
Modular Multitask Reinforcement Learning with Policy Sketches

Jacob Andreas 1 Dan Klein 1 Sergey Levine 1

Abstract

We describe a framework for multitask deep re-
inforcement learning guided by policy sketches.
Sketches annotate tasks with sequences of named
subtasks, providing information about high-level
structural relationships among tasks but not how
to implement them—specifically not providing
the detailed guidance used by much previous
work on learning policy abstractions for RL (e.g.
intermediate rewards, subtask completion sig-
nals, or intrinsic motivations). To learn from
sketches, we present a model that associates ev-
ery subtask with a modular subpolicy, and jointly
maximizes reward over full task-specific poli-
cies by tying parameters across shared subpoli-
cies. Optimization is accomplished via a decou-
pled actor–critic training objective that facilitates
learning common behaviors from multiple dis-
similar reward functions. We evaluate the effec-
tiveness of our approach in three environments
featuring both discrete and continuous control,
and with sparse rewards that can be obtained only
after completing a number of high-level sub-
goals. Experiments show that using our approach
to learn policies guided by sketches gives better
performance than existing techniques for learn-
ing task-specific or shared policies, while nat-
urally inducing a library of interpretable primi-
tive behaviors that can be recombined to rapidly
adapt to new tasks.

1. Introduction
This paper describes a framework for learning compos-
able deep subpolicies in a multitask setting, guided only
by abstract sketches of high-level behavior. General rein-
forcement learning algorithms allow agents to solve tasks
in complex environments. But tasks featuring extremely

1University of California, Berkeley. Correspondence to: Jacob
Andreas <jda@cs.berkeley.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

π1

π2

π3

π1

b1: get wood

τ1: make planks

b2: use workbench

Π1

b1: get wood

τ2: make sticks

b3: use toolshed

π1

π3

Π2

π1

π2

K1 K2

Figure 1: Learning from policy sketches. The figure shows sim-
plified versions of two tasks (make planks and make sticks, each
associated with its own policy (Π1 and Π2 respectively). These
policies share an initial high-level action b1: both require the
agent to get wood before taking it to an appropriate crafting sta-
tion. Even without prior information about how the associated be-
havior π1 should be implemented, knowing that the agent should
initially follow the same subpolicy in both tasks is enough to learn
a reusable representation of their shared structure.

delayed rewards or other long-term structure are often dif-
ficult to solve with flat, monolithic policies, and a long
line of prior work has studied methods for learning hier-
archical policy representations (Sutton et al., 1999; Diet-
terich, 2000; Konidaris & Barto, 2007; Hauser et al., 2008).
While unsupervised discovery of these hierarchies is possi-
ble (Daniel et al., 2012; Bacon & Precup, 2015), practical
approaches often require detailed supervision in the form
of explicitly specified high-level actions, subgoals, or be-
havioral primitives (Precup, 2000). These depend on state
representations simple or structured enough that suitable
reward signals can be effectively engineered by hand.

But is such fine-grained supervision actually necessary to
achieve the full benefits of hierarchy? Specifically, is it
necessary to explicitly ground high-level actions into the
representation of the environment? Or is it sufficient to
simply inform the learner about the abstract structure of
policies, without ever specifying how high-level behaviors
should make use of primitive percepts or actions?

To answer these questions, we explore a multitask re-
inforcement learning setting where the learner is pre-



Modular Multitask Reinforcement Learning with Policy Sketches

sented with policy sketches. Policy sketches are short, un-
grounded, symbolic representations of a task that describe
its component parts, as illustrated in Figure 1. While sym-
bols might be shared across tasks (get wood appears in
sketches for both the make planks and make sticks tasks),
the learner is told nothing about what these symbols mean,
in terms of either observations or intermediate rewards.

We present an agent architecture that learns from policy
sketches by associating each high-level action with a pa-
rameterization of a low-level subpolicy, and jointly op-
timizes over concatenated task-specific policies by tying
parameters across shared subpolicies. We find that this
architecture can use the high-level guidance provided by
sketches, without any grounding or concrete definition, to
dramatically accelerate learning of complex multi-stage be-
haviors. Our experiments indicate that many of the benefits
to learning that come from highly detailed low-level su-
pervision (e.g. from subgoal rewards) can also be obtained
from fairly coarse high-level supervision (i.e. from policy
sketches). Crucially, sketches are much easier to produce:
they require no modifications to the environment dynam-
ics or reward function, and can be easily provided by non-
experts. This makes it possible to extend the benefits of
hierarchical RL to challenging environments where it may
not be possible to specify by hand the details of relevant
subtasks. We show that our approach substantially outper-
forms purely unsupervised methods that do not provide the
learner with any task-specific guidance about how hierar-
chies should be deployed, and further that the specific use
of sketches to parameterize modular subpolicies makes bet-
ter use of sketches than conditioning on them directly.

