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Features:
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Noun: JJ A Noun
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Noun-verb: JJ A NounOrVerb
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Data:
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English Directed Accuracy

ANV +15.2

The green cat sleeps at home.

Features:
Basic: JJ A NN, JJ A NNS
Noun: JJ A Noun
Verb: JJ A Verb
Noun-verb: JJ A NounOrVerb Chinese Directed Accuracy
+11.1
Data.

CTB10 Sec. 1-270

Tune WSJ10 Sec. 22
CTB10 Sec. 400-454

Test WSJ10 Sec. 23
CTB10 Sec. 271-300 DMV DMV FeaturesDMV FeaturesCohen and

EM EM Gradient  Smith 009
SLN DMV
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Features:

Basic: gato A cat

Edit-Distance:  edit(gato,cat) =2

Dictionary: (gato,cat) € Dict

Stem: gato A +stem(cat)

Prefix: gato A +ca

Data:

Train 10K sentences of FBIS Model 1 Model 1 Features HMM
Chinese-English newswire EM EM EM

Test NIST 2002 Chinese-English dev set
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The green cat sleeps at home. Alignment El‘rOr Rate

Features:
2.4

Basic: gato A cat

Edit-Distance:  edit(gato,cat) =2

Dictionary: (gato,cat) € Dict

Stem: gato A +stem(cat)

Prefix: gato A +ca

Data:

Train 10K sentences of FBIS Model 1 Model 1 Features HMM HMM Features
Chinese-English newswire EM EM EM EM

Test NIST 2002 Chinese-English dev set
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+11.1

Features:

Basic: running

Length: length(running) = 7

Num-Vowels: numV(running) = 2

Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Data:

_ _ _ Unigram Unigram FeaturedJnigram Featureslohnson and
Train and test on phonetic version EM EM Gradient  Goldwater ©09
of Bernstein-Ratner corpus Adaptor

Grammar
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Apply to New Models

N LP

1. Take a generative model

2. Brainstorm features local to the component
multinomials

3. Run this algorithm

4. Crush your baseline



Berkeley

Conclusion

N LP —

¥ State-of-the-art results



Berkeley

Conclusion

N LP -

¥ State-of-the-art results

¥ Can implemented using off-the-shelf NLP
tools



Berkeley

Conclusion

N LP

¥ State-of-the-art results

¥ Can implemented using off-the-shelf NLP
tools

¥ Directly optimizing data-likelihood can
outperform EM



Berkeley

Conclusion
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¥ State-of-the-art results

¥ Can implemented using off-the-shelf NLP
tools

¥ Directly optimizing data-likelihood can
outperform EM

¥ Works on a wide range of induction tasks



Conclusion

Thanks!



