Painless Unsupervised Learning with Features

Berkeley

Taylor Berg-Kirkpatrick Alexandre Bouchard-Côté John DeNero Dan Klein
Basic HMM for POS Induction

\[x_{i-1} \rightarrow z_{i-1} \rightarrow z_i \rightarrow z_{i+1} \]

\[x_i \]

\[x_{i+1} \]
Basic HMM for POS Induction

Transition distribution:

\[P(z' | z) \]
Basic HMM for POS Induction

Emission distribution:

\[P(x|z) \]
Parameterization

Key distribution: \(P(x|\text{NNP}) \)

\[\mathcal{X}\]

- John
- Mary
- running
- jumping
Parameterization

Key distribution: $P(x|\text{NNP})$

| $\theta_{x|\text{NNP}}$ | x |
|------------------------|-------|
| 0.1 | John |
| 0.0 | Mary |
| 0.2 | running |
| 0.0 | jumping |
Parameterization

Key distribution: \(P(x|\text{NNP}) \)

\[
\begin{array}{ccc}
\theta_{x|\text{NNP}} & x & f \\
0.1 & \text{John} & +\text{Cap} \\
0.0 & \text{Mary} & +\text{Cap} \\
0.2 & \text{running} & +\text{ing} \\
0.0 & \text{jumping} & +\text{ing} \\
\end{array}
\]
Parameterization

Key distribution: \(P(x|\text{NNP}) \)

| \(\theta_{x|\text{NNP}} \) | \(x \) | \(f \) | \(e^{w^T f} \) |
|---|---|---|---|
| 0.1 | John | +Cap | 0.3 |
| 0.0 | Mary | +Cap | 0.3 |
| 0.2 | running | +ing | 0.1 |
| 0.0 | jumping | +ing | 0.1 |

W:
- +Cap: +1.2
- +ing: -0.3
Parameterization

\[\theta_{x|z} = \frac{\exp(w^T f(x, z))}{\sum_{x'} \exp(w^T f(x', z))} \]
Main idea: local multinomials become maxents
Unsupervised Learning with Features

Main idea: local multinomials become maxents

EM + Maxent M-Step = Unsupervised learning w/ features
POS Induction Accuracy
Basic Multinomial:
John ∧ NNP

POS Induction Accuracy

43.2
POS Induction Accuracy

Basic Multinomial:
John ∧ NNP

Rich Features:
John ∧ NNP
+Digit ∧ NNP
+Hyph ∧ NNP
+Cap ∧ NNP
+ing ∧ NNP

43.2

56.0 +12.8
Hard EM without Features

E-Step

θ

M-Step

Z
Hard EM without Features

E-Step: Dynamic Program

\[z \leftarrow \arg\max_{z} P(z|x; \theta) \]

M-Step: Divide Counts

\[
\theta \leftarrow \arg\max_{\theta} P(x, z; \theta) = \left[\frac{c(z \to x)}{c(z \to \cdot)}, \ldots \right]
\]
Hard EM with Features

E-Step: Dynamic Program
\[z \leftarrow \arg\max_z P(z|x; \theta) \]

M-Step: Divide Counts
\[\theta \leftarrow \arg\max_\theta P(x, z; \theta) \]
\[= \left[\frac{c(z \rightarrow x)}{c(z \rightarrow \cdot)}, \ldots \right] \]
Hard EM with Features

E-Step: Dynamic Program

\[z \leftarrow \operatorname{argmax}_z P(z|x; \theta) \]

M-Step: Divide Counts

\[\theta \leftarrow \operatorname{argmax}_\theta P(x, z; \theta) \]

\[= \left[\frac{c(z \rightarrow x)}{c(z \rightarrow \cdot)}, \ldots \right] \]
Hard EM with Features

E-Step: Dynamic Program
\[z' \leftarrow \arg\max_z P(z|x; \theta) \]

M-Step: Train Maxent
\[w' \leftarrow \arg\max_w \log P(x, z; w) \]
Hard EM with Features

\[
\log P(x, z; w) = \sum_i \log P(x_i | z_i; w) + \ldots
\]
Hard EM with Features

$$\log P(x, z; w)$$

$$= \sum_i \log P(x_i | z_i; w) + \ldots$$

Maxent training example
Hard EM with Features

\[
\log P(x, z; w)
\]

\[
= \sum_{i} \log P(x_i | z_i; w) + \ldots
\]

Maxent training example

\[
= \sum_{z,x} c(z \rightarrow x) \log P(x | z; w) + \ldots
\]

Multiplicity
Hard EM with Features

E-Step: Dynamic Program
\[
\mathbf{z} \leftarrow \text{argmax}_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}; \theta)
\]

M-Step: Train Maxent
\[
\mathbf{w} \leftarrow \text{argmax}_{\mathbf{w}} \log P(\mathbf{x}, \mathbf{z}; \mathbf{w})
\]
Hard EM with Features

E-Step: Dynamic Program
\[z \leftarrow \arg\max_z P(z|x; \theta) \]

M-Step: Train Maxent
\[w \leftarrow \arg\max_w \log P(x, z; w) \]

Transform Parameters
\[\theta_{x|z} \leftarrow \frac{\exp(w^T f(x, z))}{\sum_{x'} \exp(w^T f(x', z))} \]
EM with Features

E-Step: Dynamic Program
\[z \leftarrow \arg\max_z P(z|x; \theta) \]

M-Step: Train Maxent
\[w \leftarrow \arg\max_w \log P(x, z; w) \]

