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Abstract

We present a simple but accurate parser
which exploits both large tree fragments
and symbol refinement. We parse with
all fragments of the training set, in con-
trast to much recent work on tree se-
lection in data-oriented parsing and tree-
substitution grammar learning. We re-
quire only simple, deterministic grammar
symbol refinement, in contrast to recent
work on latent symbol refinement. More-
over, our parser requires no explicit lexi-
con machinery, instead parsing input sen-
tences as character streams. Despite its
simplicity, our parser achieves accuracies
of over 88% F1 on the standard English
WSJ task, which is competitive with sub-
stantially more complicated state-of-the-
art lexicalized and latent-variable parsers.
Additional specific contributions center on
making implicit all-fragments parsing effi-
cient, including a coarse-to-fine inference
scheme and a new graph encoding.

1 Introduction

Modern NLP systems have increasingly used data-
intensive models that capture many or even all
substructures from the training data. In the do-
main of syntactic parsing, the idea that all train-
ing fragments1 might be relevant to parsing has a
long history, including tree-substitution grammar
(data-oriented parsing) approaches (Scha, 1990;
Bod, 1993; Goodman, 1996a; Chiang, 2003) and
tree kernel approaches (Collins and Duffy, 2002).
For machine translation, the key modern advance-
ment has been the ability to represent and memo-
rize large training substructures, be it in contigu-
ous phrases (Koehn et al., 2003) or syntactic trees

1In this paper, a fragment means an elementary tree in a
tree-substitution grammar, while a subtree means a fragment
that bottoms out in terminals.

(Galley et al., 2004; Chiang, 2005; Deneefe and
Knight, 2009). In all such systems, a central chal-
lenge is efficiency: there are generally a combina-
torial number of substructures in the training data,
and it is impractical to explicitly extract them all.
On both efficiency and statistical grounds, much
recent TSG work has focused on fragment selec-
tion (Zuidema, 2007; Cohn et al., 2009; Post and
Gildea, 2009).

At the same time, many high-performance
parsers have focused on symbol refinement ap-
proaches, wherein PCFG independence assump-
tions are weakened not by increasing rule sizes
but by subdividing coarse treebank symbols into
many subcategories either using structural anno-
tation (Johnson, 1998; Klein and Manning, 2003)
or lexicalization (Collins, 1999; Charniak, 2000).
Indeed, a recent trend has shown high accura-
cies from models which are dedicated to inducing
such subcategories (Henderson, 2004; Matsuzaki
et al., 2005; Petrov et al., 2006). In this paper,
we present a simplified parser which combines the
two basic ideas, using both large fragments and
symbol refinement, to provide non-local and lo-
cal context respectively. The two approaches turn
out to be highly complementary; even the simplest
(deterministic) symbol refinement and a basic use
of an all-fragments grammar combine to give ac-
curacies substantially above recent work on tree-
substitution grammar based parsers and approach-
ing top refinement-based parsers. For example,
our best result on the English WSJ task is an F1
of over 88%, where recent TSG parsers2 achieve
82-84% and top refinement-based parsers3 achieve
88-90% (e.g., Table 5).

Rather than select fragments, we use a simplifi-
cation of the PCFG-reduction of DOP (Goodman,

2Zuidema (2007), Cohn et al. (2009), Post and Gildea
(2009). Zuidema (2007) incorporates deterministic refine-
ments inspired by Klein and Manning (2003).

3Including Collins (1999), Charniak and Johnson (2005),
Petrov and Klein (2007).
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1996a) to work with all fragments. This reduction
is a flexible, implicit representation of the frag-
ments that, rather than extracting an intractably
large grammar over fragment types, indexes all
nodes in the training treebank and uses a com-
pact grammar over indexed node tokens. This in-
dexed grammar, when appropriately marginalized,
is equivalent to one in which all fragments are ex-
plicitly extracted. Our work is the first to apply
this reduction to full-scale parsing. In this direc-
tion, we present a coarse-to-fine inference scheme
and a compact graph encoding of the training set,
which, together, make parsing manageable. This
tractability allows us to avoid selection of frag-
ments, and work with all fragments.

