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One of the oldest problems in linguistics is reconstructing the
words that appeared in the protolanguages from which modern
languages evolved. Identifying the forms of these ancient lan-
guages makes it possible to evaluate proposals about the nature
of language change and to draw inferences about human history.
Protolanguages are typically reconstructed using a painstaking
manual process known as the comparative method. We present a
family of probabilistic models of sound change as well as algo-
rithms for performing inference in these models. The resulting
system automatically and accurately reconstructs protolanguages
from modern languages. We apply this system to 637 Austronesian
languages, providing an accurate, large-scale automatic reconstruc-
tion of a set of protolanguages. Over 85% of the system'’s recon-
structions are within one character of the manual reconstruction
provided by a linguist specializing in Austronesian languages. Be-
ing able to automatically reconstruct large numbers of languages
provides a useful way to quantitatively explore hypotheses about the
factors determining which sounds in a language are likely to change
over time. We demonstrate this by showing that the reconstructed
Austronesian protolanguages provide compelling support for a hy-
pothesis about the relationship between the function of a sound
and its probability of changing that was first proposed in 1955.
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Reconstruction of the protolanguages from which modern lan-
guages are descended is a difficult problem, occupying histor-
ical linguists since the late 18th century. To solve this problem
linguists have developed a labor-intensive manual procedure called
the comparative method (1), drawing on information about the
sounds and words that appear in many modern languages to hy-
pothesize protolanguage reconstructions even when no written
records are available, opening one of the few possible windows
to prehistoric societies (2, 3). Reconstructions can help in un-
derstanding many aspects of our past, such as the technological
level (2), migration patterns (4), and scripts (2, 5) of early societies.
Comparing reconstructions across many languages can help reveal
the nature of language change itself, identifying which aspects
of language are most likely to change over time, a long-standing
question in historical linguistics (6, 7).

In many cases, direct evidence of the form of protolanguages is
not available. Fortunately, owing to the world’s considerable lin-
guistic diversity, it is still possible to propose reconstructions by
leveraging a large collection of extant languages descended from a
single protolanguage. Words that appear in these modern lan-
guages can be organized into cognate sets that contain words sus-
pected to have a shared ancestral form (Table 1). The key
observation that makes reconstruction from these data possible is
that languages seem to undergo a relatively limited set of regular
sound changes, each applied to the entire vocabulary of a language
at specific stages of its history (1). Still, several factors make re-
construction a hard problem. For example, sound changes are often
context sensitive, and many are string insertions and deletions.

In this paper, we present an automated system capable of
large-scale reconstruction of protolanguages directly from words
that appear in modern languages. This system is based on a
probabilistic model of sound change at the level of phonemes,
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building on work on the reconstruction of ancestral sequences
and alignment in computational biology (8-12). Several groups
have recently explored how methods from computational biology
can be applied to problems in historical linguistics, but such work
has focused on identifying the relationships between languages
(as might be expressed in a phylogeny) rather than reconstructing
the languages themselves (13-18). Much of this type of work has
been based on binary cognate or structural matrices (19, 20), which
discard all information about the form that words take, simply in-
dicating whether they are cognate. Such models did not have the
goal of reconstructing protolanguages and consequently use a rep-
resentation that lacks the resolution required to infer ancestral
phonetic sequences. Using phonological representations allows us
to perform reconstruction and does not require us to assume that
cognate sets have been fully resolved as a preprocessing step. Rep-
resenting the words at each point in a phylogeny and having a model
of how they change give a way of comparing different hypothesized
cognate sets and hence inferring cognate sets automatically.

The focus on problems other than reconstruction in previous
computational approaches has meant that almost all existing
protolanguage reconstructions have been done manually. How-
ever, to obtain more accurate reconstructions for older languages,
large numbers of modern languages need to be analyzed. The
Proto-Austronesian language, for instance, has over 1,200 de-
scendant languages (21). All of these languages could potentially
increase the quality of the reconstructions, but the number of
possibilities increases considerably with each language, making it
difficult to analyze a large number of languages simultaneously.
The few previous systems for automated reconstruction of pro-
tolanguages or cognate inference (22-24) were unable to handle
this increase in computational complexity, as they relied on de-
terministic models of sound change and exact but intractable
algorithms for reconstruction.

