
Modular Networks for Compositional Instruction Following

Rodolfo Corona Daniel Fried Coline Devin Dan Klein Trevor Darrell
UC Berkeley

{rcorona,dfried,coline,klein,trevordarrell}@berkeley.edu

Abstract

Standard architectures used in instruction fol-
lowing often struggle on novel compositions
of subgoals (e.g. navigating to landmarks or
picking up objects) observed during training.
We propose a modular architecture for follow-
ing natural language instructions that describe
sequences of diverse subgoals. In our ap-
proach, subgoal modules each carry out nat-
ural language instructions for a specific sub-
goal type. A sequence of modules to execute
is chosen by learning to segment the instruc-
tions and predicting a subgoal type for each
segment. When compared to standard, non-
modular sequence-to-sequence approaches on
ALFRED (Shridhar et al., 2020), a challeng-
ing instruction following benchmark, we find
that modularization improves generalization to
novel subgoal compositions, as well as to envi-
ronments unseen in training.

1 Introduction

Work on grounded instruction following (MacMa-
hon et al., 2006; Vogel and Jurafsky, 2010; Tellex
et al., 2011; Chen and Mooney, 2011; Artzi and
Zettlemoyer, 2013) has recently been driven by
sequence-to-sequence models (Mei et al., 2016;
Hermann et al., 2017), which allow end-to-end
grounding of linguistically-rich instructions into
equally-rich visual contexts (Misra et al., 2018;
Anderson et al., 2018; Chen et al., 2019). These
sequence-to-sequence models are monolithic: they
consist of a single network structure which is ap-
plied identically to every example in the dataset.

Monolithic instruction following models typi-
cally perform well when evaluated on test data
from the same distribution seen during training.
However, they often struggle in compositional gen-
eralization: composing atomic parts, such as ac-
tions or goals, where the parts are seen in training
but their compositions are not (Lake and Baroni,
2018; Ruis et al., 2020; Hill et al., 2020).

Turn left to move to the 
counter... Pick up the pan to the 
right of the toaster. Turn around 
to move in front of the sink. 
Place the pan in the sink ... Carry 
the pan ... Place the pan on the 
back of the counter by the wall.

Training Test

Turn around and walk past the 
bed... Grab the cellphone off of 
the cabinet. Turn right and walk 
... Place the cellphone on the 
dresser. Turn around ... Grab the 
cellphone off of the chair there. 
Turn left and walk ... Place the 
cellphone down ...

Figure 1: At evaluation time, an instruction follow-
ing agent may need to generalize both to novel chains
of subgoals encountered during training as well as to
completely new environments. In the generalization
condition above, the agent must generalize to multi-
ple pickup actions (in green) at test time, whereas only
single ones were seen at training, as well as to a new
house. We propose a modular architecture to handle
these cases.

In this work, we improve compositional gen-
eralization in instruction following with modu-
lar networks, which have been successful in non-
embodied language grounding tasks (Andreas et al.,
2016; Hu et al., 2017; Cirik et al., 2018; Yu et al.,
2018; Mao et al., 2019; Han et al., 2019) and in
following synthetic instructions or symbolic policy
descriptions (Andreas et al., 2017; Oh et al., 2017;
Das et al., 2018). Modular networks split the deci-
sion making process into a set of neural modules.
Modules are each specialized for some function,
composed into a structure specific to each example,
and trained jointly to complete the task.

Prior work has found that modular networks of-
ten perform well in compositional generalization



Controller

Turn right and cross the room, turn right and walk to the tv stand on your 
left, turn to face the tv stand. Pick up the blue vase that is sitting on the tv 

stand … Place the vase on the coffee table to the left of the computer...
GoTo PickUp PickUpGoTo GoTo

START a
1

a
8 START a

9

a
1

a
2

STOP a
9

STOP

Turn right and cross the room, turn right and walk to 
the tc stand on your left, turn to face the tv stand

Pick up the blue vase that 
is sitting on the tv stand

Turn right and cross the room, turn right and walk to the tv stand on your 
left, turn to face the tv stand. Pick up the blue vase that is sitting on the tv 

stand … Place the vase on the coffee table to the left of the computer...

