximum weight of any
rule that mapped onto it.

In our second and more successful approach, we
select a subset of grammar symbols. We then in-
clude only and all rules that can be built using those
symbols. Because the grammar includes many rules
that are compositions of smaller rules, parsing with
a subset of the grammar still provides meaningful
scores that can be used to prune base grammar sym-
bols while parsing under the full grammar.

5.1 Symbol Selection

To compress the grammar, we select a small sub-
set of symbols that allow us to retain as much of
the original grammar as possible. We use a voting
scheme to select the symbol subset. After conver-
sion to LNF (or ALNF), each lexical rule in the orig-
inal grammar votes for the symbols that are required
to build it. A rule votes as many times as it was ob-
served in the training data to promote frequent rules.
We then select the top nl symbols by vote count and
include them in the coarse grammar C.

We would also like to retain as many non-lexical
rules from the original grammar as possible, but the
right-hand side of each rule can be binarized in many
ways. We again use voting, but this time each non-



Pruning Minutes Model score BLEU
No pruning 104 60,179 44.84
Clustering 79 60,179 44.84
Subsets 50 60,163 44.82

Table 2: Coarse-to-fine pruning speeds up parsing time
with minimal effect on either model score or translation
quality. The coarse grammar built using symbol subsets
outperforms clustering grammar symbols, reducing pars-
ing time by 52%. These experiments do not include a
language model.

lexical rule votes for its yield, a sequence of sym-
bols. We select the top nu symbol sequences as the
set R of right-hand sides.

Finally, we augment the symbol set of C with in-
termediate symbols that can construct all sequences
in R, using only binary rules. This step again re-
quires choosing a binarization for each sequence,
such that a minimal number of additional symbols is
introduced. We use the greedy approach from Sec-
tion 3.2. We then include in C all rules from the
original grammar that can be built from the symbols
we have chosen. Surprisingly, we are able to re-
tain 76% of the grammar rules while excluding 92%
of the grammar symbols2, which speeds up parsing
substantially.

5.2 Max Marginal Thresholding

We parse first with the coarse grammar to find the
Viterbi derivation score for each edge Sij [X]. We
then perform a Viterbi outside pass over the chart,
like a standard outside pass but replacing

∑
with

max (Goodman, 1999). The product of an edge’s
Viterbi score and its Viterbi outside score gives a
max marginal, the score of the maximal parse that
uses the edge.

We then prune away regions of the chart that de-
viate in their coarse max marginal from the global
Viterbi score by a fixed margin tuned on a develop-
ment set. Table 2 shows that both methods of con-
structing a coarse grammar are effective in pruning,
but selecting symbol subsets outperformed the more
typical clustering approach, reducing parsing time
by an additional factor of 2.

2We used nl of 500 and nu of 4000 for experiments. These
parameters were tuned on a development set.

6 Language Model Integration

Large n-gram language models (LMs) are critical
to the performance of machine translation systems.
Recent innovations have managed the complexity
of LM integration using multi-pass architectures.
Zhang and Gildea (2008) describes a coarse-to-fine
approach that iteratively increases the order of the
LM. Petrov et al. (2008) describes an additional
coarse-to-fine hierarchy over language projections.
Both of these approaches integrate LMs via bottom-
up dynamic programs that employ beam search. As
an alternative, Huang and Chiang (2007) describes a
forest-based reranking algorithm called cube grow-
ing, which also employs beam search, but focuses
computation only where necessary in a top-down
pass through a parse forest.

In this section, we show that the coarse-to-fine
idea of constraining each pass using marginal pre-
dictions of the previous pass also applies effectively
to cube growing. Max marginal predictions from the
parse can substantially reduce LM integration time.