Being able to reconstruct large numbers of languages also
makes it possible to provide quantitative answers to questions
about the factors that are involved in language change. We dem-
onstrate the potential for automated reconstruction to lead to
novel results in historical linguistics by investigating a specific
hypothesized regularity in sound changes called functional load.
The functional load hypothesis, introduced in 1955, asserts that
sounds that play a more important role in distinguishing words are
less likely to change over time (6). Our probabilistic reconstruction
of hundreds of protolanguages in the Austronesian phylogeny
provides a way to explore this question quantitatively, producing
compelling evidence in favor of the functional load hypothesis.
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Table 1. Sample of reconstructions produced by the system
Known Modern Languages Reconstructed Ancestors*

Glosst Fijian Pazeh Melanau  Inabaknon  Manual Automated At
star kalokalo® mintol biten bitu’on *bitugen *bitugen 0
to hold taura ma:ra? magem kumkom *gemgem  *gemgem 0
house vale xuma? lebu? ruma *rumaq *Rumaq 0
bird manumanu  ajam manuk manok *qayam *qayam 0
to cut, hack tata tartatak  tutek hadhad *taraq *taraq 0
at e - ga? - *i i 0
what? cava ?axai ua? inew  ay *nanu *anu 1
this oqo ?imini itew *ini *ani 1
wind cagi varo panay bariyo *bali *beliu 2
*Complete sets of reconstructions can be found in S| Appendix.

TRandomly selected by strati

ed sampling according to the Levenshtein edit distance

A.

*Levenshtein distance to a reference manual reconstruction, in this case the reconstruction of Blust (42).

5The colors encode cognate sets.
Ywe use this symbol for encoding missing data.

Model

We use a probabilistic model of sound change and a Monte Carlo
inference algorithm to reconstruct the lexicon and phonology of
protolanguages given a collection of cognate sets from modern
languages. As in other recent work in computational historical
linguistics (13-18), we make the simplifying assumption that each
word evolves along the branches of a tree of languages, reflecting
the languages’ phylogenetic relationships. The tree’s internal
nodes are languages whose word forms are not observed, and the
leaves are modern languages. The output of our system is a pos-
terior probability distribution over derivations. Each derivation
contains, for each cognate set, a reconstructed transcription of
ancestral forms, as well as a list of sound changes describing the
transformation from parent word to child word. This represen-
tation is rich enough to answer a wide range of queries that would
normally be answered by carrying out the comparative method
manually, such as which sound changes were most prominent
along each branch of the tree.

We model the evolution of discrete sequences of phonemes,
using a context-dependent probabilistic string transducer (8).
Probabilistic string transducers efficiently encode a distribution
over possible changes that a string might undergo as it changes
through time. Transducers are sufficient to capture most types of
regular sound changes (e.g., lenitions, epentheses, and elisions) and
can be sensitive to the context in which a change takes place. Most
types of changes not captured by transducers are not regular (1) and
are therefore less informative (e.g., metatheses, reduplications, and
haplologies). Unlike simple molecular InDel models used in com-
putational biology such as the TKF91 model (25), the parameter-
ization of our model is very expressive: Mutation probabilities are
context sensitive, depending on the neighboring characters, and
each branch has its own set of parameters. This context-sensitive
and branch-specific parameterization plays a central role in our
system, allowing explicit modeling of sound changes.

Formally, let = be a phylogenetic tree of languages, where each
language is linked to the languages that descended from it. In
such a tree, the modern languages, whose word forms will be
observed, are the leaves of 7. The most recent common ancestor
of these modern languages is the root of 7. Internal nodes of the
tree (including the root) are protolanguages with unobserved
word forms. Let L denote all languages, modern and otherwise.
All word forms are assumed to be strings in the International
Phonetic Alphabet (IPA).

We assume that word forms evolve along the branches of the
tree 7. However, it is usually not the case that a word belonging
to each cognate set exists in each modern language—words are
lost or replaced over time, meaning that words that appear in the
root languages may not have cognate descendants in the lan-
guages at the leaves of the tree. For the moment, we assume there
is a known list of C cognate sets. For eachce{1;...;C} let L(c)
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denote the subset of modern languages that have a word form in
the cth cognate set. For each setc € {1;...; C} and each language
€ L(c), we denote the modern word form by w. . For cognate set
¢, only the minimal subtree z(c) containing L(c) and the root is
relevant to the reconstruction inference problem for that set.