Figure 2: Our modular approach first uses a controller (left) trained with supervised learning to segment a given
instruction and label segments with subgoal types (e.g. GOTO, PICKUP) to execute. These subgoal types are
used to chain together modules (right) to carry out instructions in the environment. Each module is a separately-
parameterized sequence-to-sequence model that conditions on an attended representation of the instruction se-
quence, the visual observations, and the action taken at the previous timestep. Modules pass recurrent hidden
states to each other.

because of their composable structure (Devin et al.,
2017; Andreas et al., 2017; Bahdanau et al., 2019;
Purushwalkam et al., 2019), and that they can gen-
eralize to new environments or domains through
module specialization (Hu et al., 2019; Blukis et al.,
2020). However, all this work has either focused
on grounding tasks without a temporal component
or used a network structure which is not predicted
from language.

We propose a modular architecture for embodied
vision-and-language instruction following1, and
find that this architecture improves generalization
on unseen compositions of subgoals (such as navi-
gation, picking up objects, cleaning them, etc.). We
define separate sequence-to-sequence modules per
type of subgoal. These modules are strung together
to execute complex high-level tasks. We train a
controller to predict a sequence of subgoal types
from language instructions, which determines the
order in which to execute the modules.

We evaluate models on the ALFRED
dataset (Shridhar et al., 2020), an instruction-
following benchmark containing a diverse set
of household tasks. We focus on compositional
generalization: carrying out instructions describing
novel high-level tasks, containing novel composi-
tions of actions (see Figure 1 for an example). We
find that our modular model improves performance
on average across subgoal types when compared
to a standard, monolithic sequence-to-sequence
architecture. Additionally, we find improved
generalization to environments not seen in training.

1Code and dataset splits may be found at
github.com/rcorona/modular_compositional_alfred.

2 Modular Instruction Following
Networks

We focus on following instructions in embodied
tasks involving navigation and complex object in-
teractions, as shown in Figure 2.

In training, each set of full instructions (e.g.
“Turn right and cross the room ... Place the vase
on the coffee table to the left of the computer.”) is
paired with a demonstration of image observations
and actions. In training, we further assume that
the full instruction is segmented into subgoal in-
structions, and each subgoal instruction is labeled
with one of a small number (in our work, 8) of
subgoal types , e.g. [“Walk to the coffee maker.”:
GOTO ], [“Pick up the dirty mug...”: PICKUP], . . . ,
and paired with the corresponding segment of the
demonstration.

During evaluation, the agent is given only full in-
structions (which are unsegmented and unlabeled),
and must predict a sequence of actions to carry out
the instructions, conditioning on the image obser-
vations it receives.

Our modular architecture for compositional in-
struction following consists of a high-level con-
troller (Figure 2, left), and modules for each sub-
goal type (Figure 2, right). The high-level con-
troller chooses modules to execute in sequence
based on the natural language instructions, and
each chosen module executes until it outputs a
STOP action. The modules all share the same
sequence-to-sequence architecture, which is the
same as the monolithic architecture. We initialize
each module’s parameters with parameters from the
monolithic model, and then fine-tune the parame-
ters of each module to specialize for its subgoal.

https://github.com/rcorona/modular_compositional_alfred


2.1 Instruction-Based Controller
Our instruction-based controller is trained to seg-
ment a full instruction into sub-instructions and
predict the subgoal type for each sub-instruction.
We use a linear chain CRF (Lafferty et al., 2001)
that conditions on a bidirectional-LSTM encoding
of the full instruction and predicts tags for each
word, which determine the segmentation and se-
quence of subgoal types. This model is based on
standard neural segmentation and labelling models
(Huang et al., 2015; Lample et al., 2016).

We train the controller on the ground-truth in-
struction segmentations and subgoal sequence la-
bels, and in evaluation use the model to predict seg-
mentations and their associated subgoal sequences
(Figure 2, top left). This predicted sequence of sub-
goals determines the order to execute the modules
(Figure 2, right). We use a BIO chunking scheme
to jointly segment the instruction and predict a sub-
goal label for each segment.

Formally, for a full instruction of length N , the
controller defines a distribution over subgoal tags
s1:N for each word given the instruction x1:N as

p(s1:N | x1:N ) ∝ exp
N∑

n=1

(
Usn +Bsn−1,sn

)
The subgoal tag scores Usn for word n are given by
a linear projection of bidirectional LSTM features
for the word at position n. The tag transition scores
Bsn−1,sn are learned scalar parameters.