The present work may be viewed as an extension of recent
approaches for learning compositional deep architectures
from structured program descriptors (Andreas et al., 2016;
Reed & de Freitas, 2016). Here we focus on learning in in-
teractive environments. This extension presents a variety of
technical challenges, requiring analogues of these methods
that can be trained from sparse, non-differentiable reward
signals without demonstrations of desired system behavior.

Our contributions are:

• A general paradigm for multitask, hierarchical, deep
reinforcement learning guided by abstract sketches of
task-specific policies.

• A concrete recipe for learning from these sketches,
built on a general family of modular deep policy rep-
resentations and a multitask actor–critic training ob-
jective.

The modular structure of our approach, which associates
every high-level action symbol with a discrete subpolicy,
naturally induces a library of interpretable policy fragments

that are easily recombined. This makes it possible to eval-
uate our approach under a variety of different data condi-
tions: (1) learning the full collection of tasks jointly via
reinforcement, (2) in a zero-shot setting where a policy
sketch is available for a held-out task, and (3) in a adapta-
tion setting, where sketches are hidden and the agent must
learn to adapt a pretrained policy to reuse high-level ac-
tions in a new task. In all cases, our approach substantially
outperforms previous approaches based on explicit decom-
position of the Q function along subtasks (Parr & Russell,
1998; Vogel & Jurafsky, 2010), unsupervised option dis-
covery (Bacon & Precup, 2015), and several standard pol-
icy gradient baselines.

We consider three families of tasks: a 2-D Minecraft-
inspired crafting game (Figure 3a), in which the agent must
acquire particular resources by finding raw ingredients,
combining them together in the proper order, and in some
cases building intermediate tools that enable the agent to al-
ter the environment itself; a 2-D maze navigation task that
requires the agent to collect keys and open doors, and a 3-D
locomotion task (Figure 3b) in which a quadrupedal robot
must actuate its joints to traverse a narrow winding cliff.

In all tasks, the agent receives a reward only after the final
goal is accomplished. For the most challenging tasks, in-
volving sequences of four or five high-level actions, a task-
specific agent initially following a random policy essen-
tially never discovers the reward signal, so these tasks can-
not be solved without considering their hierarchical struc-
ture. We have released code at http://github.com/
jacobandreas/psketch.

2. Related Work
The agent representation we describe in this paper be-
longs to the broader family of hierarchical reinforcement
learners. As detailed in Section 3, our approach may be
viewed as an instantiation of the options framework first
described by Sutton et al. (1999). A large body of work
describes techniques for learning options and related ab-
stract actions, in both single- and multitask settings. Most
techniques for learning options rely on intermediate su-
pervisory signals, e.g. to encourage exploration (Kearns &
Singh, 2002) or completion of pre-defined subtasks (Kulka-
rni et al., 2016). An alternative family of approaches em-
ploys post-hoc analysis of demonstrations or pretrained
policies to extract reusable sub-components (Stolle & Pre-
cup, 2002; Konidaris et al., 2011; Niekum et al., 2015).
Techniques for learning options with less guidance than the
present work include Bacon & Precup (2015) and Vezhn-
evets et al. (2016), and other general hierarchical policy
learners include Daniel et al. (2012), Bakker & Schmidhu-
ber (2004) and Menache et al. (2002). We will see that
the minimal supervision provided by policy sketches re-

http://github.com/jacobandreas/psketch
http://github.com/jacobandreas/psketch


Modular Multitask Reinforcement Learning with Policy Sketches

sults in (sometimes dramatic) improvements over fully un-
supervised approaches, while being substantially less oner-
ous for humans to provide compared to the grounded su-
pervision (such as explicit subgoals or feature abstraction
hierarchies) used in previous work.

Once a collection of high-level actions exists, agents are
faced with the problem of learning meta-level (typically
semi-Markov) policies that invoke appropriate high-level
actions in sequence (Precup, 2000). The learning problem
we describe in this paper is in some sense the direct dual
to the problem of learning these meta-level policies: there,
the agent begins with an inventory of complex primitives
and must learn to model their behavior and select among
them; here we begin knowing the names of appropriate
high-level actions but nothing about how they are imple-
mented, and must infer implementations (but not, initially,
abstract plans) from context. Our model can be combined
with these approaches to support a “mixed” supervision
condition where sketches are available for some tasks but
not others (Section 4.5).

