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Language learning is an iterative process, with each learner learning from other learners. Anal-
ysis of this process of iterated learning with chains of Bayesian agents, each of whom learns
from one agent and teaches the next, shows that it converges to a distribution over languages that
reflects the inductive biases of the learners. However, if agents are taught by multiple members
of the previous generation, who potentially speak different languages, then a single language
quickly dominates the population. In this work, we consider a setting where agents learn from
multiple teachers, but are allowed to learn multiple languages. We show that if agents have
a sufficiently strong expectation that multiple languages are being spoken, we reproduce the
effects of inductive biases on the outcome of iterated learning seen with chains of agents.

1. Introduction

Natural languages change as they are passed from person to person and from gen-
eration to generation. Although many explanations have been proposed for these
changes, one way to analyze the process is to focus on the iterative nature of lan-
guage learning: people learning a language are being taught by other people who
themselves previously learned that language. Formal analysis of this “iterated
learning” process has yielded some important insights into how learners’ biases
affect the languages likely to be used by a population (Kirby, 2001). In partic-
ular, it has been shown that if we assume the learners are Bayesian agents who
compute posterior distributions over languages based on their prior beliefs and
evidence from the previous generation of learners, then the iterated learning pro-
cedure will converge on a population whose preferences reflect the learners’ prior
beliefs (Kirby, Dowman, & Griffiths, 2007; Griffiths & Kalish, 2007). This rela-
tionship between the prior beliefs of a population and the stationary distribution



over linguistic characteristics is important for understanding the evolution of hu-
man language use. For example, it suggests that we should more closely examine
universal properties of natural languages, since they are likely to reflect the biases
underlying human language learning.

Most analyses of iterated learning with Bayesian agents have assumed that
each learner receives linguistic data from exactly one member of the previous
generation. This has led to the criticism that such learning dynamics are unre-
alistic and do not adequately model the full range of linguistic evolutionary pro-
cesses (Niyogi & Berwick, 2009). However, a recent study begins to address this
critique, showing that if learners consider evidence from the entire previous gen-
eration of speakers, then the results of iterated learning with Bayesian agents do
not depend entirely on the learners’ prior beliefs (Smith, 2009). Instead, the pop-
ulation comes to almost entirely speak one language, and the initial composition
of the linguistic community is important. In particular, learners can consistently
overcome their prior beliefs if they are learning from a multi-speaker population
whose distribution of languages conflicts strongly enough with this prior.

Although the results of iterated learning with multiple teachers seems to con-
flict with earlier findings, there is a sense in which this model has an unusual
dynamics. Each learner is attempting to decide on a single language despite the
fact that the population that the learner is using as a source of evidence is, in the
aggregate, multilingual. The learners are violating the principle of Bayesian ra-
tional analysis (Ferdinand & Zuidena, 2009) by making an unjustified assumption
that only one language is being spoken. An alternative is that the learner not only
assumes that the evidence is coming from multiple speakers, but also assumes that
different speakers may be speaking different languages (see Figure 1).

(a) Single teacher (b) Multiple teachers (c) One language per teacher

Figure 1. (a) If each learner learns from a single teacher in the previous generation, then the learning
dynamics for infinitely sized discrete generations are equivalent to those for chains of individual learn-
ers, as each learner’s ancestry is still a single chain. (b) If learners still learn a single language, but get
data from multiple teachers, then we see different learning dynamics. (c) However, as learners con-
sider multilingual hypotheses, in the limiting case where each teacher is assumed to speak a different
language, we recover the learning dynamics from a single chain of learners.

