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Abstract

To address semantic ambiguities in corefer-
ence resolution, we use Web n-gram features
that capture a range of world knowledge in a
diffuse but robust way. Specifically, we ex-
ploit short-distance cues to hypernymy, se-
mantic compatibility, and semantic context, as
well as general lexical co-occurrence. When
added to a state-of-the-art coreference base-
line, our Web features give significant gains on
multiple datasets (ACE 2004 and ACE 2005)
and metrics (MUC and B3), resulting in the
best results reported to date for the end-to-end
task of coreference resolution.

1 Introduction

Many of the most difficult ambiguities in corefer-
ence resolution are semantic in nature. For instance,
consider the following example:

When Obama met Jobs, the president dis-
cussed the economy, technology, and educa-
tion. His election campaign is expected to [...]

For resolving coreference in this example, a sys-
tem would benefit from the world knowledge that
Obama is the president. Also, to resolve the pro-
noun his to the correct antecedent Obama, we can
use the knowledge that Obama has an election cam-
paign while Jobs does not. Such ambiguities are
difficult to resolve on purely syntactic or configu-
rational grounds.

There have been multiple previous systems that
incorporate some form of world knowledge in coref-
erence resolution tasks. Most work (Poesio et
al., 2004; Markert and Nissim, 2005; Yang et
al., 2005; Bergsma and Lin, 2006) addresses spe-
cial cases and subtasks such as bridging anaphora,

other anaphora, definite NP reference, and pronoun
resolution, computing semantic compatibility via
Web-hits and counts from large corpora. There
is also work on end-to-end coreference resolution
that uses large noun-similarity lists (Daumé III and
Marcu, 2005) or structured knowledge bases such as
Wikipedia (Yang and Su, 2007; Haghighi and Klein,
2009; Kobdani et al., 2011) and YAGO (Rahman
and Ng, 2011). However, such structured knowledge
bases are of limited scope, and, while Haghighi and
Klein (2010) self-acquires knowledge about corefer-
ence, it does so only via reference constructions and
on a limited scale.

In this paper, we look to the Web for broader if
shallower sources of semantics. In order to harness
the information on the Web without presupposing
a deep understanding of all Web text, we instead
turn to a diverse collection of Web n-gram counts
(Brants and Franz, 2006) which, in aggregate, con-
tain diffuse and indirect, but often robust, cues to
reference. For example, we can collect the co-
occurrence statistics of an anaphor with various can-
didate antecedents to judge relative surface affinities
(i.e., (Obama, president) versus (Jobs, president)).
We can also count co-occurrence statistics of com-
peting antecedents when placed in the context of an
anaphoric pronoun (i.e., Obama’s election campaign
versus Jobs’ election campaign).

All of our features begin with a pair of head-
words from candidate mention pairs and compute
statistics derived from various potentially informa-
tive queries’ counts. We explore five major cat-
egories of semantically informative Web features,
based on (1) general lexical affinities (via generic
co-occurrence statistics), (2) lexical relations (via
Hearst-style hypernymy patterns), (3) similarity of
entity-based context (e.g., common values of y for



which h is a y is attested), (4) matches of distribu-
tional soft cluster ids, and (5) attested substitutions
of candidate antecedents in the context of a pronom-
inal anaphor.

We first describe a strong baseline consisting of
the mention-pair model of the Reconcile system
(Stoyanov et al., 2009; Stoyanov et al., 2010) us-
ing a decision tree (DT) as its pairwise classifier. To
this baseline system, we add our suite of features
in turn, each class of features providing substantial
gains. Altogether, our final system produces the best
numbers reported to date on end-to-end coreference
resolution (with automatically detected system men-
tions) on multiple data sets (ACE 2004 and ACE
2005) and metrics (MUC and B3), achieving signif-
icant improvements over the Reconcile DT baseline
and over the state-of-the-art results of Haghighi and
Klein (2010).

2 Baseline System

Before describing our semantic Web features, we
first describe our baseline. The core inference and
features come from the Reconcile package (Stoy-
anov et al., 2009; Stoyanov et al., 2010), with modi-
fications described below. Our baseline differs most
substantially from Stoyanov et al. (2009) in using a
decision tree classifier rather than an averaged linear
perceptron.