In training, we supervise s1:N using the segmen-
tation of the instruction x1:N into K subgoal in-
structions and the subgoal label for each instruc-
tion. To predict subgoals for a full instruction in
evaluation, we obtain argmaxs1:N p(s1:N | x1:N )
using Viterbi decoding, which provides a segmen-
tation into sub-instructions and a subgoal label for
each sub-instruction.

The controller obtains 96% exact match accuracy
on subgoal sequences on validation data.

2.2 Module Architecture
Our modularized architecture may be seen in Fig-
ure 2, right. The architecture consists of 8 inde-
pendent modules, one for each of the 8 subgoals in
the domain (e.g. GOTO, PICKUP). For each mod-
ule, we use the same architecture as Shridhar et al.
(2020)’s monolithic model. This is a sequence-to-
sequence model composed of an LSTM decoder
taking as input an attended embedding of the natu-
ral language instruction, pretrained ResNet-18 (He

et al., 2016) features of the image observations, and
the previous action’s embedding. Hidden states are
passed between the modules’ LSTM decoders at
subgoal transitions (Figure 2, right).

At each time step, each module M i computes
its hidden state based on the last time step’s action
at−1, the current time step’s observed image fea-
tures ot, an attended language embedding x̂it, and
the previous hidden state hit−1:

eit = [at−1; ot; x̂
i
t]

hit = LSTMi(e
i
t, h

i
t−1)

Each module’s attended language embedding x̂it is
produced using its own attention mechanism over
embeddings X = x1:N of the language instruc-
tion, which are produced by a bidirectional LSTM
encoder:

zit = (W i
xh

i
t−1)

>X

αi
t = Softmax(zit)

x̂it = (αi
t)
>X

Finally, the action at and object interaction mask
mt are predicted from hit and eit with a linear layer
and a deconvolution network respectively. More
details about this architecture can be found in Shrid-
har et al. (2020). Both the action and mask de-
coders, well as the language encoder, are shared
across modules.2

Our use of subgoal modules is similar to the hier-
archical policy approaches of Andreas et al. (2017),
Oh et al. (2017), and Das et al. (2018). However,
in those approaches, the input to each module is
symbolic (e.g. FIND[KITCHEN]). In contrast, all
modules in our work condition directly on natural
language.

2.3 Training
We first pre-train the monolithic model by maximiz-
ing the likelihood of the ground-truth trajectories
in the training data (Shridhar et al., 2020). We
train for up to 20 epochs using the Adam optimizer
(Kingma and Ba, 2014) with early stopping on
validation data (see Appendix A.1 for hyperparam-
eters). We use this monolithic model to initialize
the parameters of each of the modules, which have
identical architecture to the monolithic model, and

2The modules’ instruction encoder is separate from the
controller’s encoder (Sec. 2.1), as we found it possible to
achieve high performance on the subgoal prediction task using
a smaller encoder than the one used by the modules.



fine-tune them using the same training and early
stopping procedure on the same validation data,3

allowing the monolithic model’s parameters to spe-
cialize for each module. Each module predicts only
the actions for its segment of each trajectory; how-
ever, modules are jointly fine-tuned, passing hidden
states (and gradients) from module to module.

3 Generalization Evaluation

We evaluate models on out-of-domain generaliza-
tion in two conditions (see below) using the AL-
FRED benchmark (Shridhar et al., 2020), compar-
ing our modular approach to their non-modular
sequence-to-sequence model. ALFRED is imple-
mented in AI2-THOR 2.0 (Kolve et al., 2017),
which contains a set of simulated environments
with realistic indoor scene renderings and object
interactions.

The dataset contains approximately 25K expert
instruction-trajectory pairs, comprised of 3 instruc-
tions for each of 8K unique trajectories. The in-
structions include both a high level instruction and
a sequence of low level instructions. In our exper-
iments, we do not use the high level instructions,
which Shridhar et al. (2020) found to produce com-
parable results when evaluated on generalization to
unseen environments with these architectures.

Figure 1 shows two example trajectories and
their associated instructions. Trajectories are com-
posed (see Sec. 2) of sequences of eight different
types of subgoals: navigation (GOTO) and a vari-
ety of object interactions (e.g. PICKUP, CLEAN,
HEAT). Each subgoal’s subtrajectory is composed
of a sequence of low-level discrete actions which
specify commands for navigation or object interac-
tions (which are accompanied by image segmenta-
tions to choose the object to interact with).