Another closely related line of work is the Hierarchical
Abstract Machines (HAM) framework introduced by Parr
& Russell (1998). Like our approach, HAMs begin with
a representation of a high-level policy as an automaton
(or a more general computer program; Andre & Russell,
2001; Marthi et al., 2004) and use reinforcement learn-
ing to fill in low-level details. Because these approaches
attempt to learn a single representation of the Q function
for all subtasks and contexts, they require extremely strong
formal assumptions about the form of the reward function
and state representation (Andre & Russell, 2002) that the
present work avoids by decoupling the policy representa-
tion from the value function. They perform less effectively
when applied to arbitrary state representations where these
assumptions do not hold (Section 4.3). We are addition-
ally unaware of past work showing that HAM automata can
be automatically inferred for new tasks given a pre-trained
model, while here we show that it is easy to solve the cor-
responding problem for sketch followers (Section 4.5).

Our approach is also inspired by a number of recent efforts
toward compositional reasoning and interaction with struc-
tured deep models. Such models have been previously used
for tasks involving question answering (Iyyer et al., 2014;
Andreas et al., 2016) and relational reasoning (Socher et al.,
2012), and more recently for multi-task, multi-robot trans-
fer problems (Devin et al., 2016). In the present work—as
in existing approaches employing dynamically assembled
modular networks—task-specific training signals are prop-
agated through a collection of composed discrete structures
with tied weights. Here the composed structures spec-
ify time-varying policies rather than feedforward computa-
tions, and their parameters must be learned via interaction

rather than direct supervision. Another closely related fam-
ily of models includes neural programmers (Neelakantan
et al., 2015) and programmer–interpreters (Reed & de Fre-
itas, 2016), which generate discrete computational struc-
tures but require supervision in the form of output actions
or full execution traces.

We view the problem of learning from policy sketches as
complementary to the instruction following problem stud-
ied in the natural language processing literature. Existing
work on instruction following focuses on mapping from
natural language strings to symbolic action sequences that
are then executed by a hard-coded interpreter (Branavan
et al., 2009; Chen & Mooney, 2011; Artzi & Zettlemoyer,
2013; Tellex et al., 2011). Here, by contrast, we focus on
learning to execute complex actions given symbolic repre-
sentations as a starting point. Instruction following models
may be viewed as joint policies over instructions and en-
vironment observations (so their behavior is not defined in
the absence of instructions), while the model described in
this paper naturally supports adaptation to tasks where no
sketches are available. We expect that future work might
combine the two lines of research, bootstrapping policy
learning directly from natural language hints rather than the
semi-structured sketches used here.

3. Learning Modular Policies from Sketches
We consider a multitask reinforcement learning prob-
lem arising from a family of infinite-horizon discounted
Markov decision processes in a shared environment. This
environment is specified by a tuple (S,A, P, γ), with S a
set of states,A a set of low-level actions, P : S×A×S →
R a transition probability distribution, and γ a discount fac-
tor. Each task τ ∈ T is then specified by a pair (Rτ , ρτ ),
with Rτ : S → R a task-specific reward function and
ρτ : S → R an initial distribution over states. For a fixed
sequence {(si, ai)} of states and actions obtained from a
rollout of a given policy, we will denote the empirical return
starting in state si as qi :=

∑∞
j=i+1 γ

j−i−1R(sj). In addi-
tion to the components of a standard multitask RL problem,
we assume that tasks are annotated with sketches Kτ , each
consisting of a sequence (bτ1, bτ2, . . .) of high-level sym-
bolic labels drawn from a fixed vocabulary B.

3.1. Model

We exploit the structural information provided by sketches
by constructing for each symbol b a corresponding subpol-
icy πb. By sharing each subpolicy across all tasks annotated
with the corresponding symbol, our approach naturally
learns the shared abstraction for the corresponding subtask,
without requiring any information about the grounding of
that task to be explicitly specified by annotation.