2.1 Reconcile

Reconcile is one of the best implementations of the
mention-pair model (Soon et al., 2001) of coref-
erence resolution. The mention-pair model relies
on a pairwise function to determine whether or not
two mentions are coreferent. Pairwise predictions
are then consolidated by transitive closure (or some
other clustering method) to form the final set of
coreference clusters (chains). While our Web fea-
tures could be adapted to entity-mention systems,
their current form was most directly applicable to
the mention-pair approach, making Reconcile a par-
ticularly well-suited platform for this investigation.

The Reconcile system provides baseline features,
learning mechanisms, and resolution procedures that
already achieve near state-of-the-art results on mul-
tiple popular datasets using multiple standard met-
rics. It includes over 80 core features that exploit

various automatically generated annotations such as
named entity tags, syntactic parses, and WordNet
classes, inspired by Soon et al. (2001), Ng and
Cardie (2002), and Bengtson and Roth (2008). The
Reconcile system also facilitates standardized em-
pirical evaluation to past work.1

In this paper, we develop a suite of simple seman-
tic Web features based on pairs of mention head-
words which stack with the default Reconcile fea-
tures to surpass past state-of-the-art results.

2.2 Decision Tree Classifier

Among the various learning algorithms that Recon-
cile supports, we chose the decision tree classifier,
available in Weka (Hall et al., 2009) as J48, an open
source Java implementation of the C4.5 algorithm of
Quinlan (1993).

The C4.5 algorithm builds decision trees by incre-
mentally maximizing information gain. The train-
ing data is a set of already classified samples, where
each sample is a vector of attributes or features. At
each node of the tree, C4.5 splits the data on an
attribute that most effectively splits its set of sam-
ples into more ordered subsets, and then recurses on
these smaller subsets. The decision tree can then be
used to classify a new sample by following a path
from the root downward based on the attribute val-
ues of the sample.

We find the decision tree classifier to work better
than the default averaged perceptron (used by Stoy-
anov et al. (2009)), on multiple datasets using multi-
ple metrics (see Section 4.3). Many advantages have
been claimed for decision tree classifiers, including
interpretability and robustness. However, we sus-
pect that the aspect most relevant to our case is that
decision trees can capture non-linear interactions be-
tween features. For example, recency is very im-
portant for pronoun reference but much less so for
nominal reference.

3 Semantics via Web Features

Our Web features for coreference resolution are sim-
ple and capture a range of diffuse world knowledge.
Given a mention pair, we use the head finder in Rec-
oncile to find the lexical heads of both mentions (for

1We use the default configuration settings of Reconcile
(Stoyanov et al., 2010) unless mentioned otherwise.



example, the head of the Palestinian territories is the
word territories). Next, we take each headword pair
(h1, h2) and compute various Web-count functions
on it that can signal whether or not this mention pair
is coreferent.

As the source of Web information, we use the
Google n-grams corpus (Brants and Franz, 2006)
which contains English n-grams (n = 1 to 5) and
their Web frequency counts, derived from nearly 1
trillion word tokens and 95 billion sentences. Be-
cause we have many queries that must be run against
this corpus, we apply the trie-based hashing algo-
rithm of Bansal and Klein (2011) to efficiently an-
swer all of them in one pass over it. The features
that require word clusters (Section 3.4) use the out-
put of Lin et al. (2010).2

We describe our five types of features in turn. The
first four types are most intuitive for mention pairs
where both members are non-pronominal, but, aside
from the general co-occurrence group, helped for all
mention pair types. The fifth feature group applies
only to pairs in which the anaphor is a pronoun but
the antecedent is a non-pronoun. Related work for
each feature category is discussed inline.

3.1 General co-occurrence

These features capture co-occurrence statistics of
the two headwords, i.e., how often h1 and h2 are
seen adjacent or nearly adjacent on the Web. This
count can be a useful coreference signal because,
in general, mentions referring to the same entity
will co-occur more frequently (in large corpora) than
those that do not. Using the n-grams corpus (for n
= 1 to 5), we collect co-occurrence Web-counts by
allowing a varying number of wildcards between h1
and h2 in the query. The co-occurrence value is:

bin

(
log10

(
c12

c1 · c2

))

2These clusters are derived form the V2 Google n-grams
corpus. The V2 corpus itself is not publicly available, but
the clusters are available at http://www.clsp.jhu.edu/
˜sbergsma/PhrasalClusters

where

c12 = count(“h1 ? h2”)

+ count(“h1 ? ? h2”)

+ count(“h1 ? ? ? h2”),

c1 = count(“h1”), and

c2 = count(“h2”).