Transform Parameters
\[\theta_{x|z} \leftarrow \frac{\exp(w^T f(x, z))}{\sum_{x'} \exp(w^T f(x', z))} \]
EM with Features

E-Step: Dynamic Program

e(z → x) ← E[c(z → x)]

M-Step: Train Maxent

w ← argmax \(w \log P(x, z; w) \)

Transform Parameters

\[\theta_{x|z} ← \frac{\exp(w^T f(x, z))}{\sum_{x'} \exp(w^T f(x', z))} \]
EM with Features

E-Step: Dynamic Program

\[e(z \rightarrow x) \leftarrow \mathbb{E}[c(z \rightarrow x)] \]

M-Step: Train Maxent

\[w \leftarrow \text{argmax}_w \mathbb{E} \left[\log P(x, z; w) \right] \]

Transform Parameters

\[\theta_{x|z} \leftarrow \frac{\exp(w^T f(x, z))}{\sum_{x'} \exp(w^T f(x', z))} \]
Algorithm 1

Initialize probabilities θ

repeat

- Compute expected counts e
- Fit parameters θ

until convergence
EM without Features

\[L(w) \]

Initialize probabilities \(\theta \)

repeat
- Compute expected counts \(e \)
- Fit parameters \(\theta \)
until convergence

Algorithm 2

EM with Features

Initialize weights \(w \)

repeat
- Compute expected counts \(e \)
- Fit parameters \(w \)
- Transform \(w \) to \(\theta \)
until convergence

Algorithm 3

EM with Features

Initialize weights \(w \)

repeat
- Compute expected counts \(e \)
- Compute \(\nabla L(w, e) \)
- \(w \leftarrow \text{climb}(w, L(w, e), \nabla L(w, e)) \)
- Transform \(w \) to \(\theta \)
until convergence

Algorithm 4

Direct Gradient with Features

Initialize weights \(w \)

repeat
- Compute expected counts \(e \)
- Compute \(L(w) \)
- Compute \(\nabla L(w, e) \)
- \(w \leftarrow \text{climb}(w, L(w, e), \nabla L(w, e)) \)
- Transform \(w \) to \(\theta \)
until convergence
Algorithm 1

EM without Features

1. Initialize probabilities θ
2. repeat
 - Compute expected counts e
 - Fit parameters θ
3. until convergence

Algorithm 2

EM with Features

1. Initialize weights w
2. repeat
 - Compute expected counts e
 - Fit parameters w
3. Transform w to θ
4. until convergence

Algorithm 3

EM with Features

1. Initialize weights w
2. repeat
 - Compute expected counts e
 - Compute $\nabla L(w, e)$
3. $w \leftarrow \text{climb}(w, L(w, e), \nabla L(w, e))$
4. Transform w to θ
5. until convergence

Algorithm 4

Direct Gradient with Features

1. Initialize weights w
2. repeat
 - Compute expected counts e
 - Compute $L(w)$
 - Compute $\nabla L(w, e)$
3. $w \leftarrow \text{climb}(w, L(w), \nabla L(w, e))$
4. Transform w to θ
5. until convergence
Initialize probabilities θ

repeat
 Compute expected counts e
 Fit parameters θ
until convergence

Transform w to θ

until convergence
Algorithm 1
EM with Features
Initialize probabilities \(\theta \)
repeat
Compute expected counts \(e \)
Fit parameters \(\theta \)
until convergence

Algorithm 2
EM with Features
Initialize weights \(w \)
repeat
Compute expected counts \(e \)
Fit parameters \(w \)
Transform \(w \)
until convergence

Algorithm 3
EM with Features
Initialize weights \(w \)
repeat
Compute expected counts \(e \)
repeat
Compute \(\nabla (w, e) \)
Compute \(\nabla L (w, e) \)
\(w \) ← climb \((w, \nabla L (w, e), \nabla (w, e)) \)
until convergence
Transform \(w \)
until convergence

Algorithm 4
Direct Gradient with Features
Initialize weights \(w \)
repeat
Compute expected counts \(e \)
Compute \(L (w) \)
Compute \(\nabla L (w, e) \)
\(w \) ← climb \((w, L (w), \nabla L (w, e)) \)
until convergence
Transform \(w \)
until convergence
EM without Features

Initialize probabilities θ

repeat
 Compute expected counts e
 Fit parameters θ
until convergence

Algorithm 1

EM with Features

Initialize weights w

repeat
 Compute expected counts e
 Fit parameters w
 Transform w to θ
until convergence

Algorithm 2

EM with Features

Initialize weights w

repeat
 Compute expected counts e
 Compute $\nabla \mathcal{L}(w, e)$
 $w \leftarrow \text{climb}(w, \mathcal{L}(w, e), \nabla \mathcal{L}(w, e))$
 Transform w to θ
until convergence

Algorithm 3

Direct Gradient with Features

Initialize weights w

repeat
 Compute expected counts e
 Compute $\mathcal{L}(w)$
 Compute $\nabla \mathcal{L}(w, e)$
 $w \leftarrow \text{climb}(w, \mathcal{L}(w, e), \nabla \mathcal{L}(w, e))$
 Transform w to θ
until convergence

Algorithm 4
EM without Features

Initialize probabilities θ
repeat
Compute expected counts e
Fit parameters θ
until convergence

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Direct Gradient with Features

Initialize weights w
repeat
Compute expected counts e
Compute $L(w)$
Compute $\nabla L(w)$
w ← climb $(w, L(w), \nabla L(w))$
until convergence
Transform w to θ
until convergence

