
Painless Unsupervised Learning
with Features

Taylor Berg-Kirkpatrick Alexandre Bouchard-Côté
John DeNero Dan Klein

Basic HMM for POS Induction

xi xi+1xi−1

zi−1 zi+1zi

Basic HMM for POS Induction

xi xi+1xi−1

zi−1 zi+1zi

Transition distribution:

P (z�|z)

Basic HMM for POS Induction

xi xi+1xi−1

zi−1 zi+1zi

Emission distribution:

P (x|z)

Parameterization

Key distribution: P (x|NNP)

John

Mary

running

jumping

x

Parameterization

Key distribution: P (x|NNP)

0.1

0.0

0.2

0.0

θx|NNP

John

Mary

running

jumping

x

Parameterization

Key distribution: P (x|NNP)

0.1

0.0

0.2

0.0

θx|NNP

John

Mary

running

jumping

x

+Cap

+Cap

+ing

+ing

f

Parameterization

Key distribution: P (x|NNP)

0.1

0.0

0.2

0.0

θx|NNP

John

Mary

running

jumping

x

+Cap

+Cap

+ing

+ing

f
0.3

0.3

0.1

0.1

ew
Tf

w:
+Cap +1.2

+ing -0.3

Parameterization

w θ

θx|z =
exp(wTf(x, z))�
x� exp(wTf(x�, z))

Unsupervised Learning with Features

Main idea: local multinomials become maxents

Unsupervised Learning with Features

Main idea: local multinomials become maxents

EM + Maxent M-Step =
Unsupervised learning w/ features

POS Induction Accuracy

43.2

POS Induction Accuracy

Basic Multinomial:
John ∧ NNP

43.2

56.0

POS Induction Accuracy

Basic Multinomial: Rich Features:

+12.8

John ∧ NNP
+Digit ∧ NNP
+Hyph ∧ NNP
+Cap ∧ NNP
+ing ∧ NNP

John ∧ NNP

Hard EM without Features

E-Step

M-Step

θ z

Hard EM without Features

Dynamic Program

Divide Counts

θ z M-Step: Divide Counts

=
�
c(z → x)
c(z → ·) , ...

�
θ ← argmax

θ
P (x, z;θ)

E-Step: Dynamic Program

z← argmax
z

P (z|x;θ)

Hard EM with Features

Dynamic Program

Divide Counts

θ

z
w

Transform

E-Step: Dynamic Program

z← argmax
z

P (z|x;θ)

M-Step: Divide Counts

=
�
c(z → x)
c(z → ·) , ...

�
θ ← argmax

θ
P (x, z;θ)

Hard EM with Features

Dynamic Program

Divide Counts

θ

z
w

Transform

E-Step: Dynamic Program

z← argmax
z

P (z|x;θ)

M-Step: Divide Counts

=
�
c(z → x)
c(z → ·) , ...

�
θ ← argmax

θ
P (x, z;θ)

Hard EM with Features

Dynamic Program

θ

z
w

Transform

E-Step: Dynamic Program

z← argmax
z

P (z|x;θ)

M-Step: Train Maxent

w← argmax
w

log P (x, z;w)

Train Maxent

Hard EM with Features

log P (x, z;w)

=
�

i

log P (xi|zi;w) + ...

Hard EM with Features

log P (x, z;w)

=
�

i

log P (xi|zi;w) + ...

Maxent training example

Hard EM with Features

log P (x, z;w)

log P (x|z;w)=
�

z,x

c(z → x) + ...

=
�

i

log P (xi|zi;w) + ...

Maxent training example

Multiplicity

Hard EM with Features

Dynamic Program

θ

z
w

Transform

E-Step: Dynamic Program

z← argmax
z

P (z|x;θ)

M-Step: Train Maxent

w← argmax
w

log P (x, z;w)

Train Maxent

Hard EM with Features

Dynamic Program

θ

z
w

Transform

E-Step: Dynamic Program

z← argmax
z

P (z|x;θ)

Transform Parameters

θx|z ←
exp(wT f(x, z))�
x� exp(wT f(x�, z))

M-Step: Train Maxent

w← argmax
w

log P (x, z;w)

Train Maxent

EM with Features

Dynamic Program

θ

z
w

Transform

E-Step: Dynamic Program

z← argmax
z

P (z|x;θ)