We normalize the overall co-occurrence count of the
headword pair c12 by the unigram counts of the indi-
vidual headwords c1 and c2, so that high-frequency
headwords do not unfairly get a high feature value
(this is similar to computing scaled mutual infor-
mation MI (Church and Hanks, 1989)).3 This nor-
malized value is quantized by taking its log10 and
binning. The actual feature that fires is an indica-
tor of which quantized bin the query produced. As
a real example from our development set, the co-
occurrence count c12 for the headword pair (leader,
president) is 11383, while it is only 95 for the head-
word pair (voter, president); after normalization and
log10, the values are -10.9 and -12.0, respectively.

These kinds of general Web co-occurrence statis-
tics have been used previously for other supervised
NLP tasks such as spelling correction and syntac-
tic parsing (Bergsma et al., 2010; Bansal and Klein,
2011). In coreference, similar word-association
scores were used by Kobdani et al. (2011), but from
Wikipedia and for self-training.

3.2 Hearst co-occurrence
These features capture templated co-occurrence of
the two headwords h1 and h2 in the Web-corpus.
Here, we only collect statistics of the headwords co-
occurring with a generalized Hearst pattern (Hearst,
1992) in between. Hearst patterns capture various
lexical semantic relations between items. For ex-
ample, seeing X is a Y or X and other Y indicates
hypernymy and also tends to cue coreference. The
specific patterns we use are:

• h1 {is | are | was | were} {a | an | the}? h2

• h1 {and | or} {other | the other | another} h2
• h1 other than {a | an | the}? h2

3We also tried adding count(“h1 h2”) to c12 but this
decreases performance, perhaps because truly adjacent occur-
rences are often not grammatical.



• h1 such as {a | an | the}? h2

• h1 , including {a | an | the}? h2

• h1 , especially {a | an | the}? h2

• h1 of {the| all}? h2

For this feature, we again use a quantized nor-
malized count as in Section 3.1, but c12 here is re-
stricted to n-grams where one of the above patterns
occurs in between the headwords. We did not al-
low wildcards in between the headwords and the
Hearst-patterns because this introduced a significant
amount of noise. Also, we do not constrain the or-
der of h1 and h2 because these patterns can hold
for either direction of coreference.4 As a real ex-
ample from our development set, the c12 count for
the headword pair (leader, president) is 752, while
for (voter, president), it is 0.

Hypernymic semantic compatibility for corefer-
ence is intuitive and has been explored in varying
forms by previous work. Poesio et al. (2004) and
Markert and Nissim (2005) employ a subset of our
Hearst patterns and Web-hits for the subtasks of
bridging anaphora, other-anaphora, and definite NP
resolution. Others (Haghighi and Klein, 2009; Rah-
man and Ng, 2011; Daumé III and Marcu, 2005)
use similar relations to extract compatibility statis-
tics from Wikipedia, YAGO, and noun-similarity
lists. Yang and Su (2007) use Wikipedia to auto-
matically extract semantic patterns, which are then
used as features in a learning setup. Instead of ex-
tracting patterns from the training data, we use all
the above patterns, which helps us generalize to new
datasets for end-to-end coreference resolution (see
Section 4.3).

3.3 Entity-based context

For each headword h, we first collect context seeds
y using the pattern

h {is | are | was | were} {a | an | the}? y

taking seeds y in order of decreasing Web count.
The corresponding ordered seed list Y = {y} gives
us useful information about the headword’s entity
type. For example, for h = president, the top

4Two minor variants not listed above are h1 including h2

and h1 especially h2.

30 seeds (and their parts of speech) include impor-
tant cues such as president is elected (verb), pres-
ident is authorized (verb), president is responsible
(adjective), president is the chief (adjective), presi-
dent is above (preposition), and president is the head
(noun).

Matches in the seed lists of two headwords can
be a strong signal that they are coreferent. For ex-
ample, in the top 30 seed lists for the headword
pair (leader, president), we get matches including
elected, responsible, and expected. To capture this
effect, we create a feature that indicates whether
there is a match in the top k seeds of the two head-
words (where k is a hyperparameter to tune).