$\text{L}(w)$
EM without Features

Initialize probabilities θ

repeat
- Compute expected counts e
- Fit parameters θ
until convergence

Algorithm 2

Initialize weights w

repeat
- Compute expected counts e
- Fit parameters w
- Transform w to θ
until convergence

Algorithm 3

Initialize weights w

repeat
- Compute $\mathcal{L}(w, e)$
- Compute $\nabla \mathcal{L}(w, e)$
- $w \leftarrow \text{climb}(w, \mathcal{L}(w, e), \nabla \mathcal{L}(w, e))$
until convergence
- Transform w to θ
until convergence

Algorithm 4

Initialize weights w

repeat
- Compute expected counts e
- Compute $\mathcal{L}(w)$
- Compute $\nabla \mathcal{L}(w)$
- $w \leftarrow \text{climb}(w, \mathcal{L}(w), \nabla \mathcal{L}(w))$
until convergence
- Transform w to θ
until convergence
Algorithm 1

EM without Features

Initialize probabilities θ

repeat

1. Compute expected counts e
2. Fit parameters θ

until convergence

Algorithm 2

EM with Features

Initialize weights w

repeat

1. Compute expected counts e
2. Fit parameters w
3. Transform w to θ

until convergence

Algorithm 3

EM with Features

Initialize weights w

repeat

1. Compute expected counts e
2. repeat
 1. Compute $\mathbb{F}(w, e)$
 2. Compute $\nabla \mathbb{F}(w, e)$
 3. $w \leftarrow \text{climb}(w, \mathbb{F}(w, e), \nabla \mathbb{F}(w, e))$
3. Transform w to θ

until convergence

Algorithm 4

Direct Gradient with Features

Initialize weights w

repeat

1. Compute expected counts e
2. Compute $L(w)$
3. Compute $\nabla L(w)$
4. $w \leftarrow \text{climb}(w, L(w), \nabla L(w))$
5. Transform w to θ

until convergence
Algorithm 1
EM without Features

Initialize probabilities θ
repeat
Compute expected counts e
Fit parameters θ
until convergence

Algorithm 2
EM with Features

Initialize weights w
repeat
Compute expected counts e
Fit parameters w
Transform w to θ
until convergence

Algorithm 3
EM with Features

Initialize weights w
repeat
repeat
Compute $\mathbb{L}(w, e)$
Compute $\nabla \mathbb{L}(w, e)$
$w \leftarrow \text{climb}(w, \mathbb{L}(w, e), \nabla \mathbb{L}(w, e))$
until convergence
Transform w to θ
until convergence

Algorithm 4
Direct Gradient with Features

Initialize weights w
repeat
Compute expected counts e
Compute $\mathbb{L}(w)$
Compute $\nabla \mathbb{L}(w)$
$w \leftarrow \text{climb}(w, \mathbb{L}(w), \nabla \mathbb{L}(w))$
Compute $\nabla \mathbb{L}(w)$
Transform w to θ
until convergence
EM without Features

Initialize probabilities θ

repeat
- Compute expected counts e
- Fit parameters θ

until convergence
EM with Features

Initialize weights w

repeat

- Compute expected counts e
- Fit parameters w
- Transform w to θ

until convergence
EM with Features

Initialize weights w

repeat
 \- Compute expected counts e

repeat
 \- Compute $\ell(w, e)$
 \- Compute $\nabla \ell(w, e)$
 \- $w \leftarrow \text{climb}(w, \ell(w, e), \nabla \ell(w, e))$

until convergence

\- Transform w to θ

until convergence
Algorithm 1

1. Initialize weights w
2. repeat
 1. Compute expected counts e
 2. Fit parameters w
 3. Transform w to θ
 until convergence
3. until convergence

Algorithm 2

1. Initialize weights w
2. repeat
 1. Compute expected counts e
 2. repeat
 1. Compute $\ell(w, e)$
 2. Compute $\nabla \ell(w, e)$
 3. $w \leftarrow \text{climb}(w, \ell(w, e), \nabla \ell(w, e))$
 until convergence
 3. Transform w to θ
 until convergence

Algorithm 3

1. Initialize weights w
2. repeat
 1. Compute expected counts e
 2. Compute $L(w)$
 3. Compute $\nabla L(w)$
 4. $w \leftarrow \text{climb}(w, L(w), \nabla L(w))$
3. until convergence
4. Transform w to θ
5. until convergence
Initialize weights w

repeat
 Compute expected counts e
 repeat
 Compute $\ell(w, e)$
 Compute $\nabla \ell(w, e)$
 $w \leftarrow \text{climb}(w, \ell(w, e), \nabla \ell(w, e))$
 until convergence

Transform w to θ

until convergence

$\mathbf{L}(w)$
Algorithm 1

EM with Features

Initialize weights w

repeat

Compute expected counts e

Fit parameters w

Transform w to θ

until convergence

Algorithm 2

EM with Features

Initialize weights w

repeat

Compute expected counts e

repeat

Compute $\ell(w, e)$

Compute $\nabla \ell(w, e)$

$w \leftarrow \text{climb}(w, \ell(w, e), \nabla \ell(w, e))$

until convergence

Transform w to θ

until convergence

Algorithm 3

Direct Gradient with Features

Initialize weights w

repeat

Compute expected counts e

Compute $L(w)$

Compute $\nabla L(w)$

$w \leftarrow \text{climb}(w, L(w), \nabla L(w))$

Transform w to θ

until convergence
EM with Features

Initialize weights w
repeat
 Compute expected counts e
 repeat
 Compute $\ell(w, e)$
 Compute $\nabla \ell(w, e)$
 $w \leftarrow \text{climb}(w, \ell(w, e), \nabla \ell(w, e))$
 until convergence
 Transform w to θ
until convergence
Algorithm 1

