Painless Unsupervised Learr
with Features

Berkeley

N LP

Taylor Berg-Kirkpatrick Alexandre Bouchard-C™
John DeNero Dan Klein

Berkeley

N LP

Z|I 1 > > ZZ—I—l

oG
@‘ \
o4

Basic HMM for POS Induction

Berkeley

N LP

Transition distribution:

P(z'|z)

Z|I 1 >

~ Li+1 —

-

(B2
@‘ N
e

Basic HMM for POS Induction

Berkeley

Basic HMM for POS Induction

N LP

Emission distribution:

P (x|z)

7

Z|I 1 >

 Litl

o

. J

-

(B2
@‘ N

Berkeley

Parameterization

N LP

Key distribution: P (Xx|NNP)

X

John
Mary
running

jumping

Berkeley

Parameterization

N LP

Key distribution: P (Xx|NNP)

'xINNP X
0.1 John
0.0 Mary

0.2 running

0.0 jumping

Berkeley

Parameterization

N LP

Key distribution: P (Xx|NNP)

L X INNP A f

0.1 John +Cap
0.0 Mary +Cap
0.2 running +ing

0.0 jumping +ing

Berkeley

N

Parameterization
L P —

Key distribution: P (x| NNP) W. | capiio
+ing -0.3)

Ixinnp X f eWTf

0.1 John +Cap 0.3

0.0 Mary +Cap 0.3

0.2 running +ing 0.1

0.0 jumping +ing 0.1

(9:13\,2 =

Parameterization

W ---oeeon |

exp(w'f(x, z))

> exp(w!f(x’,z))

Berkeley

Unsupervised Learning with Feature

N LP

Main idea: local multinomials become maxent:

Berkeley

Unsupervised Learning with Feature

N LP

Main idea: local multinomials become maxent:

EM+ Maxent M-SteF
Unsupervised learning w/ features

Berkeley

POS Induction Accuracy

Berkeley

POS Induction Accuracy

Basic Multinomial:
John A NNP

Berkeley

POS Induction Accuracy

+12.8
Basic Multinomial: Rich Features:
John A NNP John A NNP
+Digit A NNP
+Hyph A NNP
+Cap A NNP

+ing A NNP

Berkeley

Hard EM without Features

Berkeley

Hard EM without Features

E-Step: Dynamic Program

z! argmax P(z|x;!)
: V4
Dynamic Program

TN\

! VA M-Step: Divide Counts
\/ I argmax P(x,z;!)
0
Divide Counts c(z!)

T)

Hard EM with Features

Berkeley

Hard EM with Features

N LP
| E-Step:. Dynamic Program
| Dynamic Program 21 argmax P(z|x;!)
V4
”
. Transform /

Berkeley

Hard EM with Features

N LP
| E-Step:. Dynamic Program
| Dynamic Program 21 argmax P(z|x;!)
V4
~ M-Step: Train Maxent

’

Transform / W — argv5naxlog P(X,z;w)

WV\/

Train Maxent

-

Berkeley

Hard EM with Features
log P (x, z; w)

= logP(Xilzi:w) + ..

Berkeley

Hard EM with Features
log P (x, z;, w)

= logP(Xilzi:w) + ..

Maxent training examp%

\.

Berkeley

Hard EM with Features
log P (x, z;, w)

= logP(Xilzi:w) + ..

Maxent training examp%

= > c(z! x)logP(z|z;w) + -

\ \

Multiplicity

. J

Berkeley

Hard EM with Features

N LP
| E-Step:. Dynamic Program
| Dynamic Program 21 argmax P(z|x;!)
V4
~ M-Step: Train Maxent

’

Transform / W — argv5naxlog P(X,z;w)

WV\/

Train Maxent

-

Berkeley

Hard EM with Features

N LP
| E-Step: Dynamic Program
| Dynamic Program 21 argmax P(z|x;!)
Z
~ M-Step: Train Maxent

’

Transform / W — argv\r/naxlog P(x,z;w)

" Transform Parameters
W o L expWwf(x 2)
x|z N exp(wTf(x', 2))

Train Maxent

-

Berkeley

EM with Features

N LP
E-Step:. Dynamic Program
Dynamic Program
|
,’ M-Step: Train Maxent
. Transform /

" Transform Parameters
W o L eXpWf(x2))
x|z * N exp(WTf(X!,Z))