Transform Parameters

θx|z ←
exp(wT f(x, z))�
x� exp(wT f(x�, z))

M-Step: Train Maxent

w← argmax
w

log P (x, z;w)

Train Maxent

EM with Features

Dynamic Program

θ

z
w

Transform

E-Step: Dynamic Program

Transform Parameters

θx|z ←
exp(wT f(x, z))�
x� exp(wT f(x�, z))

M-Step: Train Maxent

w← argmax
w

log P (x, z;w)

e(z → x)← E
�
c(z → x)

�

Train Maxent

EM with Features

Dynamic Program

θ

z
w

Transform

E-Step: Dynamic Program

Transform Parameters

θx|z ←
exp(wT f(x, z))�
x� exp(wT f(x�, z))

M-Step: Train Maxent

e(z → x)← E
�
c(z → x)

�

w← argmax
w

E
�
log P (x, z;w)

�

Train Maxent

EM without Features

EM
Algorithm 1 EM with Features

Initialize probabilities θ
repeat

Compute expected counts e
Fit parameters θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

EM without Features

L(w)

Algorithm 1 EM with Features
Initialize probabilities θ
repeat

Compute expected counts e
Fit parameters θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

EM without Features

L(w)

Algorithm 1 EM with Features
Initialize probabilities θ
repeat

Compute expected counts e
Fit parameters θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

EM without Features

L(w)

Algorithm 1 EM with Features
Initialize probabilities θ
repeat

Compute expected counts e
Fit parameters θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

EM without Features

L(w)

Algorithm 1 EM with Features
Initialize probabilities θ
repeat

Compute expected counts e
Fit parameters θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

EM without Features

L(w)

Algorithm 1 EM with Features
Initialize probabilities θ
repeat

Compute expected counts e
Fit parameters θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

EM without Features

L(w)

Algorithm 1 EM with Features
Initialize probabilities θ
repeat

Compute expected counts e
Fit parameters θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

EM without Features

L(w)

Algorithm 1 EM with Features
Initialize probabilities θ
repeat

Compute expected counts e
Fit parameters θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

EM without Features

L(w)

Algorithm 1 EM with Features
Initialize probabilities θ
repeat

Compute expected counts e
Fit parameters θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

EM without Features

L(w)

Algorithm 1 EM with Features
Initialize probabilities θ
repeat

Compute expected counts e
Fit parameters θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

EM without Features

Algorithm 1 EM with Features
Initialize probabilities θ
repeat

Compute expected counts e
Fit parameters θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

EM

EM with Features

EM

Algorithm 1 EM with Features
Initialize probabilities θ
repeat

Compute expected counts e
Fit parameters θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

EM with Features

EM

Fi
t

Pa
ra

m
s

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

Direct Gradient with Features

EM w/ Features DG w/ Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Direct Gradient with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

Direct Gradient with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

Direct Gradient with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

Direct Gradient with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

Direct Gradient with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

Direct Gradient with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

Direct Gradient with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

Direct Gradient with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

Direct Gradient with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to θ

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute ∇�(w, e)
w← climb(w, �(w, e),��(w, e))

until convergence
Transform w to θ

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute ��(w, e)
w← climb(w, L(w),��(w, e))
Transform w to θ

until convergence

L(w)

Unsupervised Induction Tasks

The
DT JJ NN VBZ

sleepscatgreen
IN NN

at home.

The sleepscatgreen at home.

The

El gato verde duerme

sleepscatgreen

en casa.

at home.

[T h e][g r e e n][c a t]

POS Induction:

Grammar Induction:

Word Alignment:

Word Segmentation:

POS Induction Results

The
DT JJ NN VBZ

sleepscatgreen
IN NN
at home.

POS Induction Results

The
DT JJ NN VBZ

sleepscatgreen
IN NN
at home.

Key distribution: P (John|NN)

POS Induction Results

The
DT JJ NN VBZ

sleepscatgreen
IN NN
at home.

Features:
Basic: John ∧ NN
Contains-Digit: +Digit ∧ NN
Contains-Hyphen: +Hyph ∧ NN
Initial-Capital: +Cap ∧ NN
Suffix: +ing ∧ NN

Key distribution: P (John|NN)

POS Induction Results

Many-to-1 Accuracy
The
DT JJ NN VBZ

sleepscatgreen
IN NN

at home.