Initialize weights \(w \)

repeat
 Compute expected counts \(e \)
 Fit parameters \(w \)
 Transform \(w \) to \(\theta \)
until convergence

Algorithm 2

Initialize weights \(w \)

repeat
 Compute expected counts \(e \)
 repeat
 Compute \(\ell(w, e) \)
 Compute \(\nabla \ell(w, e) \)
 \(w \leftarrow \text{climb}(w, \ell(w, e), \nabla \ell(w, e)) \)
 until convergence
 Transform \(w \) to \(\theta \)
until convergence

Algorithm 3

Initialize weights \(w \)

repeat
 Compute expected counts \(e \)
 Compute \(L(w) \)
 Compute \(\nabla \ell(w, e) \)
 \(w \leftarrow \text{climb}(w, L(w), \nabla \ell(w, e)) \)
until convergence

Transform \(w \) to \(\theta \)
until convergence

\(L(w) \)
Algorithm 1

Initialize weights w

repeat

Compute expected counts e

Fit parameters w

Transform w to θ

until convergence

Algorithm 2

Initialize weights w

repeat

repeat

Compute $\ell(w, e)$

Compute $\nabla \ell(w, e)$

$w \leftarrow \text{climb}(w, \ell(w, e), \nabla \ell(w, e))$

until convergence

Transform w to θ

until convergence

Algorithm 3

Initialize weights w

repeat

Compute expected counts e

Compute $L(w)$

Compute $\nabla L(w)$

$w \leftarrow \text{climb}(w, L(w), \nabla L(w))$

Transform w to θ

until convergence
Initialize weights \(w \)

repeat

- Compute expected counts \(e \)

 repeat

 - Compute \(\ell(w, e) \)
 - Compute \(\nabla \ell(w, e) \)
 - \(w \leftarrow \text{climb}(w, \ell(w, e), \nabla \ell(w, e)) \)

 until convergence

- Transform \(w \) to \(\theta \)

 until convergence
Algorithm 1

\textbf{EM with Features}

Initialize weights w

\textbf{repeat}

Compute expected counts e

\textbf{repeat}

Fit parameters w

Transform w to θ

\textbf{until convergence}

Algorithm 2

\textbf{EM with Features}

Initialize weights w

\textbf{repeat}

Compute expected counts e

\textbf{repeat}

Compute $\ell(w, e)$

Compute $\nabla \ell(w, e)$

$w \leftarrow \text{climb}(w, \ell(w, e), \nabla \ell(w, e))$

\textbf{until convergence}

Transform w to θ

\textbf{until convergence}

Algorithm 3

\textbf{Direct Gradient with Features}

Initialize weights w

\textbf{repeat}

Compute expected counts e

Compute $L(w)$

Compute $\nabla L(w)$

$w \leftarrow \text{climb}(w, L(w), \nabla L(w))$

\textbf{until convergence}

Transform w to θ

\textbf{until convergence}
Algorithm 1
Initialize weights w
repeat
 Compute expected counts e
 Fit parameters w
 Transform w to θ
until convergence

Algorithm 2
Initialize weights w
repeat
 Compute expected counts e
 repeat
 Compute $\ell(w, e)$
 Compute $\nabla \ell(w, e)$
 $w \leftarrow \text{climb}(w, \ell(w, e), \nabla \ell(w, e))$
 until convergence
 Transform w to θ
until convergence

Algorithm 3
Initialize weights w
repeat
 Compute expected counts e
 Compute $L(w)$
 Compute $\nabla L(w)$
 $w \leftarrow \text{climb}(w, L(w), \nabla L(w))$
 Transform w to θ
until convergence
EM with Features

Algorithm 1

Initialize weights w

repeat

compute expected counts e

fit parameters w

transform w to θ

until convergence

Algorithm 2

Initialize weights w

repeat

repeat

compute $\ell(w, e)$

compute $\nabla \ell(w, e)$

$w \leftarrow \text{climb}(w, \ell(w, e), \nabla \ell(w, e))$

until convergence

transform w to θ

until convergence

Algorithm 3

Initialize weights w

repeat

compute expected counts e

compute $L(w)$

compute $\nabla L(w)$

$w \leftarrow \text{climb}(w, L(w), \nabla L(w))$

transform w to θ

until convergence
Algorithm 1
Initialize weights w
repeat
 Compute expected counts e
 Fit parameters w
 Transform w to θ
until convergence

Algorithm 2
Initialize weights w
repeat
 Compute expected counts e
 repeat
 Compute $\ell(w, e)$
 Compute $\nabla \ell(w, e)$
 $w \leftarrow \text{climb}(w, \ell(w, e), \nabla \ell(w, e))$
 until convergence
 Transform w to θ
until convergence

Algorithm 3
Initialize weights w
repeat
 Compute expected counts e
 Compute $L(w)$
 Compute $\nabla L(w, e)$
 $w \leftarrow \text{climb}(w, L(w), \nabla L(w, e))$
until convergence
Transform w to θ
until convergence

$L(w)$

Initialize weights w
repeat
 Compute expected counts e
 repeat
 Compute $\ell(w, e)$
 Compute $\nabla \ell(w, e)$
 $w \leftarrow \text{climb}(w, \ell(w, e), \nabla \ell(w, e))$
 until convergence
 Transform w to θ
until convergence
Initialize weights w
repeat
 Compute expected counts e
repeat
 Compute $\ell(w, e)$
 Compute $\nabla\ell(w, e)$
 $w \leftarrow \text{climb}(w, \ell(w, e), \nabla\ell(w, e))$
until convergence
Transform w to θ
until convergence
Algorithm 1