Of course, having a grammar that includes all
training substructures is only desirable to the ex-
tent that those structures can be appropriately
weighted. Implicit representations like those
used here do not allow arbitrary weightings of
fragments. However, we use a simple weight-
ing scheme which does decompose appropriately
over the implicit encoding, and which is flexible
enough to allow weights to depend not only on fre-
quency but also on fragment size, node patterns,
and certain lexical properties. Similar ideas have
been explored in Bod (2001), Collins and Duffy
(2002), and Goodman (2003). Our model empir-
ically affirms the effectiveness of such a flexible
weighting scheme in full-scale experiments.

We also investigate parsing without an explicit
lexicon. The all-fragments approach has the ad-
vantage that parsing down to the character level
requires no special treatment; we show that an ex-
plicit lexicon is not needed when sentences are
considered as strings of characters rather than
words. This avoids the need for complex un-
known word models and other specialized lexical
resources.

The main contribution of this work is to show
practical, tractable methods for working with an
all-fragments model, without an explicit lexicon.
In the parsing case, the central result is that ac-
curacies in the range of state-of-the-art parsers
(i.e., over 88% F1 on English WSJ) can be ob-
tained with no sampling, no latent-variable mod-
eling, no smoothing, and even no explicit lexicon
(hence negligible training overall). These tech-
niques, however, are not limited to the case of
monolingual parsing, offering extensions to mod-
els of machine translation, semantic interpretation,

and other areas in which a similar tension exists
between the desire to extract many large structures
and the computational cost of doing so.

2 Representation of Implicit Grammars

2.1 All-Fragments Grammars

We consider an all-fragments grammar G (see
Figure 1(a)) derived from a binarized treebank
B. G is formally a tree-substitution grammar
(Resnik, 1992; Bod, 1993) wherein each subgraph
of each training tree in B is an elementary tree,
or fragment f , in G. In G, each derivation d is
a tree (multiset) of fragments (Figure 1(c)), and
the weight of the derivation is the product of the
weights of the fragments: ω(d) =

∏
f∈d ω(f). In

the following, the derivation weights, when nor-
malized over a given sentence s, are interpretable
as conditional probabilities, soG induces distribu-
tions of the form P (d|s).

In models like G, many derivations will gen-
erally correspond to the same unsegmented tree,
and the parsing task is to find the tree whose
sum of derivation weights is highest: tmax =
arg maxt

∑
d∈t ω(d). This final optimization is in-

tractable in a way that is orthogonal to this pa-
per (Sima’an, 1996); we describe minimum Bayes
risk approximations in Section 4.

2.2 Implicit Representation of G

Explicitly extracting all fragment-rules of a gram-
marG is memory and space intensive, and imprac-
tical for full-size treebanks. As a tractable alter-
native, we consider an implicit grammar GI (see
Figure 1(b)) that has the same posterior probabil-
ities as G. To construct GI , we use a simplifi-
cation of the PCFG-reduction of DOP by Good-
man (1996a).4 GI has base symbols, which are
the symbol types from the original treebank, as
well as indexed symbols, which are obtained by
assigning a unique index to each node token in
the training treebank. The vast majority of sym-
bols in GI are therefore indexed symbols. While
it may seem that such grammars will be overly
large, they are in fact reasonably compact, being
linear in the treebank size B, while G is exponen-
tial in the length of a sentence. In particular, we
found that GI was smaller than explicit extraction
of all depth 1 and 2 unbinarized fragments for our

4The difference is that Goodman (1996a) collapses our
BEGIN and END rules into the binary productions, giving a
larger grammar which is less convenient for weighting.
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Figure 1: Grammar definition and sample derivations and fragments in the grammar for (a) the explicitly extracted all-fragments
grammar G, and (b) its implicit representation GI .

treebanks – in practice, even just the raw treebank
grammar grows almost linearly in the size of B.5

There are 3 kinds of rules inGI , which are illus-
trated in Figure 1(d). The BEGIN rules transition
from a base symbol to an indexed symbol and rep-
resent the beginning of a fragment from G. The
CONTINUE rules use only indexed symbols and
correspond to specific depth-1 binary fragment to-
kens from training trees, representing the internal
continuation of a fragment in G. Finally, END

rules transition from an indexed symbol to a base
symbol, representing the frontier of a fragment.

By construction, all derivations in GI will seg-
ment, as shown in Figure 1(d), into regions corre-
sponding to tokens of fragments from the training
treebank B. Let π be the map which takes appro-
priate fragments in GI (those that begin and end
with base symbols and otherwise contain only in-
dexed symbols), and maps them to the correspond-
ing f in G. We can consider any derivation dI in
GI to be a tree of fragments f I , each fragment a
token of a fragment type f = π(f I) in the orig-
inal grammar G. By extension, we can therefore
map any derivation dI in GI to the corresponding
derivation d = π(dI) in G.