Train and test on entire WSJ

Data:

No tagging dictionary

45 POS tags

Features:
Basic: John ∧ NNP
Contains-Digit: +Digit ∧ NNP
Contains-Hyphen: +Hyph ∧ NNP
Initial-Capital: +Cap ∧ NNP
Suffix: +ing ∧ NNP

POS Induction Results

HMM
EM

Many-to-1 Accuracy
The
DT JJ NN VBZ

sleepscatgreen
IN NN

at home.

Train and test on entire WSJ

Data:

No tagging dictionary

45 POS tags

Features:
Basic: John ∧ NNP
Contains-Digit: +Digit ∧ NNP
Contains-Hyphen: +Hyph ∧ NNP
Initial-Capital: +Cap ∧ NNP
Suffix: +ing ∧ NNP

63.1

+5.0

POS Induction Results

HMM
EM

Many-to-1 Accuracy

HMM Features
EM

The
DT JJ NN VBZ

sleepscatgreen
IN NN

at home.

Train and test on entire WSJ

Data:

No tagging dictionary

45 POS tags

Features:
Basic: John ∧ NNP
Contains-Digit: +Digit ∧ NNP
Contains-Hyphen: +Hyph ∧ NNP
Initial-Capital: +Cap ∧ NNP
Suffix: +ing ∧ NNP

63.1
68.1

+5.0

POS Induction Results

HMM
EM

Many-to-1 Accuracy

HMM Features
Gradient

HMM Features
EM

The
DT JJ NN VBZ

sleepscatgreen
IN NN

at home.

Train and test on entire WSJ

Data:

No tagging dictionary

45 POS tags

Features:
Basic: John ∧ NNP
Contains-Digit: +Digit ∧ NNP
Contains-Hyphen: +Hyph ∧ NNP
Initial-Capital: +Cap ∧ NNP
Suffix: +ing ∧ NNP

+12.4

63.1
68.1

75.5

POS Induction Results

HMM
EM

HMM Features
Gradient

HMM Features
EM

+5.1
+12.8

1-to-1 Accuracy
The
DT JJ NN VBZ

sleepscatgreen
IN NN

at home.

Train and test on entire WSJ

Data:

No tagging dictionary

45 POS tags

56.0
48.3

43.2

Features:
Basic: John ∧ NNP
Contains-Digit: +Digit ∧ NNP
Contains-Hyphen: +Hyph ∧ NNP
Initial-Capital: +Cap ∧ NNP
Suffix: +ing ∧ NNP

Grammar Induction Results

The sleepscatgreen at home.

Grammar Induction Results

The sleepscatgreen at home.

Key distributions: P (JJ|NN) P (stop|NN)

Grammar Induction Results

Features:
Basic: JJ ∧ NN, JJ ∧ NNS
Noun: JJ ∧ Noun
Verb: JJ ∧ Verb
Noun-verb: JJ ∧ NounOrVerb

The sleepscatgreen at home.

Key distributions: P (JJ|NN) P (stop|NN)

Grammar Induction Results

Features:

Chinese Directed Accuracy

English Directed Accuracy

Data:
WSJ10 Sec. 2-21
CTB10 Sec. 1-270

Train

Test

Tune WSJ10 Sec. 22
CTB10 Sec. 400-454

WSJ10 Sec. 23
CTB10 Sec. 271-300

The sleepscatgreen at home.

Basic: JJ ∧ NN, JJ ∧ NNS
Noun: JJ ∧ Noun
Verb: JJ ∧ Verb
Noun-verb: JJ ∧ NounOrVerb

Grammar Induction Results

Features:

DMV
EM

Chinese Directed Accuracy

English Directed Accuracy

Data:
WSJ10 Sec. 2-21
CTB10 Sec. 1-270

Train

Test

Tune WSJ10 Sec. 22
CTB10 Sec. 400-454

WSJ10 Sec. 23
CTB10 Sec. 271-300

The sleepscatgreen at home.