Initialize weights w

repeat
 Compute expected counts e
 Fit parameters w
 Transform w to θ
until convergence

Algorithm 2

Initialize weights w

repeat
 Compute $\ell(w, e)$
 Compute $\nabla \ell(w, e)$
 $w \leftarrow$ climb($w, \ell(w, e), \nabla \ell(w, e)$)
until convergence

Transform w to θ
until convergence

Algorithm 3

Initialize weights w

repeat
 Compute expected counts e
 Compute $L(w)$
 Compute $\nabla L(w, e)$
 $w \leftarrow$ climb($w, L(w), \nabla L(w, e)$)
until convergence

Transform w to θ
until convergence

$L(w)$

Graphical representation of EM with Features
Algorithm 1

Initialize weights w

repeat

Compute expected counts e

Fit parameters w

Transform w to θ

until convergence

Algorithm 2

Initialize weights w

repeat

repeat

Compute $\mathbb{E}(w, e)$

Compute $\nabla \mathbb{E}(w, e)$

$w \leftarrow$ climb(w, $\mathbb{E}(w, e)$, $\nabla \mathbb{E}(w, e)$)

until convergence

Transform w to θ

until convergence

Algorithm 3

Initialize weights w

repeat

Compute expected counts e

Compute $L(w)$

Compute $\nabla L(w, e)$

$w \leftarrow$ climb(w, $L(w, e)$, $\nabla L(w, e)$)

until convergence

Transform w to θ

until convergence
Direct Gradient with Features

EM w/ Features

1. Initialize weights w
2. \textbf{repeat}
 - Compute expected counts e
 \textbf{repeat}
 - Compute $\ell(w, e)$
 - Compute $\nabla \ell(w, e)$
 - $w \leftarrow \text{climb}(w, \ell(w, e), \nabla \ell(w, e))$
 \textbf{until} convergence
3. Transform w to θ
4. \textbf{until} convergence

DG w/ Features

1. Initialize weights w
2. \textbf{repeat}
 - Compute expected counts e
 - Compute $L(w)$
 - Compute $\nabla \ell(w, e)$
 - $w \leftarrow \text{climb}(w, L(w), \nabla \ell(w, e))$
 \textbf{until} convergence
3. Transform w to θ
4. \textbf{until} convergence
Direct Gradient with Features

Algorithm 1

Initialise weights w

repeat

1. Compute expected counts e
2. Fit parameters w
3. Transform w to θ

until convergence

Algorithm 2

Initialise weights w

repeat

1. Compute expected counts e
2. Compute $\mathcal{L}(w)$
3. Compute $\nabla \mathcal{L}(w, e)$
4. $w \leftarrow \text{climb}(w, \mathcal{L}(w), \nabla \mathcal{L}(w, e))$
5. Transform w to θ

until convergence

Algorithm 3

Initialise weights w

repeat

1. Compute expected counts e
2. Compute $\mathcal{L}(w)$
3. Compute $\nabla \mathcal{L}(w, e)$
4. $w \leftarrow \text{climb}(w, \mathcal{L}(w), \nabla \mathcal{L}(w, e))$
5. Transform w to θ

until convergence

Diagram:

- $L(w)$
- Red dot indicates the computed expected counts e
- Blue line indicates the computed $\mathcal{L}(w)$
- Thick blue line indicates the $\nabla \mathcal{L}(w, e)$
- Green line indicates the climb operation
- Purple dot indicates the transformation of w to θ
Direct Gradient with Features

Initialize weights w

repeat

Compute expected counts e

Fit parameters w

Transform w to θ

until convergence

Algorithm 1

EM with Features

Initialize weights w

repeat

Compute expected counts e

Fit parameters w

Transform w to θ

until convergence

Algorithm 2

Direct Gradient with Features

Initialize weights w

repeat

Compute expected counts e

Compute $\mathcal{L}(w)$

Compute $\nabla \mathcal{L}(w, e)$

$w \leftarrow \text{climb}(w, \mathcal{L}(w), \nabla \mathcal{L}(w, e))$

Transform w to θ

until convergence

Algorithm 3
Initialize weights w

repeat
 Compute expected counts e
 Compute $L(w)$
 Compute $\nabla l(w, e)$
 $w \leftarrow \text{climb}(w, L(w), \nabla l(w, e))$
 Transform w to θ
until convergence
Direct Gradient with Features

Initialize weights w

repeat

- Compute expected counts e
- Compute $L(w)$
- Compute $\nabla l(w, e)$
- $w \leftarrow \text{climb}(w, L(w), \nabla l(w, e))$
- Transform w to θ

until convergence
Direct Gradient with Features

Initialize weights \(w \)

repeat

- Compute expected counts \(e \)
- Fit parameters \(w \)
- Transform \(w \) to \(\theta \)

until convergence

Algorithm 1

EM with Features

Initialize weights \(w \)

repeat

- Compute expected counts \(e \)
- Fit parameters \(w \)
- Transform \(w \) to \(\theta \)

until convergence

Algorithm 2

EM with Features

Initialize weights \(w \)

repeat

- Compute expected counts \(e \)
- Compute \(\ell(w, e) \)
- Compute \(\nabla \ell(w, e) \)
- \(w \leftarrow \text{climb}(w, \ell(w), \nabla \ell(w, e)) \)
- Transform \(w \) to \(\theta \)