Modular Multitask Reinforcement Learning with Policy Sketches

Algorithm 1 TRAIN-STEP(Π, curriculum)

1: D ← ∅
2: while |D| < D do
3: // sample task τ from curriculum (Section 3.3)
4: τ ∼ curriculum(·)
5: // do rollout
6: d = {(si, ai, (bi = Kτ,i), qi, τ), . . .} ∼ Πτ

7: D ← D ∪ d
8: // update parameters
9: for b ∈ B, τ ∈ T do

10: d = {(si, ai, b′, qi, τ ′) ∈ D : b′ = b, τ ′ = τ}
11: // update subpolicy
12: θb ← θb + α

D

∑
d

(
∇ log πb(ai|si)

)(
qi − cτ (si)

)
13: // update critic
14: ητ ← ητ + β

D

∑
d

(
∇cτ (si)

)(
qi − cτ (si)

)
At each timestep, a subpolicy may select either a low-level
action a ∈ A or a special STOP action. We denote the
augmented state space A+ := A ∪ {STOP}. At a high
level, this framework is agnostic to the implementation of
subpolicies: any function that takes a representation of the
current state onto a distribution over A+ will do.

In this paper, we focus on the case where each πb is rep-
resented as a neural network.1 These subpolicies may be
viewed as options of the kind described by Sutton et al.
(1999), with the key distinction that they have no initiation
semantics, but are instead invokable everywhere, and have
no explicit representation as a function from an initial state
to a distribution over final states (instead implicitly using
the STOP action to terminate).

Given a fixed sketch (b1, b2, . . . ), a task-specific policy Πτ

is formed by concatenating its associated subpolicies in se-
quence. In particular, the high-level policy maintains a sub-
policy index i (initially 0), and executes actions from πbi
until the STOP symbol is emitted, at which point control is
passed to πbi+1 . We may thus think of Πτ as inducing a
Markov chain over the state space S × B, with transitions:

(s, bi)→ (s′, bi) with pr.
∑
a∈Aπbi(a|s) · P (s′|s, a)

→ (s, bi+1) with pr. πbi(STOP|s)

Note that Πτ is semi-Markov with respect to projection of
the augmented state space S × B onto the underlying state
space S. We denote the complete family of task-specific
policies Π :=

⋃
τ{Πτ}, and let each πb be an arbitrary

function of the current environment state parameterized by
some weight vector θb. The learning problem is to optimize

1 For ease of presentation, this section assumes that these sub-
policy networks are independently parameterized. As described in
Section 4.2, it is also possible to share parameters between sub-
policies, and introduce discrete subtask structure by way of an
embedding of each symbol b.

Algorithm 2 TRAIN-LOOP()

1: // initialize subpolicies randomly
2: Π = INIT()
3: `max ← 1
4: loop
5: rmin ← −∞
6: // initialize `max-step curriculum uniformly
7: T ′ = {τ ∈ T : |Kτ | ≤ `max}
8: curriculum(·) = Unif(T ′)
9: while rmin < rgood do

10: // update parameters (Algorithm 1)
11: TRAIN-STEP(Π, curriculum)
12: curriculum(τ) ∝ 1[τ ∈ T ′](1− Êrτ ) ∀τ ∈ T
13: rmin ← minτ∈T ′ Êrτ
14: `max ← `max + 1

over all θb to maximize expected discounted reward

J(Π) :=
∑
τ

J(Πτ ) :=
∑
τ

Esi∼Πτ

[∑
i

γiRτ (si)
]

across all tasks τ ∈ T .

3.2. Policy Optimization

Here that optimization is accomplished via a simple decou-
pled actor–critic method. In a standard policy gradient ap-
proach, with a single policy π with parameters θ, we com-
pute gradient steps of the form (Williams, 1992):

∇θJ(π) =
∑
i

(
∇θ log π(ai|si)

)(
qi − c(si)

)
, (1)

where the baseline or “critic” c can be chosen indepen-
dently of the future without introducing bias into the gra-
dient. Recalling our previous definition of qi as the empir-
ical return starting from si, this form of the gradient cor-
responds to a generalized advantage estimator (Schulman
et al., 2015a) with λ = 1. Here c achieves close to the
optimal variance (Greensmith et al., 2004) when it is set

s4 s5 s6 s7

a4 a5 a6 stopa1 a2 a3 stop

s1 s2 s3 s4

π1 π2

b2b1

Figure 2: Model overview. Each subpolicy π is uniquely associ-
ated with a symbol b implemented as a neural network that maps
from a state si to distributions over A+, and chooses an action ai
by sampling from this distribution. Whenever the STOP action is
sampled, control advances to the next subpolicy in the sketch.