We create another feature that indicates whether
the dominant parts of speech in the seed lists
matches for the headword pair. We first collect the
POS tags (using length 2 character prefixes to indi-
cate coarse parts of speech) of the seeds matched in
the top k′ seed lists of the two headwords, where
k′ is another hyperparameter to tune. If the domi-
nant tags match and are in a small list of important
tags ({JJ, NN, RB, VB}), we fire an indicator feature
specifying the matched tag, otherwise we fire a no-
match indicator. To obtain POS tags for the seeds,
we use a unigram-based POS tagger trained on the
WSJ treebank training set.

3.4 Cluster information
The distributional hypothesis of Harris (1954) says
that words that occur in similar contexts tend to have
a similar linguistic behavior. Here, we design fea-
tures with the idea that this hypothesis extends to
reference: mentions occurring in similar contexts
in large document sets such as the Web tend to be
compatible for coreference. Instead of collecting the
contexts of each mention and creating sparse fea-
tures from them, we use Web-scale distributional
clustering to summarize compatibility.

Specifically, we begin with the phrase-based clus-
ters from Lin et al. (2010), which were created us-
ing the Google n-grams V2 corpus. These clusters
come from distributional K-Means clustering (with
K = 1000) on phrases, using the n-gram context as
features. The cluster data contains almost 10 mil-
lion phrases and their soft cluster memberships. Up
to twenty cluster ids with the highest centroid sim-
ilarities are included for each phrase in this dataset



(Lin et al., 2010).
Our cluster-based features assume that if the

headwords of the two mentions have matches in
their cluster id lists, then they are more compatible
for coreference. We check the match of not just the
top 1 cluster ids, but also farther down in the 20 sized
lists because, as discussed in Lin and Wu (2009),
the soft cluster assignments often reveal different
senses of a word. However, we also assume that
higher-ranked matches tend to imply closer mean-
ings. To this end, we fire a feature indicating the
value bin(i+j), where i and j are the earliest match
positions in the cluster id lists of h1 and h2. Binning
here means that match positions in a close range
generally trigger the same feature.

Recent previous work has used clustering infor-
mation to improve the performance of supervised
NLP tasks such as NER and dependency parsing
(Koo et al., 2008; Lin and Wu, 2009). However, in
coreference, the only related work to our knowledge
is from Daumé III and Marcu (2005), who use word
class features derived from a Web-scale corpus via a
process described in Ravichandran et al. (2005).

3.5 Pronoun context

Our last feature category specifically addresses pro-
noun reference, for cases when the anaphoric men-
tion NP2 (and hence its headword h2) is a pronoun,
while the candidate antecedent mention NP1 (and
hence its headword h1) is not. For such a head-
word pair (h1, h2), the idea is to substitute the non-
pronoun h1 into h2’s position and see whether the
result is attested on the Web.

If the anaphoric pronominal mention is h2 and its
sentential context is l’ l h2 r r’, then the substituted
phrase will be l’ l h1 r r’.5 High Web counts of sub-
stituted phrases tend to indicate semantic compati-
bility. Perhaps unsurprisingly for English, only the
right context was useful in this capacity. We chose
the following three context types, based on perfor-
mance on a development set:

5Possessive pronouns are replaced with an additional apos-
trophe, i.e., h1 ’s. We also use features (see R1Gap) that allow
wildcards (?) in between the headword and the context when
collecting Web-counts, in order to allow for determiners and
other filler words.

• h1 r (R1)

• h1 r r’ (R2)

• h1 ? r (R1Gap)

As an example of the R1Gap feature, if the
anaphor h2 + context is his victory and one candidate
antecedent h1 is Bush, then we compute the normal-
ized value

count(“Bush ′s ? victory”)

count(“ ? ′s ? victory”)count(“Bush”)

In general, we compute

count(“h1
′s ? r”)

count(“ ? ′s ? r”)count(“h1”)

The final feature value is again a normalized count
converted to log10 and then binned.6 We have three
separate features for the R1, R2, and R1Gap context
types. We tune a separate bin-size hyperparameter
for each of these three features.

These pronoun resolution features are similar to
selectional preference work by Yang et al. (2005)
and Bergsma and Lin (2006), who compute seman-
tic compatibility for pronouns in specific syntactic
relationships such as possessive-noun, subject-verb,
etc. In our case, we directly use the general context
of any pronominal anaphor to find its most compat-
ible antecedent.