Train Maxent

Berkeley

EM with Features

N LP
| E-Step:. Dynamic Program
| Dynamic Program e(z! x)" E[C(z | x)]
,’ M-Step: Train Maxent
. Transform /

" Transform Parameters
W o L eXpWf(x2))
X|z * N exp(WTf(X!,Z))

Train Maxent

Berkeley

EM with Features

N LP
| E-Step: Dynamic Program
| Dynamic Program e(z! X)" E[C(Z | x)]
,’ M-Step: Train Maxent
' Transform y w ! argmax E|log P(x,z;w)

" Transform Parameters
W o L expWwf(x 2)
x|z N exp(wTf(x', 2))

Train Maxent

Berkeley

EM without Features

N LP

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 6

until convergence

EM

Berkeley

EM without Features

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

L(W) until convergence

Berkeley

EM without Features

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

L(W) until convergence

Berkeley

EM without Features

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

L(W) until convergence

Berkeley

EM without Features

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

L(W) until convergence

Berkeley

EM without Features

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

L(W) until convergence

Berkeley

EM without Features

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

L(W) until convergence

Berkeley

EM without Features

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

L(W) until convergence

Berkeley

EM without Features

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

L(W) until convergence

Berkeley

EM without Features

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

L(W) until convergence

Berkeley

EM without Features

N LP

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

until convergence

EM

Berkeley

EM with Features

N LP

Initialize weightsw

repeat

® Compute expected coungs
® Fit parametersv

® Transformw to @

until convergence

EM

Berkeley

EM with Features

N LP

Initialize weightsw

repeat
® Compute expected counts
repeat
= Computel(w, e)
2| & 'Compute! /(w, e)
- w " climb(w,/(w,e),! {(w,e))
until convergence

® Transformw to !
until convergence

Berkeley

EM with Features

Initialize weightsw
repeat
@ Compute expected counts
repeat
Computel(w, e)
' Computel 4(w,e)
w " climb(w,{(w,e),! {(w,e))
until convergence
@ Transformw to!
until convergence

L(w)

Berkeley

EM with Features

Initialize weightsw
repeat
@ Compute expected counts
repeat
Computel(w, e)
' Computel 4(w,e)
w " climb(w,{(w,e),! {(w,e))
until convergence
@ Transformw to!
until convergence

L(w)

Berkeley

EM with Features

Initialize weightsw
repeat
@ Compute expected counts
repeat
Computel(w, e)
' Computel 4(w,e)
w " climb(w,{(w,e),! {(w,e))
until convergence
@ Transformw to!
until convergence

L(w)

Berkeley

EM with Features

Initialize weightsw
repeat
@ Compute expected counts
repeat
Computel(w, e)
' Computel 4(w,e)
w " climb(w,{(w,e),! {(w,e))
until convergence
@ Transformw to!
until convergence

L(w)

Berkeley

EM with Features

Initialize weightsw
repeat
@ Compute expected counts
repeat
Computel(w, e)
' Computel 4(w,e)
w " climb(w,{(w,e),! {(w,e))
until convergence
@ Transformw to!
until convergence

L(w)

Berkeley

EM with Features

Initialize weightsw
repeat
@ Compute expected counts
repeat
Computel(w, e)
' Computel 4(w,e)
w " climb(w,{(w,e),! {(w,e))
until convergence
@ Transformw to!
until convergence

L(w)

Berkeley

EM with Features

Initialize weightsw
repeat
@ Compute expected counts
repeat
Computel(w, e)
' Computel 4(w,e)
w " climb(w,{(w,e),! {(w,e))
until convergence
@ Transformw to!
until convergence

L(w)

Berkeley

EM with Features

Initialize weightsw
repeat
@ Compute expected counts
repeat
Computel(w, e)
' Computel 4(w,e)
w " climb(w,{(w,e),! {(w,e))
until convergence
@ Transformw to!
until convergence

L(w)

Berkeley

EM with Features

Initialize weightsw
repeat
@ Compute expected counts
repeat
Computel(w, e)
' Computel 4(w,e)
w " climb(w,{(w,e),! {(w,e))
until convergence
@ Transformw to!
until convergence

L(w)