3.1 Generalization Conditions
The ALFRED dataset was constructed to test gen-
eralization to novel instructions and unseen envi-
ronments. However, all evaluation trajectories in
the dataset correspond to sequences of subgoals
that are seen during training. For example, some
training and evaluation instances might both corre-
spond to the underlying subgoal sequence GOTO,
PICKUP, GOTO, PUT, but differ in their low-level
actions, their language descriptions, and possibly
also the environments they are carried out in.

3Additionally, we append a special STOP action to the end
of each module’s action sequence so that it can predict when
to give control back to the high-level controller.

Novel Tasks. We evaluate models’ ability to gen-
eralize to different high-level tasks (compositions
of subgoals) than seen in training. The dataset
contains seven different task types, such as Pick &
Place, as described in Appendix B.1. We hold out
two task types and evaluate models on their ability
to generalize to them: Pick Two & Place and Stack
& Place. These tasks are chosen because they con-
tain subgoal types that are all individually seen in
training, but typically in different sequences.

We create generalization splits pick-2-seen and
pick-2-unseen by filtering the seen and unseen
splits below to contain only Pick Two & Place
tasks, and remove all Pick Two & Place tasks from
the training data. We create splits stack-seen and
stack-unseen for Stack & Place similarly.

Novel Instructions and Environments This is
the standard condition defined in the original AL-
FRED dataset. There are two held-out validation
sets: seen, which tests generalization to novel
instructions and trajectories but through environ-
ments seen during training, and unseen, which tests
generalization to novel environments: rooms with
new layouts, object appearances, and furnishings.

3.2 Results

We compare our modular architecture with the
monolithic baseline, averaging performance over
models trained from 3 random seeds. For each
generalization condition, we measure success rates
over full trajectories as well as over each subgoal
type independently. Due to the challenging nature
of the domain, subgoal evaluation provides finer-
grained comparisons than full trajectories.

We use the same evaluation methods and met-
rics as in Shridhar et al. (2020). Success rates are
weighted by path lengths to penalize successful
trajectories which are longer than the ground-truth
demonstration trajectory. To evaluate full trajecto-
ries, we measure path completion: the portion of
subgoals completed within the full trajectories. To
evaluate the subgoals independently, we advance
the model along the expert trajectory up until the
point where a given subgoal begins (to maintain a
history of actions and observations), then require
the model to carry out the subgoal from that point.

We also report results from Shridhar et al. (2020)
and Singh et al. (2020). We note that the approach
of Singh et al. (2020) obtains higher performance
on full trajectories than the system of Shridhar
et al. (2020) (which we base our approach on)



Model C
le

an

C
oo

l

G
ot

o

H
ea

t

Pi
ck

up

Pu
t

Sl
ic

e

To
gg

le

A
vg

.

se
en

S+ 82 87 49 85 32 80 23 97 67
MOCA 79 87 54 84 53 62 51 93 70
Mono. 82 88∗ 52∗∗ 82∗∗ 37 81 34 98 69∗

Mod. 82 86 43 80 41∗∗ 80 37 97 68

un
se

en

S+ 21 94 21 88 20 51 14 54 45
MOCA 71 38 32 86 44 39 55 11 47
Mono. 28 90 23∗∗ 89∗∗ 25 48 25 42 46
Mod. 67∗∗ 94∗ 14 85 28∗∗ 55 39∗ 73∗ 57∗∗

(a) Standard (novel environments) validation splits

Model G
ot

o

Pi
ck

up

Pu
t

A
vg

.

se
en Mono. 18∗ 21 48 29

Mod. 14 35∗ 63∗ 37∗

un
se

en Mono. 14 12 14 13
Mod. 14 25∗∗ 33∗∗ 24∗∗

(b) Pick-2 task splits

Model G
ot

o

Pi
ck

up

Pu
t

A
vg

.

se
en Mono. 28∗ 15 54 32

Mod. 21 27∗ 58∗ 35∗

un
se

en Mono. 19 7 25 17
Mod. 14 16∗ 28 19∗

(c) Stack task splits

Table 1: Path weighted subgoal success percentages,
by subgoal type, on the various generalization splits,
and averaged across subgoal types (Avg.). We com-
pare the performance of the monolithic (Mono.) model
to our modular model (Mod.). The modular model
generalizes better on average to unseen environments
(standard-unseen) and to both seen and unseen environ-
ments for two held-out task types: Pick-2 and Stack.
Bolded numbers show the best model between Mono
and Modular, with ∗ and ∗∗ denoting differences that
are statistically significant at the p < 0.15 and p < 0.05
levels, respectively, by a one-tailed t-test. S+ gives
results from Shridhar et al. (2020) and MOCA from
Singh et al. (2020).

primarily by introducing a modular object inter-
action architecture (shared across all subgoals) and
a pre-trained object segmentation model. These
techniques could also be incorporated into our ap-
proach, which uses modular components for indi-
vidual subgoal types.