The mapping π is an onto mapping from GI to

5Just half the training set (19916 trees) itself had 1.7 mil-
lion depth 1 and 2 unbinarized rules compared to the 0.9 mil-
lion indexed symbols in GI (after graph packing). Even ex-
tracting binarized fragments (depth 1 and 2, with one order
of parent annotation) gives us 0.75 million rules, and, practi-
cally, we would need fragments of greater depth.

G. In particular, each derivation d in G has a non-
empty set of corresponding derivations {dI} =
π−1(d) in GI , because fragments f in d corre-
spond to multiple fragments f I in GI that differ
only in their indexed symbols (one f I per occur-
rence of f in B). Therefore, the set of derivations
in G is preserved in GI . We now discuss how
weights can be preserved under π.

2.3 Equivalence for Weighted Grammars

In general, arbitrary weight functions ω on frag-
ments in G do not decompose along the increased
locality of GI . However, we now consider a use-
fully broad class of weighting schemes for which
the posterior probabilities under G of derivations
d are preserved in GI . In particular, assume that
we have a weighting ω on rules in GI which does
not depend on the specific indices used. There-
fore, any fragment f I will have a weight in GI of
the form:

ωI(f I) = ωBEGIN(b)
∏
r∈C

ωCONT(r)
∏
e∈E

ωEND(e)

where b is the BEGIN rule, r are CONTINUE rules,
and e are END rules in the fragment f I (see Fig-
ure 1(d)). Because ω is assumed to not depend on
the specific indices, all f I which correspond to the
same f under π will have the same weight ωI(f)
in GI .

In this case, we can define an induced weight
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of fragments rooted at base symbol X .

for fragments f in G by

ωG(f) =
∑

fI∈π−1(f)

ωI(f I) = n(f)ωI(f)

= n(f)ωBEGIN(b′)
∏
r′∈C

ωCONT(r′)
∏
e′∈E

ωEND(e′)

where now b′, r′ and e′ are non-indexed type ab-
stractions of f ’s member productions in GI and
n(f) = |π−1(f)| is the number of tokens of f in
B.

Under the weight function ωG(f), any deriva-
tion d in G will have weight which obeys

ωG(d) =
∏
f∈d

ωG(f) =
∏
f∈d

n(f)ωI(f)

=
∑
dI∈d

ωI(dI)

and so the posterior P (d|s) of a derivation d for
a sentence s will be the same whether computed
in G or GI . Therefore, provided our weighting
function on fragments f in G decomposes over
the derivational representation of f in GI , we can
equivalently compute the quantities we need for
inference (see Section 4) using GI instead.

3 Parameterization of Implicit
Grammars

3.1 Classical DOP1
The original data-oriented parsing model ‘DOP1’
(Bod, 1993) is a particular instance of the general
weighting scheme which decomposes appropri-
ately over the implicit encoding, described in Sec-
tion 2.3. Figure 2 shows rule weights for DOP1

in the parameter schema we have defined. The
END rule weight is 0 or 1 depending on whether
A is an intermediate symbol or not.6 The local
fragments in DOP1 were flat (non-binary) so this
weight choice simulates that property by not al-
lowing switching between fragments at intermedi-
ate symbols.

The original DOP1 model weights a fragment f
in G as ωG(f) = n(f)/s(X), i.e., the frequency
of fragment f divided by the number of fragments
rooted at base symbol X . This is simulated by our
weight choices (Figure 2) where each fragment f I

inGI has weight ωI(f I) = 1/s(X) and therefore,
ωG(f) =

∑
fI∈π−1(f) ωI(f

I) = n(f)/s(X).
Given the weights used for DOP1, the recursive
formula for the number of fragments s(Xi) rooted
at indexed symbol Xi (and for the CONTINUE rule
Xi → Yj Zk) is

s(Xi) = (1 + s(Yj))(1 + s(Zk)), (1)

where s(Yj) and s(Zk) are the number of frag-
ments rooted at indexed symbols Yj and Zk (non-
intermediate) respectively. The number of frag-
ments s(X) rooted at base symbol X is then
s(X) =

∑
Xi
s(Xi).