Berkeley

EM with Features

Initialize weightsw
repeat
@ Compute expected counts
repeat
Computel(w, e)
' Computel 4(w,e)
w " climb(w,{(w,e),! {(w,e))
until convergence
@ Transformw to!
until convergence

L(w)

Berkeley

EM with Features

Initialize weightsw
repeat
@ Compute expected counts
repeat
Computel(w, e)
' Computel 4(w,e)
w " climb(w,{(w,e),! {(w,e))
until convergence
@ Transformw to!
until convergence

L(w)

Berkeley

EM with Features

Initialize weightsw
repeat
@ Compute expected counts
repeat
Computel(w, e)
' Computel 4(w,e)
w " climb(w,{(w,e),! {(w,e))
until convergence
@ Transformw to!
until convergence

L(w)

Berkeley

EM with Features

Initialize weightsw
repeat
@ Compute expected counts
repeat
Computel(w, e)
' Computel 4(w,e)
w " climb(w,{(w,e),! {(w,e))
until convergence
@ Transformw to!
until convergence

L(w)

Berkeley

EM with Features

Initialize weightsw
repeat
@ Compute expected counts
repeat
Computel(w, e)
' Computel 4(w,e)
w " climb(w,{(w,e),! {(w,e))
until convergence
@ Transformw to!
until convergence

L(w)

Berkeley

N LP

EM w/ Features

Initialize weightsw
repeat
® Compute expected counts
repeat
Computel(w, e)
' Computel /(w,e)
w " climb(w, /(w,e),! {(w,e))
until convergence
® Transformw to!
until convergence

Direct Gradient with Features

DG w/ Features

Initialize weightsw
repeat
® Compute expected courgs

Compute L (W)

Compute ! /(w, e)

w " climb(w,L(w),! ¢(w,e))
@® Transformw to 0
until convergence

Berkeley

Direct Gradient with Features

N LP
Initialize weightsw

repeat
@® Compute expected cours
Compute L (w)
' Compute ! /(w,e)
w " climb(w,L(w),! ¢(w,e))
@ Transformw to 6
until convergence

L(w)

Berkeley

Direct Gradient with Features

N LP
Initialize weightsw

repeat
@® Compute expected cours
Compute L (w)
' Compute ! /(w,e)
w " climb(w,L(w),! ¢(w,e))
@ Transformw to 6
until convergence

L(w)

Berkeley

Direct Gradient with Features

N LP
Initialize weightsw

repeat
@® Compute expected cours
Compute L (w)
' Compute ! /(w,e)
w " climb(w,L(w),! ¢(w,e))
@ Transformw to 6
until convergence

L(w)

Berkeley

Direct Gradient with Features

N LP
Initialize weightsw

repeat
@® Compute expected cours
Compute L (w)
' Compute ! /(w,e)
w " climb(w,L(w),! ¢(w,e))
@ Transformw to 6
until convergence

L(w)

Berkeley

Direct Gradient with Features

N LP
Initialize weightsw

repeat
@® Compute expected cours
Compute L (w)
' Compute ! /(w,e)
w " climb(w,L(w),! ¢(w,e))
@ Transformw to 6
until convergence

L(w)

Berkeley

Direct Gradient with Features

N LP
Initialize weightsw

repeat
@® Compute expected cours
Compute L (w)
' Compute ! /(w,e)
w " climb(w,L(w),! ¢(w,e))
@ Transformw to 6
until convergence

L(w)

Berkeley

Direct Gradient with Features

N LP
Initialize weightsw

repeat
@® Compute expected cours
Compute L (w)
' Compute ! /(w,e)
w " climb(w,L(w),! ¢(w,e))
@ Transformw to 6
until convergence

L(w)

Berkeley

Direct Gradient with Features

N LP
Initialize weightsw

repeat
@® Compute expected cours
Compute L (w)
' Compute ! /(w,e)
w " climb(w,L(w),! ¢(w,e))
@ Transformw to 6
until convergence

L(w)

Berkeley

Direct Gradient with Features

N LP
Initialize weightsw

repeat
@® Compute expected cours
Compute L (w)
' Compute ! /(w,e)
w " climb(w,L(w),! ¢(w,e))
@ Transformw to 6
until convergence

L(w)

Berkeley

Unsupervised Induction Tasks

N LP

POS Inductlon. DT JJ NN VBZ IN NN

The green cat sleeps at home.