Note that all our above features are designed to be
non-sparse by firing indicators of the quantized Web
statistics and not the lexical- or class-based identities
of the mention pair. This keeps the total number of
features small, which is important for the relatively
small datasets used for coreference resolution. We
go from around 100 features in the Reconcile base-
line to around 165 features after adding all our Web
features.

6Normalization helps us with two kinds of balancing. First,
we divide by the count of the antecedent so that when choos-
ing the best antecedent for a fixed anaphor, we are not biased
towards more frequently occurring antecedents. Second, we di-
vide by the count of the context so that across anaphora, an
anaphor with rarer context does not get smaller values (for all its
candidate antecedents) than another anaphor with a more com-
mon context.



Dataset docs dev test ment chn
ACE04 128 63/27 90/38 3037 1332
ACE05 81 40/17 57/24 1991 775

ACE05-ALL 599 337/145 482/117 9217 3050

Table 1: Dataset characteristics – docs: the total number of doc-
uments; dev: the train/test split during development; test: the
train/test split during testing; ment: the number of gold men-
tions in the test split; chn: the number of coreference chains in
the test split.

4 Experiments

4.1 Data
We show results on three popular and comparatively
larger coreference resolution data sets – the ACE04,
ACE05, and ACE05-ALL datasets from the ACE
Program (NIST, 2004). In ACE04 and ACE05, we
have only the newswire portion (of the original ACE
2004 and 2005 training sets) and use the standard
train/test splits reported in Stoyanov et al. (2009)
and Haghighi and Klein (2010). In ACE05-ALL,
we have the full ACE 2005 training set and use the
standard train/test splits reported in Rahman and Ng
(2009) and Haghighi and Klein (2010). Note that
most previous work does not report (or need) a stan-
dard development set; hence, for tuning our fea-
tures and its hyper-parameters, we randomly split
the original training data into a training and devel-
opment set with a 70/30 ratio (and then use the full
original training set during testing). Details of the
corpora are shown in Table 1.7

Details of the Web-scale corpora used for extract-
ing features are discussed in Section 3.

4.2 Evaluation Metrics
We evaluated our work on both MUC (Vilain et al.,
1995) and B3 (Bagga and Baldwin, 1998). Both
scorers are available in the Reconcile infrastruc-
ture.8 MUC measures how many predicted clusters
need to be merged to cover the true gold clusters.
B3 computes precision and recall for each mention
by computing the intersection of its predicted and
gold cluster and dividing by the size of the predicted

7Note that the development set is used only for ACE04, be-
cause for ACE05, and ACE05-ALL, we directly test using the
features tuned on ACE04.

8Note that B3 has two versions which handle twinless (spu-
rious) mentions in different ways (see Stoyanov et al. (2009) for
details). We use the B3All version, unless mentioned otherwise.

MUC B3

Feature P R F1 P R F1
AvgPerc 69.0 63.1 65.9 82.2 69.9 75.5
DecTree 80.9 61.0 69.5 89.5 69.0 77.9
+ Co-occ 79.8 62.1 69.8 88.7 69.8 78.1
+ Hearst 80.0 62.3 70.0 89.1 70.1 78.5
+ Entity 79.4 63.2 70.4 88.1 70.9 78.6
+ Cluster 79.5 63.6 70.7 87.9 71.2 78.6
+ Pronoun 79.9 64.3 71.3 88.0 71.6 79.0

Table 2: Incremental results for the Web features on the ACE04
development set. AvgPerc is the averaged perceptron baseline,
DecTree is the decision tree baseline, and the +Feature rows
show the effect of adding a particular feature incrementally (not
in isolation) to the DecTree baseline. The feature categories
correspond to those described in Section 3.

and gold cluster, respectively. It is well known
(Recasens and Hovy, 2010; Ng, 2010; Kobdani et
al., 2011) that MUC is biased towards large clus-
ters (chains) whereas B3 is biased towards singleton
clusters. Therefore, for a more balanced evaluation,
we show improvements on both metrics simultane-
ously.

4.3 Results

We start with the Reconcile baseline but employ the
decision tree (DT) classifier, because it has signifi-
cantly better performance than the default averaged
perceptron classifier used in Stoyanov et al. (2009).9

Table 2 compares the baseline perceptron results to
the DT results and then shows the incremental addi-
tion of the Web features to the DT baseline (on the
ACE04 development set).