until convergence

Algorithm 3

Direct Gradient with Features

Initialize weights \(w \)

repeat

- Compute expected counts \(e \)
- Compute \(L(w) \)
- Compute \(\nabla L(w, e) \)
- \(w \leftarrow \text{climb}(w, L(w), \nabla L(w, e)) \)
- Transform \(w \) to \(\theta \)

until convergence
Direct Gradient with Features

Algorithm 1

Initialize weights w

repeat

Compute expected counts e

Fit parameters w

Transform w to θ

until convergence

Algorithm 2

EM with Features

Initialize weights w

repeat

Compute expected counts e

repeat

Compute $\nabla \ell(w, e)$

Compute $\nabla L(w)$

$w \leftarrow \text{climb}(w, L(w), \nabla \ell(w, e))$

Transform w to θ

until convergence

Algorithm 3

Direct Gradient with Features

Initialize weights w

repeat

Compute expected counts e

Compute $L(w)$

Compute $\nabla L(w)$

$w \leftarrow \text{climb}(w, L(w), \nabla \ell(w, e))$

Transform w to θ

until convergence
Direct Gradient with Features

Initialize weights w
repeat
Compute expected counts e
Compute $L(w)$
Compute $\nabla \ell(w, e)$
$w \leftarrow \text{climb}(w, L(w), \nabla \ell(w, e))$
Transform w to θ
until convergence

Algorithm 2

$\text{Direct Gradient with Features}$

Initialize weights w
repeat
Compute expected counts e
Compute $L(w)$
Compute $\nabla L(w, e)$
$w \leftarrow \text{climb}(w, L(w), \nabla L(w, e))$
Transform w to θ
until convergence

Algorithm 3

EM with Features

Initialize weights w
repeat
Compute expected counts e
Fit parameters w
Transform w to θ
until convergence
Direct Gradient with Features

Initialize weights w

repeat

- Compute expected counts e
- Fit parameters w

Transform w to θ until convergence

Algorithm 1

EM with Features

Initialize weights w

repeat

- Compute expected counts e
- Fit parameters w

Transform w to θ until convergence

Algorithm 2

Direct Gradient with Features

Initialize weights w

repeat

- Compute expected counts e
- Compute $L(w)$
- Compute $\nabla L(w, e)$

$w \leftarrow \text{climb}(w, L(w), \nabla L(w, e))$

Transform w to θ until convergence

Algorithm 3
Direct Gradient with Features

Initialize weights w

repeat
- Compute expected counts e
- Fit parameters w
- Transform w to θ
until convergence

Algorithm 1

Algorithm 2

Algorithm 3
Unsupervised Induction Tasks

POS Induction:

Grammar Induction:

Word Alignment:

Word Segmentation:
POS Induction Results

<table>
<thead>
<tr>
<th>DT</th>
<th>JJ</th>
<th>NN</th>
<th>VBZ</th>
<th>IN</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>The green cat sleeps at home.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
POS Induction Results

The green cat sleeps at home.

Key distribution: $P(John|NN)$
POS Induction Results

The green cat sleeps at home.

Key distribution: \(P(John|NN) \)

Features:

Basic: \(John \land NN \)
Contains-Digit: \(+Digit \land NN \)
Contains-Hyphen: \(+Hyph \land NN \)
Initial-Capital: \(+Cap \land NN \)
Suffix: \(+ing \land NN \)
POS Induction Results

Many-to-1 Accuracy

Features:

Basic: John ∧ NNP
Contains-Digit: +Digit ∧ NNP
Contains-Hyphen: +Hyph ∧ NNP
Initial-Capital: +Cap ∧ NNP
Suffix: +ing ∧ NNP

Data:

Train and test on entire WSJ
No tagging dictionary
45 POS tags
POS Induction Results

Many-to-1 Accuracy

Features:

Basic: John ∧ NNP
Contains-Digit: +Digit ∧ NNP
Contains-Hyphen: +Hyph ∧ NNP
Initial-Capital: +Cap ∧ NNP
Suffix: +ing ∧ NNP

Data:

Train and test on entire WSJ
No tagging dictionary
45 POS tags

HMM
EM

63.1
POS Induction Results

Features:
- Basic: John \(\land\) NNP
- Contains-Digit: +Digit \(\land\) NNP
- Contains-Hyphen: +Hyph \(\land\) NNP
- Initial-Capital: +Cap \(\land\) NNP
- Suffix: +ing \(\land\) NNP

Data:
- Train and test on entire WSJ
- No tagging dictionary
- 45 POS tags

Many-to-1 Accuracy

<table>
<thead>
<tr>
<th>Feature</th>
<th>HMM EM</th>
<th>HMM Features EM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63.1</td>
<td>68.1</td>
</tr>
</tbody>
</table>

+5.0
POS Induction Results

Many-to-1 Accuracy

Features:
- Basic: John \(\wedge \) NNP
- Contains-Digit: +Digit \(\wedge \) NNP
- Contains-Hyphen: +Hyph \(\wedge \) NNP
- Initial-Capital: +Cap \(\wedge \) NNP
- Suffix: +ing \(\wedge \) NNP

Data:
- Train and test on entire WSJ
- No tagging dictionary
- 45 POS tags

DT JJ NN VBZ IN NN
The green cat sleeps at home.
POS Induction Results

Features:

Basic: John ∧ NNP
Contains-Digit: +Digit ∧ NNP
Contains-Hyphen: +Hyph ∧ NNP
Initial-Capital: +Cap ∧ NNP
Suffix: +ing ∧ NNP

Data:

Train and test on entire WSJ
No tagging dictionary
45 POS tags

1-to-1 Accuracy

HMM EM: 43.2
HMM Features EM: 48.3
HMM Features Gradient: 56.0

+5.1
+12.8
Grammar Induction Results

The green cat sleeps at home.
The green cat sleeps at home.