Modular Multitask Reinforcement Learning with Policy Sketches

exactly equal to the state-value function Vπ(si) = Eπqi for
the target policy π starting in state si.

The situation becomes slightly more complicated when
generalizing to modular policies built by sequencing sub-
policies. In this case, we will have one subpolicy per sym-
bol but one critic per task. This is because subpolicies πb
might participate in a number of composed policies Πτ ,
each associated with its own reward function Rτ . Thus in-
dividual subpolicies are not uniquely identified with value
functions, and the aforementioned subpolicy-specific state-
value estimator is no longer well-defined. We extend the
actor–critic method to incorporate the decoupling of poli-
cies from value functions by allowing the critic to vary per-
sample (that is, per-task-and-timestep) depending on the
reward function with which the sample is associated. Not-
ing that ∇θbJ(Π) =

∑
t:b∈Kτ ∇θbJ(Πτ ), i.e. the sum of

gradients of expected rewards across all tasks in which πb
participates, we have:

∇θJ(Π) =
∑
τ

∇θJ(Πτ )

=
∑
τ

∑
i

(
∇θb log πb(aτi|sτi)

)(
qi − cτ (sτi)

)
, (2)

where each state-action pair (sτi, aτi) was selected by the
subpolicy πb in the context of the task τ .

Now minimization of the gradient variance requires that
each cτ actually depend on the task identity. (This fol-
lows immediately by applying the corresponding argument
in Greensmith et al. (2004) individually to each term in the
sum over τ in Equation 2.) Because the value function is
itself unknown, an approximation must be estimated from
data. Here we allow these cτ to be implemented with an
arbitrary function approximator with parameters ητ . This
is trained to minimize a squared error criterion, with gradi-
ents given by

∇ητ
[
− 1

2

∑
i

(qi − cτ (si))
2

]
=
∑
i

(
∇ητ cτ (si)

)(
qi − cτ (si)

)
. (3)

Alternative forms of the advantage estimator (e.g. the TD
residualRτ (si)+γVτ (si+1)−Vτ (si) or any other member
of the generalized advantage estimator family) can be eas-
ily substituted by simply maintaining one such estimator
per task. Experiments (Section 4.4) show that condition-
ing on both the state and the task identity results in notice-
able performance improvements, suggesting that the vari-
ance reduction provided by this objective is important for
efficient joint learning of modular policies.

The complete procedure for computing a single gradient
step is given in Algorithm 1. (The outer training loop over

these steps, which is driven by a curriculum learning pro-
cedure, is specified in Algorithm 2.) This is an on-policy
algorithm. In each step, the agent samples tasks from a task
distribution provided by a curriculum (described in the fol-
lowing subsection). The current family of policies Π is
used to perform rollouts in each sampled task, accumulat-
ing the resulting tuples of (states, low-level actions, high-
level symbols, rewards, and task identities) into a datasetD.
Once D reaches a maximum size D, it is used to compute
gradients w.r.t. both policy and critic parameters, and the
parameter vectors are updated accordingly. The step sizes
α and β in Algorithm 1 can be chosen adaptively using any
first-order method.

3.3. Curriculum Learning

For complex tasks, like the one depicted in Figure 3b, it is
difficult for the agent to discover any states with positive
reward until many subpolicy behaviors have already been
learned. It is thus a better use of the learner’s time to focus
on “easy” tasks, where many rollouts will result in high
reward from which appropriate subpolicy behavior can be
inferred. But there is a fundamental tradeoff involved here:
if the learner spends too much time on easy tasks before
being made aware of the existence of harder ones, it may
overfit and learn subpolicies that no longer generalize or
exhibit the desired structural properties.

To avoid both of these problems, we use a curriculum learn-
ing scheme (Bengio et al., 2009) that allows the model
to smoothly scale up from easy tasks to more difficult
ones while avoiding overfitting. Initially the model is pre-
sented with tasks associated with short sketches. Once av-
erage reward on all these tasks reaches a certain threshold,
the length limit is incremented. We assume that rewards
across tasks are normalized with maximum achievable re-
ward 0 < qi < 1. Let Êrτ denote the empirical estimate of
the expected reward for the current policy on task τ . Then
at each timestep, tasks are sampled in proportion to 1−Êrτ ,
which by assumption must be positive.