The DT classifier, in general, is precision-biased.
The Web features somewhat balance this by increas-
ing the recall and decreasing precision to a lesser ex-
tent, improving overall F1. Each feature type incre-
mentally increases both MUC and B3 F1-measures,
showing that they are not taking advantage of any
bias of either metric. The incremental improve-
ments also show that each Web feature type brings
in some additional benefit over the information al-
ready present in the Reconcile baseline, which in-
cludes alias, animacy, named entity, and WordNet

9Moreover, a DT classifier takes roughly the same amount of
time and memory as a perceptron on our ACE04 development
experiments. It is, however, slower and more memory-intensive
(∼3x) on the bigger ACE05-ALL dataset.



MUC B3

System P R F1 P R F1
ACE04-TEST-RESULTS

Stoyanov et al. (2009) - - 62.0 - - 76.5
Haghighi and Klein (2009) 67.5 61.6 64.4 77.4 69.4 73.2
Haghighi and Klein (2010) 67.4 66.6 67.0 81.2 73.3 77.0
This Work: Perceptron Baseline 65.5 61.9 63.7 84.1 70.9 77.0
This Work: DT Baseline 76.0 60.7 67.5 89.6 70.3 78.8
This Work: DT + Web Features 74.8 64.2 69.1 87.5 73.7 80.0
This Work: ∆ of DT+Web over DT (p < 0.05) 1.7 (p < 0.005) 1.3

ACE05-TEST-RESULTS
Stoyanov et al. (2009) - - 67.4 - - 73.7
Haghighi and Klein (2009) 73.1 58.8 65.2 82.1 63.9 71.8
Haghighi and Klein (2010) 74.6 62.7 68.1 83.2 68.4 75.1
This Work: Perceptron Baseline 72.2 61.6 66.5 85.0 65.5 73.9
This Work: DT Baseline 79.6 59.7 68.2 89.4 64.2 74.7
This Work: DT + Web Features 75.0 64.7 69.5 81.1 70.8 75.6
This Work: ∆ of DT+Web over DT (p < 0.12) 1.3 (p < 0.1) 0.9

ACE05-ALL-TEST-RESULTS
Rahman and Ng (2009) 75.4 64.1 69.3 54.4 70.5 61.4
Haghighi and Klein (2009) 72.9 60.2 67.0 53.2 73.1 61.6
Haghighi and Klein (2010) 77.0 66.9 71.6 55.4 74.8 63.8
This Work: Perceptron Baseline 68.9 60.4 64.4 80.6 60.5 69.1
This Work: DT Baseline 78.0 60.4 68.1 85.1 60.4 70.6
This Work: DT + Web Features 77.6 64.0 70.2 80.7 65.9 72.5
This Work: ∆ of DT+Web over DT (p < 0.001) 2.1 (p < 0.001) 1.9

Table 3: Primary test results on the ACE04, ACE05, and ACE05-ALL datasets. All systems reported here use automatically
extracted system mentions. B3 here is the B3All version of Stoyanov et al. (2009). We also report statistical significance of the
improvements from the Web features on the DT baseline, using the bootstrap test (Noreen, 1989; Efron and Tibshirani, 1993). The
perceptron baseline in this work (Reconcile settings: 15 iterations, threshold = 0.45, SIG for ACE04 and AP for ACE05, ACE05-
ALL) has different results from Stoyanov et al. (2009) because their current publicly available code is different from that used in
their paper (p.c.). Also, the B3 variant used by Rahman and Ng (2009) is slightly different from other systems (they remove all and
only the singleton twinless system mentions, so it is neither B3All nor B3None). For completeness, our (untuned) B3None results
(DT + Web) on the ACE05-ALL dataset are P=69.9|R=65.9|F1=67.8.

class / sense information.10

Table 3 shows our primary test results on the
ACE04, ACE05, and ACE05-ALL datasets, for the
MUC and B3 metrics. All systems reported use au-
tomatically detected mentions. We report our re-
sults (the 3 rows marked ‘This Work’) on the percep-
tron baseline, the DT baseline, and the Web features
added to the DT baseline. We also report statistical
significance of the improvements from the Web fea-

10We also initially experimented with smaller datasets
(MUC6 and MUC7) and an averaged perceptron baseline, and
we did see similar improvements, arguing that these features are
useful independently of the learning algorithm and dataset.

tures on the DT baseline.11 For significance testing,
we use the bootstrap test (Noreen, 1989; Efron and
Tibshirani, 1993).