Grammar Induction: |~ NV v

The green cat sleeps at home.

El gato verde duerme en casa.

Word Alignment: \ > | /]

The green cat sleeps at home.

Word Segmentation; [T hellg re e n]ic a t]

Berkeley

POS Induction Results

DT JJ NN VBZ IN NN
The green cat sleeps at home.

Berkeley

POS Induction Results

N LP

DT JJ NN VBZ IN NN
The green cat sleeps at home.

Key distribution: P(John|NN)

Berkeley

N LP

POS Induction Results

DT JJ NN VBZ
The green cat sleeps at home.

IN NN

Key distribution: P(John|NN)

Features:

Basic:
Contains-Digit:
Contains-Hyphen:
Initial-Capital:
Suffix:

John A NN
+Digit A NN
+Hyph A NN
+Cap A NN
+ing A NN

Berkeley

N LP

DT JJ NN VBZ IN NN
The green cat sleeps at home.

Features:
Basic: John A NNP
Contains-Digit: +Digit A NNP
Contains-Hyphen: +Hyph A NNP
Initial-Capital: +Cap A NNP
Suffix: +ing A NNP
Data:

Train and test on entire WSJ
No tagging dictionary
45 POS tags

POS Induction Results

Many-to-1 Accuracy

Berkeley

POS Induction Results

N LP

DT JJ NN VBZ IN NN
The green cat sleeps at home.

Many-to-1 Accuracy

Features:
Basic: John A NNP
Contains-Digit: +Digit A NNP
Contains-Hyphen: +Hyph A NNP
Initial-Capatal: +Cap A NNP
Suffix: +ing A NNP

Data:

Train and test on entire WSJ
No tagging dictionary HMM

EM
45 POS tags

Berkeley

POS Induction Results

N LP

DT JJ NN VBZ IN NN
The green cat sleeps at home.

Many-to-1 Accuracy

Features:
Basic: John A NNP
Contains-Digit: +Digit A NNP
Contains-Hyphen: +Hyph A NNP
Initial-Capital: +Cap A NNP
Suffix: +ing A NNP
Data:

Train and test on entire WSJ

HMM Features

No tagging dictionary EM

45 POS tags

Berkeley

POS Induction Results

N LP

DT JJ NN VBZ IN NN
The green cat sleeps at home.

Many-to-1 Accuracy

Features: +12.4
Basic: John A NNP
Contains-Digit: +Digit A NNP
Contains-Hyphen: +Hyph A NNP
Initial-Capital: +Cap A NNP
Suffix: +ing A NNP
Data:

Train and test on entire WSJ
No tagging dictionary
45 POS tags

HMM Features HMM Features
EM Gradient

Berkeley

POS Induction Results

N LP

DT JJ NN VBZ IN NN
The green cat sleeps at home.

1-to-1 Accuracy

Features:
Basic: John A NNP
Contains-Digit: +Digit A NNP +12.8
Contains-Hyphen: +Hyph A NNP
Initial-Capatal: +Cap A NNP
Suffix: +ing A NNP
Data:

Train and test on entire WSJ
No tagging dictionary
45 POS tags

HMM Features HMM Features
EM Gradient

Berkeley

Grammar Induction Results

AN TN

The green cat sleeps at home.

Berkeley

Grammar Induction Results

AN

The green cat sleeps at home.

N LP

Key distributions: P(JJ|NN) P (stop|NN)

Berkeley

Grammar Induction Results

AN

The green cat sleeps at home.

N LP

Key distributions: P(JJ|NN) P (stop|NN)

Features:
Basic: JJ A NN, JJ A NNS
Noun: JJ A Noun
Verb: JJ A Verb

Noun-verb: JJ A NounOrVerb

Berkeley

Grammar Induction Results

N LP -

AN TN

The green cat sleeps at home.

English Directed Accuracy

Features:

Basic: JJ A NN, JJ A NNS

Noun: JJ A Noun

Verb: JJ A Verb _ |

Noun-verb: JJ A NounOrVerb Chinese Directed Accuracy
Data:

Train WSJ10 Sec. 2-21
CTB10 Sec. 1-270

Tune WSJ10 Sec. 22
CTB10 Sec. 400-454

CTB10 Sec.271-300

Grammar Induction Results

English Directed Accuracy

AN YN

The green cat sleeps at home.