One way to allow hypotheses consistent with data received from multiple
speakers is to directly estimate the probabilities of words. We show that if learners
adopt this approach, the iterated learning procedure will converge to reflect their



prior beliefs, as in the simpler single teacher formulation. However, this learn-
ing model makes the most sense in a context where it is reasonable to interpolate
between the languages spoken by one’s predecessors: say, when learning from
teachers who speak different dialects of the same basic language. In order for
learners to deal appropriately with truly divergent inputs, we need a more com-
plex learning process that explicitly models the possibility that they need to learn
multiple complete linguistic systems. Intuitively, we expect that if learners are
able to appropriately separate their input into distinct languages, then the learning
dynamics will resemble those from the single teacher setting, as shown in Figure
1 (c). We test this intuition by modeling learners of this sort, and showing that
in simulations, iterated learning with learners who believe that they are receiving
data from multiple languages once more converges on the learners’ prior beliefs.

2. Iterated Learning with Bayesian Agents

For Bayesian agents, learning is modeled as a statistical inference about the hy-
pothesis h that generated data d. The agent computes the posterior distribution:

p(h|d) ∝ p(d|h)p(h) (1)

where p(h) is the agent’s prior distribution over hypotheses, and p(d|h) is a like-
lihood expressing the probability of data d being generated for hypothesis h.

In iterated learning, the data that each agent learns from is generated from the
previous generation of learners. If we let pt(h) represent the proportion of agents
speaking language h at time t and assume that each learner receives data generated
by one teacher, the probability of an agent receiving data d at time t, pt(d), is:

pt(d) =
∑
h

pt(h)p(d|h) (2)

Similarly, if each learner samples a hypothesis from p(h|d), the next generation’s
distribution over hypotheses is: pt+1(h) =

∑
d pt(d)p(h|d), with p(h|d) as given

in Equation 1. This is the model considered in previous analyses of iterated learn-
ing by Bayesian agents, and results in convergence of pt(h) to the prior p(h) as
t→∞ (Griffiths & Kalish, 2007).

This model can be extended to allow multiple teachers. Assume that the data
d consists of a collection of independently produced words, w, with p(d|h) =∏
w∈d p(w|h). The case where all the words are generated by a single teacher is

given by expanding Equation 2 as pt(d) =
∑
h pt(h)

(∏
w∈d p(w|h)

)
. If we allow

each word to be potentially generated by a different teacher, as in the alternate
model used in Smith (2009), we have to select a new hypothesis for each word,
resulting in the modified distribution:

pt(d) =
∏
w∈d

(∑
h

pt(h)p(w|h)

)
(3)



Smith (2009) showed that when this model was used with a hypothesis space
consisting of two hypotheses, each having one highly diagnostic word, pt(h) con-
verged to a distribution that was dominated by one hypothesis, with the specific
hypothesis resulting from an interaction between the prior and the initial propor-
tion of the population who used that hypothesis.

The Bayesian inference described in Equation 1 is intended to identify which
single hypothesis generated a collection of words, d. Therefore, the learners are
making an estimate that is consistent with data generated according to Equation 2,
but not with data generated according to Equation 3. Therefore, to properly model
a Bayesian learner who receives data according to Equation 3, we need to consider
a different hypothesis space: one that takes into account the fact that the learner
is receiving data from multiple underlying distributions. This will be the focus of
the remainder of this paper.

3. Learning Distributions over Words

One way to allow hypotheses consistent with data received from multiple speakers
is to directly estimate the probabilities of words from the vocabulary. This results
in a continuous hypothesis space: for a vocabulary of size V , a hypothesis h is a
member of the V -dimensional simplex. For the simple two-word vocabulary used
by Smith (2009), h can be summarized by a single parameter θ ∈ [0, 1], and the
production probabilities can be written as p(w|θ) = θδ(w,w0)(1−θ)δ(w,w1), where
δ is the Kroenecker’s delta function. Note that with this production probability,
we can rewrite Equation 3 as:

pt(d) =
∏
w∈d

(∫
θ

pt(θ)p(w|θ)dθ
)

= Et(θ)n0 (1− Et(θ))n1

where Et(θ) is the mean of the current generation’s distribution over hypotheses
pt(θ), and ni =

∑
w∈d δ(w,wi) for i ∈ {0, 1}. Because our hypothesis space

is equivalent to the set of Bernoulli distributions, the conjugate prior is the beta
distribution.a Therefore, we define p(θ) to be a beta prior, with hyperparameters
α and β, which results in an iterated Bayesian learning process equivalent to the
Wright-Fisher model of genetic drift (Reali & Griffiths, in press).