Implicitly parsing with the full DOP1 model (no
sampling of fragments) using the weights in Fig-
ure 2 gives a 68% parsing accuracy on the WSJ
dev-set.7 This result indicates that the weight of a
fragment should depend on more than just its fre-
quency.

3.2 Better Parameterization
As has been pointed out in the literature, large-
fragment grammars can benefit from weights of
fragments depending not only on their frequency
but also on other properties. For example, Bod
(2001) restricts the size and number of words
in the frontier of the fragments, and Collins and
Duffy (2002) and Goodman (2003) both give
larger fragments smaller weights. Our model can
incorporate both size and lexical properties. In
particular, we set ωCONT(r) for each binary CON-
TINUE rule r to a learned constant ωBODY, and we
set the weight for each rule with a POS parent to a

6Intermediate symbols are those created during binariza-
tion.

7For DOP1 experiments, we use no symbol refinement.
We annotate with full left binarization history to imitate the
flat nature of fragments in DOP1. We use mild coarse-pass
pruning (Section 4.1) without which the basic all-fragments
chart does not fit in memory. Standard WSJ treebank splits
used: sec 2-21 training, 22 dev, 23 test.
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Rule score: r(A→ B C, i, k, j) =
∑
x

∑
y

∑
z

O(Ax, i, j)ω(Ax → By Cz)I(By, i, k)I(Cz, k, j)

Max-Constituent: q(A, i, j) =
∑

x O(Ax,i,j)I(Ax,i,j)∑
r I(rootr,0,n)

tmax = argmax
t

∑
c∈t

q(c)

Max-Rule-Sum: q(A→ B C, i, k, j) = r(A→B C,i,k,j)∑
r I(rootr,0,n)

tmax = argmax
t

∑
e∈t

q(e)

Max-Variational: q(A→ B C, i, k, j) = r(A→B C,i,k,j)∑
x O(Ax,i,j)I(Ax,i,j)

tmax = argmax
t

∏
e∈t

q(e)

Figure 3: Inference: Different objectives for parsing with posteriors. A, B, C are base symbols, Ax, By , Cz are indexed
symbols and i,j,k are between-word indices. Hence, (Ax, i, j) represents a constituent labeled with Ax spanning words i
to j. I(Ax, i, j) and O(Ax, i, j) denote the inside and outside scores of this constituent, respectively. For brevity, we write
c ≡ (A, i, j) and e ≡ (A→ B C, i, k, j). Also, tmax is the highest scoring parse. Adapted from Petrov and Klein (2007).

constant ωLEX (see Figure 2). Fractional values of
these parameters allow the weight of a fragment to
depend on its size and lexical properties.

Another parameter we introduce is a
‘switching-penalty’ csp for the END rules
(Figure 2). The DOP1 model uses binary values
(0 if symbol is intermediate, 1 otherwise) as
the END rule weight, which is equivalent to
prohibiting fragment switching at intermediate
symbols. We learn a fractional constant asp
that allows (but penalizes) switching between
fragments at annotated symbols through the
formulation csp(Xintermediate) = 1 − asp and
csp(Xnon−intermediate) = 1 + asp. This feature
allows fragments to be assigned weights based on
the binarization status of their nodes.

With the above weights, the recursive formula
for s(Xi), the total weighted number of fragments
rooted at indexed symbol Xi, is different from
DOP1 (Equation 1). For rule Xi → Yj Zk, it is

s(Xi) = ωBODY.(csp(Yj)+s(Yj))(csp(Zk)+s(Zk)).

The formula uses ωLEX in place of ωBODY if r is a
lexical rule (Figure 2).

The resulting grammar is primarily parameter-
ized by the training treebank B. However, each
setting of the hyperparameters (ωBODY, ωLEX, asp)
defines a different conditional distribution on
trees. We choose amongst these distributions by
directly optimizing parsing F1 on our develop-
ment set. Because this objective is not easily dif-
ferentiated, we simply perform a grid search on
the three hyperparameters. The tuned values are
ωBODY = 0.35, ωLEX = 0.25 and asp = 0.018.
For generalization to a larger parameter space, we
would of course need to switch to a learning ap-
proach that scales more gracefully in the number
of tunable hyperparameters.8

8Note that there has been a long history of DOP estima-
tors. The generative DOP1 model was shown to be inconsis-

dev (≤ 40) test (≤ 40) test (all)
Model F1 EX F1 EX F1 EX
Constituent 88.4 33.7 88.5 33.0 87.6 30.8
Rule-Sum 88.2 34.6 88.3 33.8 87.4 31.6
Variational 87.7 34.4 87.7 33.9 86.9 31.6

Table 1: All-fragments WSJ results (accuracy F1 and exact
match EX) for the constituent, rule-sum and variational ob-
jectives, using parent annotation and one level of markoviza-
tion.