Features:

Basic: JJ A NN, JJ A NNS

Noun: JJ A Noun

Verb: JJ A Verb _ |

Noun-verb: JJ A NounOrVerb Chinese Directed Accuracy
Data:

Train WSJ10 Sec. 2-21
CTB10 Sec. 1-270

Tune WSJ10 Sec. 22
CTB10 Sec. 400-454

CTB10 Sec. 271-300 DMV
EM

Grammar Induction Results

English Directed Accuracy

ANV VTN

The green cat sleeps at home.

Features:
Basic: JJ A NN, JJ A NNS
Noun; JJ A Noun
Verb: JJ A Verb
Noun-verb: JJ A NounOrVerb
Data:

Train WSJ10 Sec. 2-21
CTB10 Sec. 1-270

Tune WSJ10 Sec. 22
CTB10 Sec. 400-454

Test WSJ10 Sec. 23
CTB10 Sec. 271-300 DMV DMV Features

EM EM

Grammar Induction Results

English Directed Accuracy

AN YN +15.2

The green cat sleeps at home.

Features:
Basic: JJ A NN, JJ A NNS
Noun: JJ A Noun
Verb: JJ A Verb _ _
Noun-verb: JJ A NounOrVerb Chinese Directed Accuracy

+11.1

Data.: 40.9 53.6
CTB10 Sec. 1-270
Tune WSJ10 Sec. 22
CTB10 Sec. 400-454

CTB10 Sec. 271-300 DMV DMV FeaturesDMV Features

EM EM Gradient

Grammar Induction Results

English Directed Accuracy

ANV +15.2

The green cat sleeps at home.

Features:
Basic: JJ A NN, JJ A NNS
Noun: JJ A Noun
Verb: JJ A Verb
Noun-verb: JJ A NounOrVerb Chinese Directed Accuracy
+11.1
Data.

CTB10 Sec. 1-270

Tune WSJ10 Sec. 22
CTB10 Sec. 400-454

Test WSJ10 Sec. 23
CTB10 Sec. 271-300 DMV DMV FeaturesDMV FeaturesCohen and

EM EM Gradient Smith 009
SLN DMV

Berkeley

Word Alignment Results

El gato verde duerme en casa.

N X/

he green cat sleeps at home.

Berkeley

Word Alignment Results

N LP

El gato verde duerme en casa.

N X/

he green cat sleeps at home.

Key distribution: P(gato|cat)

Berkeley

Word Alignment Results

N LP

El gato verde duerme en casa.

N X/

he green cat sleeps at home.

Key distribution: P(gato|cat)

Features:
Basic: gato A cat
Edit-Distance: edit(gato,cat) =2
Dictionary: (gato,cat) € Dict
Stem: gato A +stem(cat)

Prefix: gato A +ca

Berkeley

N LP

El gato verde duerme en casa.

\ X |/

The (green cat sleeps at home.

Features:

Basic: gato A cat

Edit-Distance: edit(gato,cat) =2

Dictionary: (gato,cat) € Dict
Stem: gato A +stem(cat)
Prefix: gato A +ca
Data:

Word Alignment Results

Alignment Error Rate

Train 10K sentences of FBIS
Chinese-English newswire

Test NIST 2002 Chinese-English dev set

Berkeley

Word Alignment Results

N LP

El gato verde duerme en casa.

\ X |/

The green cat sleeps at home. Alignment Error Rate

Features:

Basic: gato A cat

Edit-Distance: edit(gato,cat) =2

Dictionary: (gato,cat) € Dict

Stem: gato A +stem(cat)

Prefix: gato A +ca

Data:

Train 10K sentences of FBIS Model 1
Chinese-English newswire EM

Test NIST 2002 Chinese-English dev set

Berkeley

Word Alignment Results

N LP

El gato verde duerme en casa.

\ X |/

The green cat sleeps at home. Alignment El‘rOr Rate

Features:

Basic: gato A cat

Edit-Distance: edit(gato,cat) =2

Dictionary: (gato,cat) € Dict

Stem: gato A +stem(cat)

Prefix: gato A +ca

Data:

Train 10K sentences of FBIS Model 1 Model 1 Eeatures
Chinese-English newswire EM EM

Test NIST 2002 Chinese-English dev set

Berkeley

Word Alignment Results

N LP

El gato verde duerme en casa.