Basic: JJ ∧ NN, JJ ∧ NNS
Noun: JJ ∧ Noun
Verb: JJ ∧ Verb
Noun-verb: JJ ∧ NounOrVerb

42.5

47.8

Grammar Induction Results

Features:

DMV
EM

Chinese Directed Accuracy

DMV Features
EM

English Directed Accuracy

+0.5

+7.4
Data:

WSJ10 Sec. 2-21
CTB10 Sec. 1-270

Train

Test

Tune WSJ10 Sec. 22
CTB10 Sec. 400-454

WSJ10 Sec. 23
CTB10 Sec. 271-300

The sleepscatgreen at home.

Basic: JJ ∧ NN, JJ ∧ NNS
Noun: JJ ∧ Noun
Verb: JJ ∧ Verb
Noun-verb: JJ ∧ NounOrVerb

42.5
49.9

47.8 48.3

Grammar Induction Results

Features:

DMV
EM

Chinese Directed Accuracy

DMV Features
Gradient

DMV Features
EM

English Directed Accuracy

+0.5

+7.4
Data:

WSJ10 Sec. 2-21
CTB10 Sec. 1-270

Train

Test

Tune WSJ10 Sec. 22
CTB10 Sec. 400-454

WSJ10 Sec. 23
CTB10 Sec. 271-300

The sleepscatgreen at home.

+15.2

+11.1

Basic: JJ ∧ NN, JJ ∧ NNS
Noun: JJ ∧ Noun
Verb: JJ ∧ Verb
Noun-verb: JJ ∧ NounOrVerb

42.5
49.9 53.6

47.8 48.3

63.0

Grammar Induction Results

Features:

DMV
EM

Chinese Directed Accuracy

DMV Features
Gradient

Cohen and
Smith ’09
SLN DMV

DMV Features
EM

English Directed Accuracy

+0.5

+7.4
Data:

WSJ10 Sec. 2-21
CTB10 Sec. 1-270

Train

Test

Tune WSJ10 Sec. 22
CTB10 Sec. 400-454

WSJ10 Sec. 23
CTB10 Sec. 271-300

The sleepscatgreen at home.

+15.2

+11.1

Basic: JJ ∧ NN, JJ ∧ NNS
Noun: JJ ∧ Noun
Verb: JJ ∧ Verb
Noun-verb: JJ ∧ NounOrVerb

42.5
49.9 53.6 51.9

47.8 48.3

63.0 61.3

Word Alignment Results

The

El gato verde duerme

sleepscatgreen

en casa.

at home.

Word Alignment Results

Key distribution: P (gato|cat)

The

El gato verde duerme

sleepscatgreen

en casa.

at home.

Word Alignment Results

Features:
Basic: gato ∧ cat
Edit-Distance: edit(gato,cat) = 2
Dictionary: (gato,cat) ∈ Dict
Stem: gato ∧ +stem(cat)
Prefix: gato ∧ +ca

Key distribution: P (gato|cat)

The

El gato verde duerme

sleepscatgreen

en casa.

at home.

Word Alignment Results

Alignment Error RateThe

El gato verde duerme

sleepscatgreen

en casa.

at home.

10K sentences of FBIS
Chinese-English newswire

Train

Test

Data:

NIST 2002 Chinese-English dev set

Features:
Basic: gato ∧ cat
Edit-Distance: edit(gato,cat) = 2
Dictionary: (gato,cat) ∈ Dict
Stem: gato ∧ +stem(cat)

Prefix: gato ∧ +ca

Word Alignment Results

Model 1
EM

Alignment Error RateThe

El gato verde duerme

sleepscatgreen

en casa.

at home.

10K sentences of FBIS
Chinese-English newswire

Train

Test

Data:

NIST 2002 Chinese-English dev set

Features:
Basic: gato ∧ cat
Edit-Distance: edit(gato,cat) = 2
Dictionary: (gato,cat) ∈ Dict
Stem: gato ∧ +stem(cat)

Prefix: gato ∧ +ca

38.0

Word Alignment Results

Model 1
EM

Alignment Error Rate

Model 1 Features
EM

The

El gato verde duerme

sleepscatgreen

en casa.

at home.