Novel Tasks. Table 1 shows for each split the
success rates on subgoals appearing in at least 50
validation examples. The modular outperforms the
monolithic model on both seen and unseen splits
(Tables 1b and 1c). Full trajectory results for novel
task generalization are shown in Table 2. In the
double generalization condition (unseen environ-
ments for the held-out pick-2 and stack tasks) on
full trajectories, neither model completes subgoals
successfully. Overall, we find that modularity helps
across most generalization conditions.

Generalization to novel environments. We
also compare models on generalization to unseen
environments. In the independent subgoal evalua-
tion, the monolithic and modular models perform
equally on average in the standard-seen split (Ta-

Standard Standard Pick-2 Stack
Model seen unseen seen seen

S+ 9.4 (5.7) 7.4 (4.7) — —
MOCA 28.5 (22.3) 13.4 (8.3) — —
Mono. 10.9 (7.0) 7.1 (4.9) 1.3 (1.6) 1.3 (0.3)

Mod. 9.1 (6.6) 7.0 (5.5) 1.5 (1.6) 1.5 (0.4)

Table 2: We compare performance of the monolithic
and modular models on full trajectories, reporting the
percentages of subgoals correctly completed. Num-
bers in parentheses weight these percentages by path
length. S+ gives results from Shridhar et al. (2020),
and MOCA from Singh et al. (2020).

ble 1a, top). However, in the standard-unseen split
(Table 1a, bottom), our modular model outperforms
the baseline substantially, with an average success
rate of 57% compared to the monolithic model’s
46%. (On subgoal types not shown, the modular
model still outperforms the monolithic, by margins
up to 16%.) In the full trajectory results (Table 2)
we see comparable performance between the mono-
lithic and modular models on unseen environments.

4 Conclusions

We introduced a novel modular architecture for
grounded instruction following where each module
is a sequence-to-sequence model conditioned on
natural language instructions. With the ALFRED
dataset as a testbed, we showed that our modu-
lar model achieves better out-of-domain general-
ization, generalizing better at the subgoal level to
novel task compositions and unseen environments
than the monolithic model used in prior work. All
of the module types in our model currently use
separate parameterizations but identical architec-
tures; future work might leverage the modularity
of our approach by using specialized architectures,
training procedures, or loss functions for each sub-
goal type. Furthermore, unsupervised methods
for jointly segmenting instructions and trajectories
without requiring labeled subgoal labels and align-
ments would be a valuable addition to our frame-
work.

Acknowledgments

This material is based upon work supported by
the National Science Foundation Graduate Re-
search Fellowship Program under Grant No. DGE
1752814, a Ford Foundation fellowship to the first
author, a Google PhD fellowship to the second au-
thor, and by DARPA through the XAI program and
the LwLL program.



References

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton van den Hengel. 2018. Vision-
and-language navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Jacob Andreas, Dan Klein, and Sergey Levine. 2017.
Modular multitask reinforcement learning with pol-
icy sketches. In Proceedings of the International
Conference on Machine Learning (ICML), pages
166–175.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 39–48.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics (TACL), 1(1):49–
62.

Dzmitry Bahdanau, Shikhar Murty, Michael
Noukhovitch, Thien Huu Nguyen, Harm de Vries,
and Aaron Courville. 2019. Systematic generaliza-
tion: what is required and can it be learned? In
Proceedings of the International Conference on
Learning Representations (ICLR).

Valts Blukis, Yannick Terme, Eyvind Niklasson,
Ross A. Knepper, and Yoav Artzi. 2020. Learning to
map natural language instructions to physical quad-
copter control using simulated flight. volume 100 of
Proceedings of Machine Learning Research, pages
1415–1438. PMLR.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the Con-
ference on Artificial Intelligence (AAAI).