Given the equivalence to the Wright-Fisher model, we expect that the iterated
learning procedure will converge to a distribution over θ that is closely related to
the prior (Reali & Griffiths, in press). To verify this, we ran a simple computa-
tional simulation. Recall that under our transmission model, the behavior of an
entire generation of learners can be summarized by a single value: Et(θ). We
assume learners select a hypothesis by sampling from their posterior distribution
over hypotheses, so linearity of expectation makes this straightforward to compute

aMore generally, for a vocabulary of size V , the conjugate prior is the V -dimensional Dirichlet.



from E(θ|d), the posterior mean. Et+1(θ) =
∑
d pt(d)E(θ|d). Fortunately, due

to the conjugacy of the beta prior, E(θ|d) has a simple form: α+n0
α+β+n0+n1

.
Following Smith (2009), we ran simulations for various proportions ofw0 spo-

ken in the initial population, assuming an infinite population of learners. We fixed
|d| = 3. Varying this parameter resulted in slower convergence as |d| increased,
but did not affect the qualitative results. We also experimented with different val-
ues of α, but fixed β = 2

3α so that the expected value of θ under the prior was
always 0.6, slightly favoring w0. The results of our simulations are in Figure 2.
The main finding is that under all the settings under consideration, the propor-
tion of w0 spoken in the population converged to 0.6. In other words, this model
exhibited the expected convergence to a proportion favored by the prior.
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(a) α = 0.3
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(b) α = 1.5

Figure 2. Simulation results for the two hypothesis model. Here, the number of words seen by each
learner |d| = 3, and the prior is parameterized with β = 2

3
α, favoring proportions of w0 close to 0.6.

4. Learning Distributions over Languages

A more general way to deal appropriately with multiple linguistically divergent
teachers is for learners to explicitly consider arbitrary sets of languages, but to
shift the hypothesis space from individual languages to distributions over lan-
guages. Thus, a learner is simultaneously inducing from data which languages are
being spoken by the previous generation and their relative frequencies. We use
h to refer to a full hypothesis: a distribution over languages, l, where each lan-
guage l is a distribution over words w. For example, in the two-word setting, there
might be two languages: l0, wherew0 is spoken with probability 0.95 andw1 with
probability 0.05, and l1, where those probabilities are reversed. A bilingual agent
with a slight preference for l0 can be represented as having hypothesis h0.6, where
p(l0|h0.6) = 0.6 and p(l1|h0.6) = 0.4.

The Dirichlet process (DP) (Ferguson, 1973) provides a suitable family of
priors for this hypothesis space. A DP prior has two parameters: α, which affects
the learner’s prior belief in the number of languages being spoken (a learner with
a higher value of α will tend to predict a larger number of distinct languages), and



a base distribution G0, which is a distribution over languages, specifying which
languages are preferred.

4.1. Inference

Exact inference in the space of distributions over languages under a DP prior is
intractable. However, we can approximate the dynamics of the Markov chain by
running Monte Carlo simulations with collections of artificial agents separated
into discrete generations. Procedurally, these simulations are straightforward. We
start out with an initial collection of agents, A0. Each of these agents receives
some data according to the starting conditions of that simulation (see Section 4.2
for details). Then, based on that data, the agent picks a specific hypothesis. We
then create a new generation of agents, A1. Each agent in A1 receives data gen-
erated by the agents in A0, and chooses its own hypothesis accordingly. This
procedure is iterated for some fixed number of generations, with each agent in At
receiving data collectively from the agents in At−1.