Our main comparison is against Haghighi and
Klein (2010), a mostly-unsupervised generative ap-
proach that models latent entity types, which gen-
erate specific entities that in turn render individual
mentions. They learn on large datasets including

11All improvements are significant, except on the small
ACE05 dataset with the MUC metric (where it is weak, at
p < 0.12). However, on the larger version of this dataset,
ACE05-ALL, we get improvements which are both larger and
more significant (at p < 0.001).



Wikipedia, and their results are state-of-the-art in
coreference resolution. We outperform their system
on most datasets and metrics (except on ACE05-
ALL for the MUC metric). The other systems we
compare to and outperform are the perceptron-based
Reconcile system of Stoyanov et al. (2009), the
strong deterministic system of Haghighi and Klein
(2009), and the cluster-ranking model of Rahman
and Ng (2009).

We develop our features and tune their hyper-
parameter values on the ACE04 development set and
then use these on the ACE04 test set.12 On the
ACE05 and ACE05-ALL datasets, we directly trans-
fer our Web features and their hyper-parameter val-
ues from the ACE04 dev-set, without any retuning.
The test improvements we get on all the datasets (see
Table 3) suggest that our features are generally use-
ful across datasets and metrics.13

5 Analysis

In this section, we briefly discuss errors (in the DT
baseline) corrected by our Web features, and ana-
lyze the decision tree classifier built during training
(based on the ACE04 development experiments).

To study error correction, we begin with the men-
tion pairs that are coreferent according to the gold-
standard annotation (after matching the system men-
tions to the gold ones). We consider the pairs that are
wrongly predicted to be non-coreferent by the base-
line DT system but correctly predicted to be corefer-
ent when we add our Web features. Some examples
of such pairs include:

Iran ; the country
the EPA ; the agency

athletic director ; Mulcahy
Democrat Al Gore ; the vice president

12Note that for the ACE04 dataset only, we use the ‘SmartIn-
stanceGenerator’ (SIG) filter of Reconcile that uses only a fil-
tered set of mention-pairs (based on distance and other proper-
ties of the pair) instead of the ‘AllPairs’ (AP) setting that uses
all pairs of mentions, and makes training and tuning very slow.

13For the ACE05 and ACE05-ALL datasets, we revert to the
‘AllPairs’ (AP) setting of Reconcile because this gives us base-
lines competitive with Haghighi and Klein (2010). Since we did
not need to retune on these datasets, training and tuning speed
were not a bottleneck. Moreover, the improvements from our
Web features are similar even when tried over the SIG baseline;
hence, the filter choice doesn’t affect the performance gain from
the Web features.

Barry Bonds ; the best baseball player
Vojislav Kostunica ; the pro-democracy leader

its closest rival ; the German magazine Das Motorrad
One of those difficult-to-dislodge judges ; John Marshall

These pairs are cases where our features
on Hearst-style co-occurrence and entity-based
context-match are informative and help discriminate
in favor of the correct antecedents. One advan-
tage of using Web-based features is that the Web
has a surprising amount of information on even rare
entities such as proper names. Our features also
correct coreference for various cases of pronominal
anaphora, but these corrections are harder to convey
out of context.

Next, we analyze the decision tree built after
training the classifier (with all our Web features in-
cluded). Around 30% of the decision nodes (both
non-terminals and leaves) correspond to Web fea-
tures, and the average error in classification at the
Web-feature leaves is only around 2.5%, suggest-
ing that our features are strongly discriminative for
pairwise coreference decisions. Some of the most
discriminative nodes correspond to the general co-
occurrence feature for most (binned) log-count val-
ues, the Hearst-style co-occurrence feature for its
zero-count value, the cluster-match feature for its
zero-match value, and the R2 pronoun context fea-
ture for certain (binned) log-count values.

6 Conclusion

We have presented a collection of simple Web-count
features for coreference resolution that capture a
range of world knowledge via statistics of general
lexical co-occurrence, hypernymy, semantic com-
patibility, and semantic context. When added to a
strong decision tree baseline, these features give sig-
nificant improvements and achieve the best results
reported to date, across multiple datasets and met-
rics.
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