Intuitively, the tasks that provide the strongest learning sig-
nal are those in which (1) the agent does not on average
achieve reward close to the upper bound, but (2) many
episodes result in high reward. The expected reward com-
ponent of the curriculum addresses condition (1) by en-
suring that time is not spent on nearly solved tasks, while
the length bound component of the curriculum addresses
condition (2) by ensuring that tasks are not attempted until
high-reward episodes are likely to be encountered. Experi-
ments show that both components of this curriculum learn-
ing scheme improve the rate at which the model converges
to a good policy (Section 4.4).

The complete curriculum-based training procedure is spec-
ified in Algorithm 2. Initially, the maximum sketch length



Modular Multitask Reinforcement Learning with Policy Sketches

`max is set to 1, and the curriculum initialized to sample
length-1 tasks uniformly. (Neither of the environments
we consider in this paper feature any length-1 tasks; in
this case, observe that Algorithm 2 will simply advance to
length-2 tasks without any parameter updates.) For each
setting of `max, the algorithm uses the current collection
of task policies Π to compute and apply the gradient step
described in Algorithm 1. The rollouts obtained from the
call to TRAIN-STEP can also be used to compute reward
estimates Êrτ ; these estimates determine a new task distri-
bution for the curriculum. The inner loop is repeated un-
til the reward threshold rgood is exceeded, at which point
`max is incremented and the process repeated over a (now-
expanded) collection of tasks.

4. Experiments
We evaluate the performance of our approach in three envi-
ronments: a crafting environment, a maze navigation en-
vironment, and a cliff traversal environment. These en-
vironments involve various kinds of challenging low-level
control: agents must learn to avoid obstacles, interact with
various kinds of objects, and relate fine-grained joint ac-
tivation to high-level locomotion goals. They also feature
hierarchical structure: most rewards are provided only af-
ter the agent has completed two to five high-level actions in
the appropriate sequence, without any intermediate goals to
indicate progress towards completion.

4.1. Implementation

In all our experiments, we implement each subpolicy as a
feedforward neural network with ReLU nonlinearities and
a hidden layer with 128 hidden units, and each critic as a
linear function of the current state. Each subpolicy network
receives as input a set of features describing the current
state of the environment, and outputs a distribution over
actions. The agent acts at every timestep by sampling from
this distribution. The gradient steps given in lines 8 and 9
of Algorithm 1 are implemented using RMSPROP (Tiele-
man, 2012) with a step size of 0.001 and gradient clipping
to a unit norm. We take the batch size D in Algorithm 1 to
be 2000, and set γ = 0.9 in both environments. For cur-
riculum learning, the improvement threshold rgood is 0.8.

4.2. Environments

The crafting environment (Figure 3a) is inspired by the
popular game Minecraft, but is implemented in a discrete
2-D world. The agent may interact with objects in the
world by facing them and executing a special USE action.
Interacting with raw materials initially scattered around the
environment causes them to be added to an inventory. Inter-
acting with different crafting stations causes objects in the
agent’s inventory to be combined or transformed. Each task

(a) 1

2

3
4

b1: get wood

τ: get gold

b2: get iron

b3: use workbench

b4: get gold

K

(b)

b1: north

τ: go to goal

b2: east

b3: east
1 2

3

K

1

2 3

Figure 3: Examples from the crafting and cliff environments used
in this paper. An additional maze environment is also investigated.
(a) In the crafting environment, an agent seeking to pick up the
gold nugget in the top corner must first collect wood (1) and iron
(2), use a workbench to turn them into a bridge (3), and use the
bridge to cross the water (4). (b) In the cliff environment, the
agent must reach a goal position by traversing a winding sequence
of tiles without falling off. Control takes place at the level of
individual joint angles; high-level behaviors like “move north”
must be learned.

in this game corresponds to some crafted object the agent
must produce; the most complicated goals require the agent
to also craft intermediate ingredients, and in some cases
build tools (like a pickaxe and a bridge) to reach ingredients
located in initially inaccessible regions of the environment.

The maze environment (not pictured) corresponds closely
to the the “light world” described by Konidaris & Barto
(2007). The agent is placed in a discrete world consist-
ing of a series of rooms, some of which are connected by
doors. Some doors require that the agent first pick up a
key to open them. For our experiments, each task corre-
sponds to a goal room (always at the same position relative
to the agent’s starting position) that the agent must reach
by navigating through a sequence of intermediate rooms.
The agent has one sensor on each side of its body, which
reports the distance to keys, closed doors, and open doors
in the corresponding direction. Sketches specify a particu-
lar sequence of directions for the agent to traverse between
rooms to reach the goal. The sketch always corresponds
to a viable traversal from the start to the goal position, but
other (possibly shorter) traversals may also exist.