4 Efficient Inference

The previously described implicit grammarGI de-
fines a posterior distribution P (dI |s) over a sen-
tence s via a large, indexed PCFG. This distri-
bution has the property that, when marginalized,
it is equivalent to a posterior distribution P (d|s)
over derivations in the correspondingly-weighted
all-fragments grammar G. However, even with
an explicit representation of G, we would not be
able to tractably compute the parse that maxi-
mizes P (t|s) =

∑
d∈t P (d|s) =

∑
dI∈t P (dI |s)

(Sima’an, 1996). We therefore approximately
maximize over trees by computing various exist-
ing approximations to P (t|s) (Figure 3). Good-
man (1996b), Petrov and Klein (2007), and Mat-
suzaki et al. (2005) describe the details of con-
stituent, rule-sum and variational objectives re-
spectively. Note that all inference methods depend
on the posterior P (t|s) only through marginal ex-
pectations of labeled constituent counts and an-
chored local binary tree counts, which are easily
computed from P (dI |s) and equivalent to those
from P (d|s). Therefore, no additional approxima-
tions are made in GI over G.

As shown in Table 1, our model (an all-
fragments grammar with the weighting scheme

tent by Johnson (2002). Later, Zollmann and Sima’an (2005)
presented a statistically consistent estimator, with the basic
insight of optimizing on a held-out set. Our estimator is not
intended to be viewed as a generative model of trees at all,
but simply a loss-minimizing conditional distribution within
our parametric family.
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shown in Figure 2) achieves an accuracy of
88.5% (using simple parent annotation) which is
4-5% (absolute) better than the recent TSG work
(Zuidema, 2007; Cohn et al., 2009; Post and
Gildea, 2009) and also approaches state-of-the-
art refinement-based parsers (e.g., Charniak and
Johnson (2005), Petrov and Klein (2007)).9

4.1 Coarse-to-Fine Inference
Coarse-to-fine inference is a well-established way
to accelerate parsing. Charniak et al. (2006) in-
troduced multi-level coarse-to-fine parsing, which
extends the basic pre-parsing idea by adding more
rounds of pruning. Their pruning grammars
were coarse versions of the raw treebank gram-
mar. Petrov and Klein (2007) propose a multi-
stage coarse-to-fine method in which they con-
struct a sequence of increasingly refined gram-
mars, reparsing with each refinement. In par-
ticular, in their approach, which we adopt here,
coarse-to-fine pruning is used to quickly com-
pute approximate marginals, which are then used
to prune subsequent search. The key challenge
in coarse-to-fine inference is the construction of
coarse models which are much smaller than the
target model, yet whose posterior marginals are
close enough to prune with safely.

Our grammar GI has a very large number of in-
dexed symbols, so we use a coarse pass to prune
away their unindexed abstractions. The simple,
intuitive, and effective choice for such a coarse
grammar GC is a minimal PCFG grammar com-
posed of the base treebank symbols X and the
minimal depth-1 binary rules X → Y Z (and
with the same level of annotation as in the full
grammar). If a particular base symbolX is pruned
by the coarse pass for a particular span (i, j) (i.e.,
the posterior marginal P (X, i, j|s) is less than a
certain threshold), then in the full grammar GI ,
we do not allow building any indexed symbol
Xl of type X for that span. Hence, the pro-
jection map for the coarse-to-fine model is πC :
Xl (indexed symbol)→ X (base symbol).