Our model of sound change is based on a generative process
defined on this tree. From a high-level perspective, the genera-
tive process is quite simple. Let ¢ be the index of the current
cognate set, with topology z(c). First, a word is generated for the
root of z(c), using an (initially unknown) root language model
(i.e., a probability distribution over strings). The words that ap-
pear at other nodes of the tree are generated incrementally, using
a branch-specific distribution over changes in strings to generate
each word from the word in the language that is its parent in z(c).
Although this distribution differs across branches of the tree,
making it possible to estimate the pattern of changes involved in
the transition from one language to another, it remains the same
for all cognate sets, expressing changes that apply stochastically
to all words. The probabilities of substitution, insertion and de-
letion are also dependent on the context in which the change
occurs. Further details of the distributions that were used and
their parameterization appear in Materials and Methods.

The flexibility of our model comes at the cost of having literally
millions of parameters to set, creating challenges not found in
most computational approaches to phylogenetics. Our inference
algorithm learns these parameters automatically, using estab-
lished principles from machine learning and statistics. Specifi-
cally, we use a variant of the expectation-maximization algorithm
(26), which alternates between producing reconstructions on the
basis of the current parameter estimates and updating the pa-
rameter estimates on the basis of those reconstructions. The
reconstructions are inferred using an efficient Monte Carlo in-
ference algorithm (27). The parameters are estimated by opti-
mizing a cost function that penalizes complexity, allowing us to
obtain robust estimates of large numbers of parameters. See SI
Appendix, Section 1 for further details of the inference algorithm.

If cognate assignments are not available, our system can be
applied just to lists of words in different languages. In this case it
automatically infers the cognate assignments as well as the
reconstructions. This setting requires only two modifications to
the model. First, because cognates are not available, we index the
words by their semantic meaning (or gloss) g, and there are thus
G groups of words. The model is then defined as in the previous
case, with words indexed as w, . Second, the generation process is
augmented with a notion of innovation, wherein a word w, in
some language may instead be generated independently from
its parent word w, . In this instance, the word is generated from
a language model as though it were a root string. In effect, the
tree is “cut” at a language when innovation happens, and so the
word begins anew. The probability of innovation in any given
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encing reconstruction quality. ( A) 0500
Reconstruction error rates for a
baseline (which consists of picking
one modern word at random), our
system, and the amount of dis-
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manual reconstructions. Reconstruc-
tion error rates are Levenshtein
distances normalized by the mean
word form length so that errors
can be compared across languages.
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Agreement between linguists was computed on only Proto-Oceanic because the dataset used lacked multiple reconstructions for other protolanguages .(B) The
effect of the topology on the quality of the reconstruction. On one hand, the difference between reconstruction error rates obtained from the system t hat ran
on an uninformed topology (  rst and second) and rates obtained from the system that ran on an informed topology (third and fourth) is statistically signi cant.
On the other hand, the corresponding difference between a at tree and a random binary tree is not statistically signi cant, nor is the difference between using
the consensus tree of ref. 41 and the Ethnologue tree (29). This suggests that our method has a certain robustness to moderate topology variations. ( C) Re-
construction error rate as a function of the number of languages used to train our automatic reconstruction system. Note that the error is not expected to
go down to zero, perfect reconstruction being generally unidenti able. The results in A and B are directly comparable: In fact, the entry labeled ~ “Ethnologue "

in B corresponds to the green Proto-Austronesian entry in
is restricted to those cognates with at least one re

language is initially unknown and must be learned automatically
along with the other branch-specific model parameters.

Results

Our results address three questions about the performance of our
system. First, how well does it reconstruct protolanguages? Second,
how well does it identify cognate sets? Finally, how can this approach
be used to address outstanding questions in historical linguistics?