The cliff environment (Figure 3b) is intended to demon-
strate the applicability of our approach to problems in-
volving high-dimensional continuous control. In this en-
vironment, a quadrupedal robot (Schulman et al., 2015b) is
placed on a variable-length winding path, and must navi-



Modular Multitask Reinforcement Learning with Policy Sketches

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episode ×106

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

re
w

ar
d

Q automaton

Joint

Indep

Modular
(ours)

Opt–Crit

Crafting environment

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episode ×106

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

re
w

ar
d

Q automaton

Modular
(ours)

Joint
Indep.

Opt–Crit

Maze environment

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Timestep ×108

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

lo
g(

av
g.

re
w

ar
d)

Modular

Joint
Opt–Crit

Cliff environment

(a) (b) (c)

Figure 4: Comparing modular learning from sketches with standard RL baselines. Modular is the approach described in this paper, while
Independent learns a separate policy for each task, Joint learns a shared policy that conditions on the task identity, Q automaton learns
a single network to map from states and action symbols to Q values, and Opt–Crit is an unsupervised option learner. Performance
for the best iteration of the (off-policy) Q automaton is plotted. Performance is shown in (a) the crafting environment, (b) the maze
environment, and (c) the cliff environment. The modular approach is eventually able to achieve high reward on all tasks, while the
baseline models perform considerably worse on average.

gate to the end without falling off. This task is designed to
provide a substantially more challenging RL problem, due
to the fact that the walker must learn the low-level walk-
ing skill before it can make any progress, but has simpler
hierarchical structure than the crafting environment. The
agent receives a small reward for making progress toward
the goal, and a large positive reward for reaching the goal
square, with a negative reward for falling off the path.

A listing of tasks and sketches is given in Appendix A.

4.3. Multitask Learning

The primary experimental question in this paper is whether
the extra structure provided by policy sketches alone is
enough to enable fast learning of coupled policies across
tasks. We aim to explore the differences between the
approach described in Section 3 and relevant prior work
that performs either unsupervised or weakly supervised
multitask learning of hierarchical policy structure. Specifi-
cally, we compare our modular to approach to:

1. Structured hierarchical reinforcement learners:

(a) the fully unsupervised option–critic algorithm
of Bacon & Precup (2015)

(b) a Q automaton that attempts to explicitly repre-
sent the Q function for each task / subtask com-
bination (essentially a HAM (Andre & Russell,
2002) with a deep state abstraction function)

2. Alternative ways of incorporating sketch data into
standard policy gradient methods:

(c) learning an independent policy for each task
(d) learning a joint policy across all tasks, condi-

tioning directly on both environment features
and a representation of the complete sketch

The joint and independent models performed best when
trained with the same curriculum described in Section 3.3,
while the option–critic model performed best with a
length–weighted curriculum that has access to all tasks
from the beginning of training.

Learning curves for baselines and the modular model are
shown in Figure 4. It can be seen that in all environments,
our approach substantially outperforms the baselines: it in-
duces policies with substantially higher average reward and
converges more quickly than the policy gradient baselines.
It can further be seen in Figure 4c that after policies have
been learned on simple tasks, the model is able to rapidly
adapt to more complex ones, even when the longer tasks
involve high-level actions not required for any of the short
tasks (Appendix A).

Having demonstrated the overall effectiveness of our ap-
proach, our remaining experiments explore (1) the impor-
tance of various components of the training procedure, and
(2) the learned models’ ability to generalize or adapt to
held-out tasks. For compactness, we restrict our consid-
eration on the crafting domain, which features a larger and
more diverse range of tasks and high-level actions.

4.4. Ablations

In addition to the overall modular parameter-tying structure
induced by our sketches, the key components of our train-
ing procedure are the decoupled critic and the curriculum.
Our next experiments investigate the extent to which these
are necessary for good performance.