We achieve a substantial improvement in speed
and memory-usage from the coarse-pass pruning.
Speed increases by a factor of 40 and memory-
usage decreases by a factor of 10 when we go

9All our experiments use the constituent objective ex-
cept when we report results for max-rule-sum and max-
variational parsing (where we use the parameters tuned for
max-constituent, therefore they unsurprisingly do not per-
form as well as max-constituent). Evaluations use EVALB,
see http://nlp.cs.nyu.edu/evalb/.
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Figure 5: Effect of coarse-pass pruning on parsing accuracy
(WSJ, training ≤ 20 words, tested on dev-set ≤ 20 words).
This graph shows that the fortuitous improvement due to
pruning is very small and that the peak accuracy is almost
equal to the accuracy without pruning (the dotted line).

from no pruning to pruning with a −6.2 log pos-
terior threshold.10 Figure 4 depicts the variation
in parsing accuracies in response to the amount
of pruning done by the coarse-pass. Higher pos-
terior pruning thresholds induce more aggressive
pruning. Here, we observe an effect seen in previ-
ous work (Charniak et al. (1998), Petrov and Klein
(2007), Petrov et al. (2008)), that a certain amount
of pruning helps accuracy, perhaps by promoting
agreement between the coarse and full grammars
(model intersection). However, these ‘fortuitous’
search errors give only a small improvement and
the peak accuracy is almost equal to the pars-
ing accuracy without any pruning (as seen in Fig-
ure 5).11 This outcome suggests that the coarse-
pass pruning is critical for tractability but not for
performance.

10Unpruned experiments could not be run for 40-word test
sentences even with 50GB of memory, therefore we calcu-
lated the improvement factors using a smaller experiment
with full training and sixty 30-word test sentences.

11To run experiments without pruning, we used training
and dev sentences of length ≤ 20 for the graph in Figure 5.
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tree-to-graph encoding

Figure 6: Collapsing the duplicate training subtrees converts
them to a graph and reduces the number of indexed symbols
significantly.

4.2 Packed Graph Encoding

The implicit all-fragments approach (Section 2.2)
avoids explicit extraction of all rule fragments.
However, the number of indexed symbols in our
implicit grammar GI is still large, because ev-
ery node in each training tree (i.e., every symbol
token) has a unique indexed symbol. We have
around 1.9 million indexed symbol tokens in the
word-level parsing model (this number increases
further to almost 12.3 million when we parse char-
acter strings in Section 5.1). This large symbol
space makes parsing slow and memory-intensive.

We reduce the number of symbols in our im-
plicit grammar GI by applying a compact, packed
graph encoding to the treebank training trees. We
collapse the duplicate subtrees (fragments that
bottom out in terminals) over all training trees.
This keeps the grammar unchanged because in an
tree-substitution grammar, a node is defined (iden-
tified) by the subtree below it. We maintain a
hashmap on the subtrees which allows us to eas-
ily discover the duplicates and bin them together.
The collapsing converts all the training trees in the
treebank to a graph with multiple parents for some
nodes as shown in Figure 6. This technique re-
duces the number of indexed symbols significantly
as shown in Table 2 (1.9 million goes down to 0.9
million, reduction by a factor of 2.1). This reduc-
tion increases parsing speed by a factor of 1.4 (and
by a factor of 20 for character-level parsing, see
Section 5.1) and reduces memory usage to under
4GB.

We store the duplicate-subtree counts for each
indexed symbol of the collapsed graph (using a
hashmap). When calculating the number of frag-

Parsing Model No. of Indexed Symbols
Word-level Trees 1,900,056
Word-level Graph 903,056
Character-level Trees 12,280,848
Character-level Graph 1,109,399

Table 2: Number of indexed symbols for word-level and
character-level parsing and their graph versions (for all-
fragments grammar with parent annotation and one level of
markovization).

Figure 7: Character-level parsing: treating the sentence as a
string of characters instead of words.

ments s(Xi) parented by an indexed symbol Xi

(see Section 3.2), and when calculating the inside
and outside scores during inference, we account
for the collapsed subtree tokens by expanding the
counts and scores using the corresponding multi-
plicities. Therefore, we achieve the compaction
with negligible overhead in computation.

5 Improved Treebank Representations

5.1 Character-Level Parsing

The all-fragments approach to parsing has the
added advantage that parsing below the word level
requires no special treatment, i.e., we do not need
an explicit lexicon when sentences are considered
as strings of characters rather than words.