6.1 Language Model Forest Reranking

Parsing produces a forest of derivations, where each
edge in the forest holds its Viterbi (or one-best)
derivation under the transducer grammar. In forest
reranking via cube growing, edges in the forest pro-
duce k-best lists of derivations that are scored by
both the grammar and an n-gram language model.
Using ALNF, each edge must first generate a k-best
list of derivations that are not scored by the language
model. These derivations are then flattened to re-
move the binarization introduced by ALNF, so that
the resulting derivations are each rooted by an n-
ary rule r from the original grammar. The leaves of
r correspond to sub-edges in the chart, which are
recursively queried for their best language-model-
scored derivations. These sub-derivations are com-
bined by r, and new n-grams at the edges of these
derivations are scored by the language model.

The language-model-scored derivations for the
edge are placed on a priority queue. The top of
the priority queue is repeatedly removed, and its
successors added back on to the queue, until k
language-model-scored derivations have been dis-
covered. These k derivations are then sorted and



Pruning Max TM LM Total Inside Outside LM Total
strategy beam BLEU score score score time time time time
No pruning 20 57.67 58,570 -17,202 41,368 99 0 247 346
CTF parsing 200 58.43 58,495 -16,929 41,556 53 0 186 239
CTF reranking 200 58.63 58,582 -16,998 41,584 98 64 79 241
CTF parse + rerank 2000 58.90 58,602 -16,980 41,622 53 52 148 253

Table 3: Time in minutes and performance for 300 sentences. We used a trigram language model trained on 220
million words of English text. The no pruning baseline used a fix beam size for forest-based language model reranking.
Coarse-to-fine parsing included a coarse pruning pass using a symbol subset grammar. Coarse-to-fine reranking used
max marginals to constrain the reranking pass. Coarse-to-fine parse + rerank employed both of these approximations.

supplied to parent edges upon request.3

6.2 Coarse-to-Fine Parsing
Even with this efficient reranking algorithm, inte-
grating a language model substantially increased de-
coding time and memory use. As a baseline, we
reranked using a small fixed-size beam of 20 deriva-
tions at each edge. Larger beams exceeded the mem-
ory of our hardware. Results appear in Table 3.

Coarse-to-fine parsing before LM integration sub-
stantially improved language model reranking time.
By pruning the chart with max marginals from the
coarse symbol subset grammar from Section 5, we
were able to rerank with beams of length 200, lead-
ing to a 0.8 BLEU increase and a 31% reduction in
total decoding time.

6.3 Coarse-to-Fine Forest Reranking
We realized similar performance and speed bene-
fits by instead pruning with max marginals from the
full grammar. We found that LM reranking explored
many edges with low max marginals, but used few
of them in the final decoder output. Following the
coarse-to-fine paradigm, we restricted the reranker
to edges with a max marginal above a fixed thresh-
old. Furthermore, we varied the beam size of each
edge based on the parse. Let ∆m be the ratio of
the max marginal for edge m to the global Viterbi
derivation for the sentence. We used a beam of size⌈
k · 2ln ∆m

⌉
for each edge.

Computing max marginals under the full gram-
mar required an additional outside pass over the full
parse forest, adding substantially to parsing time.

3Huang and Chiang (2007) describes the cube growing al-
gorithm in further detail, including the precise form of the suc-
cessor function for derivations.

However, soft coarse-to-fine pruning based on these
max marginals also allowed for beams up to length
200, yielding a 1.0 BLEU increase over the baseline
and a 30% reduction in total decoding time.

We also combined the coarse-to-fine parsing ap-
proach with this soft coarse-to-fine reranker. Tiling
these approximate search methods allowed another
10-fold increase in beam size, further improving
BLEU while only slightly increasing decoding time.

7 Conclusion

As translation grammars increase in complexity
while innovations drive down the computational cost
of language model integration, the efficiency of the
parsing phase of machine translation decoding is be-
coming increasingly important. Our grammar nor-
mal form, CKY improvements, and symbol subset
coarse-to-fine procedure reduced parsing time for
large transducer grammars by 81%.

These techniques also improved forest-based lan-
guage model reranking. A full decoding pass with-
out any of our innovations required 511 minutes us-
ing only small beams. Coarse-to-fine pruning in
both the parsing and language model passes allowed
a 100-fold increase in beam size, giving a perfor-
mance improvement of 1.3 BLEU while decreasing
total decoding time by 50%.
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