-2.4

10K sentences of FBIS
Chinese-English newswire

Train

Test

Data:

NIST 2002 Chinese-English dev set

Features:
Basic: gato ∧ cat
Edit-Distance: edit(gato,cat) = 2
Dictionary: (gato,cat) ∈ Dict
Stem: gato ∧ +stem(cat)

Prefix: gato ∧ +ca

38.0
35.6

Word Alignment Results

Model 1
EM

Alignment Error Rate

HMM
EM

Model 1 Features
EM

The

El gato verde duerme

sleepscatgreen

en casa.

at home.

-2.4

10K sentences of FBIS
Chinese-English newswire

Train

Test

Data:

NIST 2002 Chinese-English dev set

Features:
Basic: gato ∧ cat
Edit-Distance: edit(gato,cat) = 2
Dictionary: (gato,cat) ∈ Dict
Stem: gato ∧ +stem(cat)

Prefix: gato ∧ +ca

38.0
35.6 33.8

Word Alignment Results

Model 1
EM

Alignment Error Rate

HMM
EM

HMM Features
EM

Model 1 Features
EM

The

El gato verde duerme

sleepscatgreen

en casa.

at home.

-2.4

-3.8

10K sentences of FBIS
Chinese-English newswire

Train

Test

Data:

NIST 2002 Chinese-English dev set

Features:
Basic: gato ∧ cat
Edit-Distance: edit(gato,cat) = 2
Dictionary: (gato,cat) ∈ Dict
Stem: gato ∧ +stem(cat)

Prefix: gato ∧ +ca

38.0
35.6 33.8

30.0

Word Segmentation Results

[T h e][g r e e n][c a t]

Word Segmentation Results

[T h e][g r e e n][c a t]

Key distribution: P (running)

Word Segmentation Results

Features:
Basic: running
Length: length(running) = 7
Num-Vowels: numV(running) = 2
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

[T h e][g r e e n][c a t]

Key distribution: P (running)

Word Segmentation Results

Token F1[T h e][g r e e n][c a t]

Data:

Train and test on phonetic version
of Bernstein-Ratner corpus

Features:

Basic: running
Length: length(running) = 7
Num-Vowels: numV(running) = 2
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Word Segmentation Results

Unigram
EM

Token F1[T h e][g r e e n][c a t]

Data:

Train and test on phonetic version
of Bernstein-Ratner corpus

76.9
Features:

Basic: running
Length: length(running) = 7
Num-Vowels: numV(running) = 2
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Word Segmentation Results

Unigram
EM

Token F1

Unigram Features
EM

[T h e][g r e e n][c a t]

+7.6

Data:

Train and test on phonetic version
of Bernstein-Ratner corpus

76.9
84.5Features:

Basic: running
Length: length(running) = 7
Num-Vowels: numV(running) = 2
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Word Segmentation Results

Unigram
EM

Token F1

Unigram Features
Gradient

Unigram Features
EM

[T h e][g r e e n][c a t]

+7.6

Data:

Train and test on phonetic version
of Bernstein-Ratner corpus

+11.1

76.9
84.5 88.0Features:

Basic: running
Length: length(running) = 7
Num-Vowels: numV(running) = 2
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Word Segmentation Results

Unigram
EM

Token F1

Unigram Features
Gradient

Johnson and
Goldwater ’09

Adaptor
Grammar

Unigram Features
EM

[T h e][g r e e n][c a t]

+7.6

Data:

Train and test on phonetic version
of Bernstein-Ratner corpus

+11.1

76.9
84.5 88.0 89Features:

Basic: running
Length: length(running) = 7
Num-Vowels: numV(running) = 2
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Apply to New Models

1. Take a generative model

Apply to New Models

1. Take a generative model

2. Brainstorm features local to the component
multinomials

Apply to New Models

1. Take a generative model

2. Brainstorm features local to the component
multinomials

3. Run this algorithm

Apply to New Models

1. Take a generative model

2. Brainstorm features local to the component
multinomials

3. Run this algorithm

4. Crush your baseline

Conclusion

• State-of-the-art results

Conclusion

• State-of-the-art results

• Can implemented using off-the-shelf NLP
tools

Conclusion

• State-of-the-art results

• Can implemented using off-the-shelf NLP
tools

• Directly optimizing data-likelihood can
outperform EM

Conclusion

• State-of-the-art results

• Can implemented using off-the-shelf NLP
tools

• Directly optimizing data-likelihood can
outperform EM

• Works on a wide range of induction tasks

Conclusion

Thanks!