There are thus two steps that we have to perform repeatedly. First, given
some data d, we need to be able to draw a sample from the posterior distribu-
tion p(h|d). Though we omit the mathematical details here, a sample can be
obtained efficiently by using a Gibbs sampler based on the Chinese Restaurant
Process (Aldous, 1985). The second step is to sample some data, d, from a collec-
tion of agents, A. We sample each word independently according to a multistep
procedure. First, an agent a is selected uniformly from A. Then, a language is
sampled according to that agent’s hypothesis. Finally, the word is sampled from
the selected language. This procedure is repeated for each word in the data. The
number of words in the data, |d|, is fixed as before. This amounts to drawing each
word according to: p(w) =

∑
a∈A

1
|A|
∑
l p(l|ha)

∑
w p(w|l).

4.2. Simulations

We ran simulations of this learning procedure using the 260-language composi-
tional vs. holistic setting from Griffiths and Kalish (2007). In this setting, each
word, w, represents a form-meaning pair, (x, y), where x and y each have a two-
bit representation. Each language corresponds to a mapping between forms and
meanings on which its production probabilities depend. The holistic languages
range over all 44 = 256 possible mappings between the 4 forms and 4 meanings,
whereas the compositional languages map each bit individually, and thus range
over only 22 = 4 possible mappings. The actual production probabilities are:

p(x, y|l) = p(y)p(x|y, l) =
{

1
4 (1− ε) y maps to x in l
1
4
ε
3 otherwise

with ε a free parameter. The base distribution, G0, is parameterized by p0, de-
termining the probability of a compositional language. The distribution selects



uniformly given the class of language:

G0(l) =
{ p0

4 l is compositional
1−p0
256 l is holistic

For these simulations, we fixed the number of agents in each generation:
|A| = 100, and each agent learned from a data set of fixed size: |d| = 20. We
set ε = 0.05 and ran the simulations for 50 generations each. There are three
different types of starting conditions: in “holistic,” 90% of the starting data was
generated by a particular holistic hypothesis (one with minimal overlap with the
compositional hypotheses) and the remaining 10% was drawn uniformly from the
set of possible words. In “compositional,” 90% of the starting data was generated
by a particular compositional hypothesis. In “uniform,” all the starting data was
generated uniformly. We report values for various settings of α and p0. Here,
the values reported are the total final probabilities of compositional hypotheses,
averaged over 50 runs.b The results are in Figure 3.
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(a) p0 = 0.6
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(b) p0 = 0.01

Figure 3. Simulation results with a richer pool of languages and multilingual learners. As the con-
centration parameter α increases, so does the extent to which the learner expects teachers to speak
different languages. p0 controls the strength of the prior in favor of compositional hypotheses.

The general trend of these results is that for low values of α, the population of
learners tends to converge to the hypothesis most favored by the initial conditions,
whereas for high values of α, we see convergence to the prior. This is consistent
with previous work, which can be viewed as limiting conditions of this framework:
as α → 0, we obtain a prior assumption by the learner that only one language is
being spoken in the general population, as in Smith (2009), while as α → ∞,
we obtain an assumption that each individual word is generated from a separate

bFor smaller values of α, the individual hypotheses most consistent with the starting data were
favored, whereas for larger values of α, the probabilities of individual hypotheses were generally
uniform over each hypothesis class.



hypothesis, which is equivalent to the learning dynamics from Griffiths and Kalish
(2007) (see Figure 1). Thus, the concentration parameter of the DP prior provides
a natural way to interpolate between these two patterns of results.

5. Conclusion

The simulations we have presented show that when an agent’s hypothesis space
explicitly takes into account the possibility of receiving input from multiple teach-
ers with possibly divergent hypotheses, then iterated Bayesian learning generally
converges to reflect learners’ inductive biases, as when agents learn from only a
single teacher. However, if we explicitly encode a bias in the agent towards be-
lieving that the teachers all share a single hypothesis, then we may observe results
that more closely align with initial data conditions. These results provide a way to
understand how learners might learn from multiple teachers, but nonetheless show
significant effects of inductive biases in the languages that they come to speak.
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