Protolanguage Reconstructions. To test our system, we applied it to
a large-scale database of Austronesian languages, the Austrone-
sian Basic Vocabulary Database (ABVD) (28). We used a pre-
viously established phylogeny for these languages, the Ethnologue
tree (29) (we also describe experiments with other trees in Fig. 1).
For this first test of our system we also used the cognate sets
provided in the database. The dataset contained 659 languages at
the time of download (August 7, 2010), including a few languages
outside the Austronesian family and some manually reconstructed
protolanguages used for evaluation. The total data comprised
142,661 word forms and 7,708 cognate sets. The goal was to re-
construct the word in each protolanguage that corresponded to
each cognate set and to infer the patterns of sound changes along
each branch in the phylogeny. See SI Appendix, Section 2 for
further details of our simulations.

We used the Austronesian dataset to quantitatively evaluate the
performance of our system by comparing withheld words from
known languages with automatic reconstructions of those words.
The Levenshtein distance between the held-out and reconstructed
forms provides a measure of the number of errors in these
reconstructions. We used this measure to show that using more
languages helped reconstruction and also to assess the overall
performance of our system. Specifically, we compared the system’s
error rate on the ancestral reconstructions to a baseline and also to
the amount of divergence between the reconstructions of two
linguists (Fig. 14). Given enough data, the system can achieve
reconstruction error rates close to the level of disagreement be-
tween manual reconstructions. In particular, most reconstructions
perfectly agree with manual reconstructions, and only a few con-
tain big errors. Refer to Table 1 for examples of reconstructions.
See SI Appendix, Section 3 for the full lists.

We also present in Fig. 1B the effect of the tree topology on
reconstruction quality, reiterating the importance of using in-
formative topologies for reconstruction. In Fig. 1C, we show that
the accuracy of our method increases with the number of ob-
served Oceanic languages, confirming that large-scale inference
is desirable for automatic protolanguage reconstruction: Recon-
struction improved statistically significantly with each increase
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A. The results in A and B and those in C are not directly comparable because the evaluationin  C
ex in the smallest evaluation set (to make the curve comparable across the horizontal axis of C).

except from 32 to 64 languages, where the average edit distance
improvement was 0.05.

For comparison, we also evaluated previous automatic re-
construction methods. These previous methods do not scale to
large datasets so we performed comparisons on smaller subsets
of the Austronesian dataset. We show in SI Appendix, Section 2
that our method outperforms these baselines.

We analyze the output of our system in more depth in Fig. 2
A-C, which shows the system learned a variety of realistic sound
changes across the Austronesian family (30). In Fig. 2D, we show
the most frequent substitution errors in the Proto-Austronesian
reconstruction experiments. See SI Appendix, Section 5 for
details and similar plots for the most common incorrect inser-
tions and deletions.

Cognate Recovery. Previous reconstruction systems (22) required
that cognate sets be provided to the system. However, the crea-
tion of these large cognate databases requires considerable an-
notation effort on the part of linguists and often requires that at
least some reconstruction be done by hand. To demonstrate that
our model can accurately infer cognate sets automatically, we
used a version of our system that learns which words are cognate,
starting only from raw word lists and their meanings. This system
uses a faster but lower-fidelity model of sound change to infer
correspondences. We then ran our reconstruction system on
cognate sets that our cognate recovery system found. See SI Ap-
pendix, Section 1 for details.

This version of the system was run on all of the Oceanic lan-
guages in the ABVD, which comprise roughly half of the Aus-
tronesian languages. We then evaluated the pairwise precision
(the fraction of cognate pairs identified by our system that are also
in the set of labeled cognate pairs), pairwise recall (the fraction of
labeled cognate pairs identified by our system), and pairwise F1
measure (defined as the harmonic mean of precision and recall)
for the cognates found by our system against the known cognates
that are encoded in the ABVD. We also report cluster purity,
which is the fraction of words that are in a cluster whose known
cognate group matches the cognate group of the cluster. See S/
Appendix, Section 2.3 for a detailed description of the metrics.

Using these metrics, we found that our system achieved a pre-
cision of 0.844, recall of 0.621, F1 of 0.715, and cluster purity of
0.918. Thus, over 9 of 10 words are correctly grouped, and our
system errs on the side of undergrouping words rather than clus-
tering words that are not cognates. Because the null hypothesis in
historical linguistics is to deem words to be unrelated unless
proved otherwise, a slight undergrouping is the desired behavior.
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