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Parameterization

w θ

θx|z =
exp(wTf(x, z))�
x� exp(wTf(x�, z))
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Main idea: local multinomials become maxents

EM + Maxent M-Step = 
Unsupervised learning w/ features
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56.0

POS Induction Accuracy

Basic Multinomial: Rich Features:

+12.8

John ∧ NNP
+Digit ∧ NNP
+Hyph ∧ NNP
+Cap ∧ NNP
+ing ∧ NNP

John ∧ NNP
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1. Take a generative model

2. Brainstorm features local to the component 
multinomials

3. Run this algorithm

4. Crush your baseline
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Conclusion 

Thanks!