Howard Chen, Alane Shur, Dipendra Misra, Noah
Snavely, and Yoav Artzi. 2019. Touchdown: Natural
language navigation and spatial reasoning in visual
street environments. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Volkan Cirik, Taylor Berg-Kirkpatrick, and Louis-
Phillippe Morency. 2018. Using syntax to ground
referring expressions in natural images. In Pro-
ceedings of the Conference on Artificial Intelligence
(AAAI).

Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi
Parikh, and Dhruv Batra. 2018. Neural modular con-
trol for embodied question answering. In Proceed-
ings of the Conference on Robot Learning (CoRL).

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter
Abbeel, and Sergey Levine. 2017. Learning modu-
lar neural network policies for multi-task and multi-
robot transfer. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation
(ICRA), pages 2169–2176.

Chi Han, Jiayuan Mao, Chuang Gan, Josh Tenenbaum,
and Jiajun Wu. 2019. Visual concept-metaconcept
learning. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 5002–5013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 770–778.

Karl Moritz Hermann, Felix Hill, Simon Green,
Fumin Wang, Ryan Faulkner, Hubert Soyer, David
Szepesvari, Wojciech Marian Czarnecki, Max Jader-
berg, Denis Teplyashin, Marcus Wainwright, Chris
Apps, Demis Hassabis, and Phil Blunsom. 2017.
Grounded language learning in a simulated 3d world.
CoRR, abs/1706.06551.

Felix Hill, Andrew Lampinen, Rosalia Schneider,
Stephen Clark, Matthew Botvinick, James L Mc-
Clelland, and Adam Santoro. 2020. Environmental
drivers of systematicity and generalization in a situ-
ated agent. In Proceedings of the International Con-
ference on Learning Representations (ICLR).

Ronghang Hu, Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Kate Saenko. 2017. Learning
to reason: End-to-end module networks for visual
question answering. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV),
pages 804–813.

Ronghang Hu, Daniel Fried, Anna Rohrbach, Dan
Klein, Trevor Darrell, and Kate Saenko. 2019. Are
you looking? grounding to multiple modalities in
vision-and-language navigation. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
6551–6557. Association for Computational Linguis-
tics.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR).

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli Van-
derBilt, Luca Weihs, Alvaro Herrasti, Daniel Gor-
don, Yuke Zhu, Abhinav Gupta, and Ali Farhadi.
2017. AI2-THOR: An interactive 3D environment
for visual AI. arXiv preprint arXiv:1712.05474.

http://proceedings.mlr.press/v100/blukis20a.html
http://proceedings.mlr.press/v100/blukis20a.html
http://proceedings.mlr.press/v100/blukis20a.html
http://arxiv.org/abs/1706.06551
https://doi.org/10.18653/v1/p19-1655
https://doi.org/10.18653/v1/p19-1655
https://doi.org/10.18653/v1/p19-1655


John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the International
Conference on Machine Learning (ICML).

Brenden M Lake and Marco Baroni. 2018. General-
ization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks.
Proceedings of the International Conference on Ma-
chine Learning (ICML).

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL).

Matt MacMahon, Brian Stankiewicz, and Benjamin
Kuipers. 2006. Walk the talk: Connecting language,
knowledge, and action in route instructions. In Pro-
ceedings of the Conference on Artificial Intelligence
(AAAI).

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B
Tenenbaum, and Jiajun Wu. 2019. The neuro-
symbolic concept learner: Interpreting scenes,
words, and sentences from natural supervision. In
Proceedings of the International Conference on
Learning Representations (ICLR).

Hongyuan Mei, Mohit Bansal, and Matthew Walter.
2016. Listen, attend, and walk: Neural mapping
of navigational instructions to action sequences. In
Proceedings of the Conference on Artificial Intelli-
gence (AAAI).

Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind
Niklasson, Max Shatkhin, and Yoav Artzi. 2018.
Mapping instructions to actions in 3D environments
with visual goal prediction. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 2667–2678.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Push-
meet Kohli. 2017. Zero-shot task generalization
with multi-task deep reinforcement learning. In
Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, page
2661–2670. JMLR.org.

Senthil Purushwalkam, Maximilian Nickel, Abhinav
Gupta, and Marc’Aurelio Ranzato. 2019. Task-
driven modular networks for zero-shot composi-
tional learning. In Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV),
pages 3593–3602.