\ X |/

The green cat sleeps at home. Alignment EITOI‘ Rate

Features:

Basic: gato A cat

Edit-Distance: edit(gato,cat) =2

Dictionary: (gato,cat) € Dict

Stem: gato A +stem(cat)

Prefix: gato A +ca

Data:

Train 10K sentences of FBIS Model 1 Model 1 Features HMM
Chinese-English newswire EM EM EM

Test NIST 2002 Chinese-English dev set

Berkeley

Word Alignment Results

N LP

El gato verde duerme en casa.

\ X |/

The green cat sleeps at home. Alignment El‘rOr Rate

Features:
2.4

Basic: gato A cat

Edit-Distance: edit(gato,cat) =2

Dictionary: (gato,cat) € Dict

Stem: gato A +stem(cat)

Prefix: gato A +ca

Data:

Train 10K sentences of FBIS Model 1 Model 1 Features HMM HMM Features
Chinese-English newswire EM EM EM EM

Test NIST 2002 Chinese-English dev set

Berkeley

Word Segmentation Results

IT hel]lgreen]cat]

Berkeley

Word Segmentation Results

N LP

IT hel]lgreen]cat]

Key distribution: P (running)

Berkeley

Word Segmentation Results

N LP

IT hel]lgreen]cat]

Key distribution: P (running)

Features:
Basic: running
Length: length(running) = 7
Num-Vowels: numV (running) = 2

Coarse-Phono-Prefix: +rAn
Coarse-Phono-Sutfix: —+IN

Berkeley

Word Segmentation Results

N LP

[Thel]green]cat] Token F1
Features:

Basic: running

Length: length(running) = 7

Num-Vowels: numV (running) = 2

Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Data:

Train and test on phonetic version
of Bernstein-Ratner corpus

Berkeley

Word Segmentation Results

N LP

[Thel]green]cat] Token F1
Features:

Basic: running

Length: length(running) = 7

Num-Vowels: numV (running) = 2

Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Data:

_ _ _ Unigram
Train and test on phonetic version EM

of Bernstein-Ratner corpus

Berkeley

Word Segmentation Results

N LP

[Thelgreen]cat] Token F1
Features:

Basic: running

Length: length(running) = 7

Num-Vowels: numV(running) = 2

Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Data:

: _ _ Unigram Unigram Features
Train and test on phonetic version EM EM

of Bernstein-Ratner corpus

Berkeley

Word Segmentation Results

N LP

[Thel]green]cat] Token F1
+11.1

Features:

Basic: running

Length: length(running) = 7

Num-Vowels: numV(running) = 2

Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Data:

_ _ _ Unigram Unigram FeaturedJnigram Features
Train and test on phonetic version EM EM Gradient

of Bernstein-Ratner corpus

Berkeley

Word Segmentation Results

N LP

[Thel]green]cat] Token F1
+11.1

Features:

Basic: running

Length: length(running) = 7

Num-Vowels: numV(running) = 2

Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Data:

_ _ _ Unigram Unigram FeaturedJnigram Featureslohnson and
Train and test on phonetic version EM EM Gradient Goldwater ©09
of Bernstein-Ratner corpus Adaptor

Grammar

Berkeley

Apply to New Models

1. Take a generative model

Berkeley

Apply to New Models

N LP

1. Take a generative model

2. Brainstorm features local to the component
multinomials

Berkeley

Apply to New Models

N LP

1. Take a generative model

2. Brainstorm features local to the component
multinomials

3. Run this algorithm

Berkeley

Apply to New Models

N LP

1. Take a generative model

2. Brainstorm features local to the component
multinomials

3. Run this algorithm

4. Crush your baseline

Berkeley

Conclusion

N LP —

¥ State-of-the-art results

Berkeley

Conclusion

N LP -

¥ State-of-the-art results

¥ Can implemented using off-the-shelf NLP
tools

Berkeley

Conclusion

N LP

¥ State-of-the-art results

¥ Can implemented using off-the-shelf NLP
tools

¥ Directly optimizing data-likelihood can
outperform EM

Berkeley

Conclusion

N LP

¥ State-of-the-art results

¥ Can implemented using off-the-shelf NLP
tools

¥ Directly optimizing data-likelihood can
outperform EM

¥ Works on a wide range of induction tasks

Conclusion

Thanks!