Unknown words in test sentences (unseen in
training) are a major issue in parsing systems for
which we need to train a complex lexicon, with
various unknown classes or suffix tries. Smooth-
ing factors need to be accounted for and tuned.
With our implicit approach, we can avoid training
a lexicon by building up the parse tree from char-
acters instead of words. As depicted in Figure 7,
each word in the training trees is split into its cor-
responding characters with start and stop bound-
ary tags (and then binarized in a standard right-
branching style). A test sentence’s words are split
up similarly and the test-parse is built from train-
ing fragments using the same model and inference
procedure as defined for word-level parsing (see
Sections 2, 3 and 4). The lexical items (alphabets,
digits etc.) are now all known, so unlike word-level
parsing, no sophisticated lexicon is needed.

We choose a slightly richer weighting scheme
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dev (≤ 40) test (≤ 40) test (all)
Model F1 EX F1 EX F1 EX
Constituent 88.2 33.6 88.0 31.9 87.1 29.8
Rule-Sum 88.0 33.9 87.8 33.1 87.0 30.9
Variational 87.6 34.4 87.2 32.3 86.4 30.2

Table 3: All-fragments WSJ results for the character-level
parsing model, using parent annotation and one level of
markovization.

for this representation by extending the two-
weight schema for CONTINUE rules (ωLEX and
ωBODY) to a three-weight one: ωLEX, ωWORD, and
ωSENT for CONTINUE rules in the lexical layer, in
the portion of the parse that builds words from
characters, and in the portion of the parse that
builds the sentence from words, respectively. The
tuned values are ωSENT = 0.35, ωWORD = 0.15,
ωLEX = 0.95 and asp = 0. The character-level
model achieves a parsing accuracy of 88.0% (see
Table 3), despite lacking an explicit lexicon.12

Character-level parsing expands the training
trees (see Figure 7) and the already large indexed
symbol space size explodes (1.9 million increases
to 12.3 million, see Table 2). Fortunately, this
is where the packed graph encoding (Section 4.2)
is most effective because duplication of character
strings is high (e.g., suffixes). The packing shrinks
the symbol space size from 12.3 million to 1.1 mil-
lion, a reduction by a factor of 11. This reduction
increases parsing speed by almost a factor of 20
and brings down memory-usage to under 8GB.13

5.2 Basic Refinement: Parent Annotation
and Horizontal Markovization

In a pure all-fragments approach, compositions
of units which would have been independent in
a basic PCFG are given joint scores, allowing
the representation of certain non-local phenom-
ena, such as lexical selection or agreement, which
in fully local models require rich state-splitting
or lexicalization. However, at substitution sites,
the coarseness of raw unrefined treebank sym-
bols still creates unrealistic factorization assump-
tions. A standard solution is symbol refinement;
Johnson (1998) presents the particularly simple
case of parent annotation, in which each node is

12Note that the word-level model yields a higher accuracy
of 88.5%, but uses 50 complex unknown word categories
based on lexical, morphological and position features (Petrov
et al., 2006). Cohn et al. (2009) also uses this lexicon.

13Full char-level experiments (w/o packed graph encoding)
could not be run even with 50GB of memory. We calcu-
late the improvement factors using a smaller experiment with
70% training and fifty 20-word test sentences.

Parsing Model F1
No Refinement (P=0, H=0)? 71.3
Basic Refinement (P=1, H=1)? 80.0
All-Fragments + No Refinement (P=0, H=0) 85.7
All-Fragments + Basic Refinement (P=1, H=1) 88.4

Table 4: F1 for a basic PCFG, and incorporation of basic
refinement, all-fragments and both, for WSJ dev-set (≤ 40
words). P = 1 means parent annotation of all non-terminals,
including the preterminal tags. H = 1 means one level of
markovization. ?Results from Klein and Manning (2003).

marked with its parent in the underlying treebank.
It is reasonable to hope that the gains from us-
ing large fragments and the gains from symbol re-
finement will be complementary. Indeed, previous
work has shown or suggested this complementar-
ity. Sima’an (2000) showed modest gains from en-
riching structural relations with semi-lexical (pre-
head) information. Charniak and Johnson (2005)
showed accuracy improvements from composed
local tree features on top of a lexicalized base
parser. Zuidema (2007) showed a slight improve-
ment in parsing accuracy when enough fragments
were added to learn enrichments beyond manual
refinements. Our work reinforces this intuition by
demonstrating how complementary they are in our
model (∼20% error reduction on adding refine-
ment to an all-fragments grammar, as shown in the
last two rows of Table 4).