Key distributions: \(P(JJ|NN) \) \(P(\text{stop}|NN) \)
Grammar Induction Results

Key distributions: $P(JJ|NN), P(stop|NN)$

Features:

Basic: $JJ \land NN, JJ \land NNS$

Noun: $JJ \land Noun$

Verb: $JJ \land Verb$

Noun-verb: $JJ \land NounOrVerb$
Grammar Induction Results

English Directed Accuracy

The green cat sleeps at home.

Features:

Basic: JJ ∧ NN, JJ ∧ NNS
Noun: JJ ∧ Noun
Verb: JJ ∧ Verb
Noun-verb: JJ ∧ NounOrVerb

Chinese Directed Accuracy

Data:

Train
WSJ10 Sec. 2-21
CTB10 Sec. 1-270

Tune
WSJ10 Sec. 22
CTB10 Sec. 400-454

Test
WSJ10 Sec. 23
CTB10 Sec. 271-300
Grammar Induction Results

Features:

Basic: JJ \land NN, JJ \land NNS
Noun: JJ \land Noun
Verb: JJ \land Verb
Noun-verb: JJ \land NounOrVerb

Data:

Train: WSJ10 Sec. 2-21
 CTB10 Sec. 1-270
Tune: WSJ10 Sec. 22
 CTB10 Sec. 400-454
Test: WSJ10 Sec. 23
 CTB10 Sec. 271-300

English Directed Accuracy

Chinese Directed Accuracy

The green cat sleeps at home.

47.8
42.5
Grammar Induction Results

Features:

- Basic: JJ ∧ NN, JJ ∧ NNS
- Noun: JJ ∧ Noun
- Verb: JJ ∧ Verb
- Noun-verb: JJ ∧ NounOrVerb

Data:

- Train: WSJ10 Sec. 2-21, CTB10 Sec. 1-270
- Tune: WSJ10 Sec. 22, CTB10 Sec. 400-454
- Test: WSJ10 Sec. 23, CTB10 Sec. 271-300

English Directed Accuracy

- DMV: 47.8
- EM: 48.3
+0.5

Chinese Directed Accuracy

- DMV: 42.5
- EM: 49.9
+7.4
The green cat sleeps at home.

Features:

- **Basic:** JJ ∧ NN, JJ ∧ NNS
- **Noun:** JJ ∧ Noun
- **Verb:** JJ ∧ Verb
- **Noun-verb:** JJ ∧ NounOrVerb

Data:

- **Train**
 - WSJ10 Sec. 2-21
 - CTB10 Sec. 1-270
- **Tune**
 - WSJ10 Sec. 22
 - CTB10 Sec. 400-454
- **Test**
 - WSJ10 Sec. 23
 - CTB10 Sec. 271-300

English Directed Accuracy

- **DMV**
 - 47.8
- **DMV Features**
 - 48.3
- **DMV Features Gradient**
 - +15.2

Chinese Directed Accuracy

- **DMV**
 - 42.5
- **DMV Features**
 - 49.9
- **DMV Features Gradient**
 - +11.1
Grammar Induction Results

Features:

- **Basic:** JJ \& NN, JJ \& NNS
- **Noun:** JJ \& Noun
- **Verb:** JJ \& Verb
- **Noun-verb:** JJ \& NounOrVerb

Data:

- **Train:**
 - WSJ10 Sec. 2-21
 - CTB10 Sec. 1-270
- **Tune:**
 - WSJ10 Sec. 22
 - CTB10 Sec. 400-454
- **Test:**
 - WSJ10 Sec. 23
 - CTB10 Sec. 271-300

English Directed Accuracy

- DMV EM: 47.8
- DMV Features EM: 48.3
- DMV Features Gradient: 63.0
- Cohen and Smith '09 SLN DMV: 61.3

Chinese Directed Accuracy

- DMV EM: 42.5
- DMV Features EM: 49.9
- DMV Features Gradient: 53.6
- Cohen and Smith '09 SLN DMV: 51.9

The green cat sleeps at home.
El gato verde duerme en casa.

The green cat sleeps at home.
Word Alignment Results

Key distribution: \(P(gato|cat) \)
Word Alignment Results

Key distribution: \(P(gato|cat) \)

Features:

- **Basic:** \(gato \land cat \)
- **Edit-Distance:** \(\text{edit}(gato,cat) = 2 \)
- **Dictionary:** \((gato,cat) \in \text{Dict} \)
- **Stem:** \(gato \land +\text{stem}(cat) \)
- **Prefix:** \(gato \land +ca \)
Word Alignment Results

Alignment Error Rate

Features:

Basic: \quad gato \land cat

Edit-Distance: \quad \text{edit}(gato, cat) = 2

Dictionary: \quad (gato, cat) \in \text{Dict}

Stem: \quad gato \land +\text{stem}(cat)

Prefix: \quad gato \land +ca

Data:

Train 10K sentences of FBIS
Chinese-English newswire

Test NIST 2002 Chinese-English dev set
Word Alignment Results

Features:

Basic: \(gato \land cat \)
Edit-Distance: \(\text{edit}(gato, cat) = 2 \)
Dictionary: \((gato, cat) \in \text{Dict} \)
Stem: \(gato \land +\text{stem}(cat) \)
Prefix: \(gato \land +ca \)

Data:

Train 10K sentences of FBIS Chinese-English newswire
Test NIST 2002 Chinese-English dev set
Word Alignment Results

Features:

- **Basic:** \(gato \land cat \)
- **Edit-Distance:** \(\text{edit}(gato, cat) = 2 \)
- **Dictionary:** \((gato, cat) \in \text{Dict} \)
- **Stem:** \(gato \land +\text{stem}(cat) \)
- **Prefix:** \(gato \land +ca \)

Data:

- **Train:** 10K sentences of FBIS Chinese-English newswire
- **Test:** NIST 2002 Chinese-English dev set

Alignment Error Rate:

- Model I: EM 38.0
- Model I Features: EM 35.6
- -2.4
Word Alignment Results

Features:
- Basic: \(gato \land cat \)
- Edit-Distance: \(\text{edit}(gato,\text{cat}) = 2 \)
- Dictionary: \((gato,\text{cat}) \in \text{Dict} \)
- Stem: \(gato \land +\text{stem}(\text{cat}) \)
- Prefix: \(gato \land +\text{ca} \)

Data:
- Train 10K sentences of FBIS Chinese-English newswire
- Test NIST 2002 Chinese-English dev set

Alignment Error Rate:

<table>
<thead>
<tr>
<th>Model</th>
<th>Features</th>
<th>HMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model I</td>
<td>EM</td>
<td>EM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EM</td>
</tr>
<tr>
<td></td>
<td>38.0</td>
<td>35.6</td>
</tr>
<tr>
<td></td>
<td>-2.4</td>
<td>33.8</td>
</tr>
</tbody>
</table>

The green cat sleeps at home.
Word Alignment Results

Features:

Basic: \(gato \land cat \)

Edit-Distance: \(\text{edit}(gato, cat) = 2 \)

Dictionary: \((gato, cat) \in \text{Dict} \)

Stem: \(gato \land +\text{stem}(cat) \)

Prefix: \(gato \land +ca \)

Data:

Train 10K sentences of FBIS Chinese-English newswire

Test NIST 2002 Chinese-English dev set

Alignment Error Rate

38.0 35.6 33.8 30.0

-2.4 -3.8

Model 1 EM Model 1 Features EM HMM EM HMM Features EM
Word Segmentation Results

[The][green][cat]
Word Segmentation Results

[The][green][cat]

Key distribution: \(P(\text{running}) \)
Word Segmentation Results

Features:

Basic: running
Length: length(running) = 7
Num-Vowels: numV(running) = 2
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Key distribution: \(P(\text{running}) \)
Word Segmentation Results

[T h e][g r e e n][c a t]

Token F1

Features:

Basic: running
Length: length(running) = 7
Num-Vowels: numV(running) = 2
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Data:

Train and test on phonetic version of Bernstein-Ratner corpus
Word Segmentation Results

[The][green][cat]

Features:

Basic: running
Length: length(running) = 7
Num-Vowels: numV(running) = 2
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Data:

Train and test on phonetic version of Bernstein-Ratner corpus
Word Segmentation Results

[The][green][cat]

Features:

Basic: running
Length: length(running) = 7
Num-Vowels: numV(running) = 2
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Data:

Train and test on phonetic version of Bernstein-Ratner corpus

Token F1

Unigram EM: 76.9
Unigram Features EM: 84.5

+7.6
Word Segmentation Results

$[T h e][g r e e n][c a t]$

Features:

- Basic: running
- Length: $\text{length(} \text{running} \text{)} = 7$
- Num-Vowels: $\text{numV(} \text{running} \text{)} = 2$
- Coarse-Phono-Prefix: $+\text{rAn}$
- Coarse-Phono-Suffix: $+\text{IN}$

Data:

Train and test on phonetic version of Bernstein-Ratner corpus

<table>
<thead>
<tr>
<th>Method</th>
<th>Unigram EM</th>
<th>Unigram Features EM</th>
<th>Unigram Features Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token F1</td>
<td>76.9</td>
<td>84.5</td>
<td>88.0</td>
</tr>
<tr>
<td>+7.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+11.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Word Segmentation Results

Features:

Basic: running
Length: length(running) = 7
Num-Vowels: numV(running) = 2
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Data:

Train and test on phonetic version of Bernstein-Ratner corpus

- [The][green][cat]
- Token F1
 - Unigram EM: 76.9
 - Unigram Features EM: 84.5 (+7.6)
 - Unigram Features Gradient: 88.0 (+11.1)
 - Johnson and Goldwater '09 Adaptor Grammar: 89
Apply to New Models

1. Take a generative model
Apply to New Models

1. Take a generative model

2. Brainstorm features local to the component multinomials
Apply to New Models

1. Take a generative model

2. Brainstorm features local to the component multinomials

3. Run this algorithm
Apply to New Models

1. Take a generative model

2. Brainstorm features local to the component multinomials

3. Run this algorithm

4. Crush your baseline
Conclusion

• **State-of-the-art results**
Conclusion

• State-of-the-art results

• Can implemented using off-the-shelf NLP tools
Conclusion

• State-of-the-art results

• Can implemented using off-the-shelf NLP tools

• Directly optimizing data-likelihood can outperform EM
Conclusion

- State-of-the-art results
- Can implemented using off-the-shelf NLP tools
- Directly optimizing data-likelihood can outperform EM
- Works on a wide range of induction tasks
Conclusion

Thanks!