Laura Ruis, Jacob Andreas, Marco Baroni, Di-
ane Bouchacourt, and Brenden M Lake. 2020.
A benchmark for systematic generalization in
grounded language understanding. arXiv preprint
arXiv:2003.05161.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. 2020. ALFRED:
A benchmark for interpreting grounded instructions
for everyday tasks. In Computer Vision and Pattern
Recognition (CVPR).

Kunal Pratap Singh, Suvaansh Bhambri, Byeonghwi
Kim, Roozbeh Mottaghi, and Jonghyun Choi. 2020.
Moca: A modular object-centric approach for in-
teractive instruction following. arXiv preprint
arXiv:2012.03208.

Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew R Walter, Ashis Gopal Banerjee, Seth J
Teller, and Nicholas Roy. 2011. Understanding nat-
ural language commands for robotic navigation and
mobile manipulation. In Proceedings of the Con-
ference on Artificial Intelligence (AAAI), volume 1,
page 2.

Adam Vogel and Dan Jurafsky. 2010. Learning to
follow navigational directions. In Proceedings of
the Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 806–814. Associa-
tion for Computational Linguistics.

Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin
Lu, Mohit Bansal, and Tamara L Berg. 2018. Mat-
tnet: Modular attention network for referring expres-
sion comprehension. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR).



Hyperparameter Value
Optimizer Adam

Learning Rate 1e-4
Batch Size 8

Hidden State Dim 512
Word/Action Embedding Dim 100

Zero-Goal True
Zero-Instr False

Lang. Dropout 0.0
Vision Dropout 0.0
Input Dropout 0.0
Attn. Dropout 0.0
Actor Dropout 0.0
LSTM Dropout 0.3
Mask Loss Wt. 1.0
Action Loss Wt. 1.0

Table 3: Model hyperparameters. These settings
largely follow the default parameters used by Shridhar
et al. (2020).

A Implementation Details

A.1 Model and Training Hyperparameters

We list the hyperparameters used for all models in
Table 3, we refer the reader to (Shridhar et al., 2020)
for more details on the usage of each hyperparame-
ter. Submodules are each structured identically to
the monolithic baseline (e.g. each one had a 512
dimensional hidden state).

A.2 Hardware and Training Times

Models were trained on a Quadro RTX 6000 24GB
GPU running on a machine with a 14 core Intel
Xeon Gold 5120 CPU, with a runtime of approxi-
mately 14 hours. Evaluation was done on a V100
16GB GPU on a machine with a 4-core CPU. Sub-
goal evaluation took approximately 8 hours per
split, and full trajectory evaluation approximately
1 hour.

A.3 Evaluation

We evaluate our model using the evaluation code
provided by Shridhar et al. (2020).4

B ALFRED Dataset Details

In ALFRED, the agent observes a first person view,
navigates with discrete grid movement, and uses
objects by outputting a segmentation mask over its

4https://github.com/askforalfred/alfred

image observation. The dataset contains approxi-
mately 25K expert instruction-trajectory pairs, per-
taining to about 8K unique trajectories.

B.1 Task Types
The dataset contains demonstrations for 7 different
kinds of tasks.

Pick & Place The agent must pickup a specified
object, bring it to a destination, and place it. For
example, “Pick up a vase, place it on the coffee
table."

Examine in Light The agent must pickup an ob-
ject and bring it to a light source. For example,
“Examine the remote control under the light of the
floor lamp ."

Heat & Place The agent must pickup an object,
put it in the microwave, toggle the microwave, take
the object out of the microwave, and finally place
the heated object at a specified location. For exam-
ple: “Put a heated apple next to the lettuce on the
middle shelf in the refrigerator."

Cool & Place This is the same as above, but with
a refrigerator instead of a microwave. For example,
“Drop a cold potato slice in the sink."

Clean & Place The agent must put an object into
the sink and turn on the water to clean the object.
Then, it must be placed at a specified location. For
example, “Put a washed piece of lettuce on the
counter by the sink."

Stack & Place The agent must pick up an object,
place it into a receptacle, and then bring the stacked
objects to a specified location and place them. For
example, “Move the pan on the stove with a slice
of tomato in it to the table."

Pick Two & Place The agent must pickup an
object, place it somewhere, then pick up another
instance of that object and put it in the same place.
For example, “Place two CDs in top drawer of
black cabinet."

These last two task types, Stack & Place
and Pick Two & Place, are the ones held out in
the Novel Tasks generalization experiments.