Table 4 shows results for a basic PCFG, and its
augmentation with either basic refinement (parent
annotation and one level of markovization), with
all-fragments rules (as in previous sections), or
both. The basic incorporation of large fragments
alone does not yield particularly strong perfor-
mance, nor does basic symbol refinement. How-
ever, the two approaches are quite additive in our
model and combine to give nearly state-of-the-art
parsing accuracies.

5.3 Additional Deterministic Refinement

Basic symbol refinement (parent annotation), in
combination with all-fragments, gives test-set ac-
curacies of 88.5% (≤ 40 words) and 87.6% (all),
shown as the Basic Refinement model in Table 5.
Klein and Manning (2003) describe a broad set
of simple, deterministic symbol refinements be-
yond parent annotation. We included ten of their
simplest annotation features, namely: UNARY-DT,

UNARY-RB, SPLIT-IN, SPLIT-AUX, SPLIT-CC, SPLIT-%,

GAPPED-S, POSS-NP, BASE-NP and DOMINATES-V.
None of these annotation schemes use any head
information. This additional annotation (see Ad-
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Figure 8: Parsing accuracy F1 on the WSJ dev-set (≤ 40
words) increases with increasing percentage of training data.

ditional Refinement, Table 5) improves the test-
set accuracies to 88.7% (≤ 40 words) and 88.1%
(all), which is equal to a strong lexicalized parser
(Collins, 1999), even though our model does not
use lexicalization or latent symbol-split induc-
tion.

6 Other Results

6.1 Parsing Speed and Memory Usage

The word-level parsing model using the whole
training set (39832 trees, all-fragments) takes ap-
proximately 3 hours on the WSJ test set (2245
trees of ≤40 words), which is equivalent to
roughly 5 seconds of parsing time per sen-
tence; and runs in under 4GB of memory. The
character-level version takes about twice the time
and memory. This novel tractability of an all-
fragments grammar is achieved using both coarse-
pass pruning and packed graph encoding. Micro-
optimization may further improve speed and mem-
ory usage.

6.2 Training Size Variation

Figure 8 shows how WSJ parsing accuracy in-
creases with increasing amount of training data
(i.e., percentage of WSJ sections 2-21). Even if we
train on only 10% of the WSJ training data (3983
sentences), we still achieve a reasonable parsing
accuracy of nearly 84% (on the development set,
≤ 40 words), which is comparable to the full-
system results obtained by Zuidema (2007), Cohn
et al. (2009) and Post and Gildea (2009).

6.3 Other Language Treebanks

On the French and German treebanks (using the
standard dataset splits mentioned in Petrov and

test (≤ 40) test (all)
Parsing Model F1 EX F1 EX

FRAGMENT-BASED PARSERS
Zuidema (2007) – – 83.8? 26.9?

Cohn et al. (2009) – – 84.0 –
Post and Gildea (2009) 82.6 – – –

THIS PAPER
All-Fragments
+ Basic Refinement 88.5 33.0 87.6 30.8
+ Additional Refinement 88.7 33.8 88.1 31.7

REFINEMENT-BASED PARSERS
Collins (1999) 88.6 – 88.2 –
Petrov and Klein (2007) 90.6 39.1 90.1 37.1

Table 5: Our WSJ test set parsing accuracies, compared
to recent fragment-based parsers and top refinement-based
parsers. Basic Refinement is our all-fragments grammar with
parent annotation. Additional Refinement adds determinis-
tic refinement of Klein and Manning (2003) (Section 5.3).
?Results on the dev-set (≤ 100).

Klein (2008)), our simple all-fragments parser
achieves accuracies in the range of top refinement-
based parsers, even though the model parameters
were tuned out of domain on WSJ. For German,
our parser achieves an F1 of 79.8% compared
to 81.5% by the state-of-the-art and substantially
more complex Petrov and Klein (2008) work. For
French, our approach yields an F1 of 78.0% vs.
80.1% by Petrov and Klein (2008).14

7 Conclusion

Our approach of using all fragments, in combi-
nation with basic symbol refinement, and even
without an explicit lexicon, achieves results in the
range of state-of-the-art parsers on full scale tree-
banks, across multiple languages. The main take-
away is that we can achieve such results in a very
knowledge-light way with (1) no latent-variable
training, (2) no sampling, (3) no smoothing be-
yond the existence of small fragments, and (4) no
explicit unknown word model at all. While these
methods offer a simple new way to construct an
accurate parser, we believe that this general ap-
proach can also extend to other large-fragment
tasks, such as machine translation.
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