To evaluate the the critic, we consider three ablations: (1)
removing the dependence of the model on the environment
state, in which case the baseline is a single scalar per task;
(2) removing the dependence of the model on the task, in
which case the baseline is a conventional generalized ad-
vantage estimator; and (3) removing both, in which case



Modular Multitask Reinforcement Learning with Policy Sketches

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episode ×106

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

re
w

ar
d

{task, state}

{task}
{state}

{}

Critics

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episode ×106

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

re
w

ar
d

{len, wgt}
{len}
{wgt}

{}

Curricula

(a) (b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episode ×106

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

re
w

ar
d

Performance by task

(c)

Figure 5: Training details in the crafting domain. (a) Critics: lines
labeled “task” include a baseline that varies with task identity,
while lines labeled “state” include a baseline that varies with state
identity. Estimating a baseline that depends on both the represen-
tation of the current state and the identity of the current task is
better than either alone or a constant baseline. (b) Curricula: lines
labeled “len” use a curriculum with iteratively increasing sketch
lengths, while lines labeled “wgt” sample tasks in inverse propor-
tion to their current reward. Adjusting the sampling distribution
based on both task length and performance return improves con-
vergence. (c) Individual task performance. Colors correspond to
task length. Sharp steps in the learning curve correspond to in-
creases of `max in the curriculum.

the baseline is a single scalar, as in a vanilla policy gradient
approach. Results are shown in Figure 5a. Introducing both
state and task dependence into the baseline leads to faster
convergence of the model: the approach with a constant
baseline achieves less than half the overall performance of
the full critic after 3 million episodes. Introducing task and
state dependence independently improve this performance;
combining them gives the best result.

We also investigate two aspects of our curriculum learning
scheme: starting with short examples and moving to long
ones, and sampling tasks in inverse proportion to their ac-
cumulated reward. Experiments are shown in Figure 5b.
Both components help; prioritization by both length and
weight gives the best results.

4.5. Zero-shot and Adaptation Learning

In our final experiments, we consider the model’s ability to
generalize beyond the standard training condition. We first
consider two tests of generalization: a zero-shot setting, in
which the model is provided a sketch for the new task and
must immediately achieve good performance, and a adap-
tation setting, in which no sketch is provided and the model
must learn the form of a suitable sketch via interaction in
the new task.

Model Multitask 0-shot Adaptation

Joint .49 .01 –
Independent .44 – .01
Option–Critic .47 – .42
Modular (ours) .89 .77 .76

Table 1: Accuracy and generalization of learned models in the
crafting domain. The table shows the task completion rate for
each approach after convergence under various training condi-
tions. Multitask is the multitask training condition described in
Section 4.3, while 0-Shot and Adaptation are the generalization
experiments described in Section 4.5. Our modular approach con-
sistently achieves the best performance.

We hold out two length-four tasks from the full inventory
used in Section 4.3, and train on the remaining tasks. For
zero-shot experiments, we simply form the concatenated
policy described by the sketches of the held-out tasks, and
repeatedly execute this policy (without learning) in order to
obtain an estimate of its effectiveness. For adaptation ex-
periments, we consider ordinary RL over high-level actions
B rather than low-level actions A, implementing the high-
level learner with the same agent architecture as described
in Section 3.1. Note that the Independent and Option–
Critic models cannot be applied to the zero-shot evaluation,
while the Joint model cannot be applied to the adaptation
baseline (because it depends on pre-specified sketch fea-
tures). Results are shown in Table 1. The held-out tasks
are sufficiently challenging that the baselines are unable to
obtain more than negligible reward: in particular, the joint
model overfits to the training tasks and cannot generalize to
new sketches, while the independent model cannot discover
enough of a reward signal to learn in the adaptation setting.
The modular model does comparatively well: individual
subpolicies succeed in novel zero-shot configurations (sug-
gesting that they have in fact discovered the behavior sug-
gested by the semantics of the sketch) and provide a suit-
able basis for adaptive discovery of new high-level policies.

5. Conclusions
We have described an approach for multitask learning
of deep multitask policies guided by symbolic policy
sketches. By associating each symbol appearing in a sketch
with a modular neural subpolicy, we have shown that it is
possible to build agents that share behavior across tasks in
order to achieve success in tasks with sparse and delayed
rewards. This process induces an inventory of reusable and
interpretable subpolicies which can be employed for zero-
shot generalization when further sketches are available, and
hierarchical reinforcement learning when they are not. Our
work suggests that these sketches, which are easy to pro-
duce and require no grounding in the environment, provide
an effective scaffold for learning hierarchical policies from
minimal supervision.



Modular Multitask Reinforcement Learning with Policy Sketches

Acknowledgments
JA is supported by a Facebook fellowship and a Berkeley
AI / Huawei fellowship.

References
Andre, David and Russell, Stuart. Programmable reinforce-

ment learning agents. In Advances in Neural Information
Processing Systems, 2001.

Andre, David and Russell, Stuart. State abstraction for pro-
grammable reinforcement learning agents. In Proceed-
ings of the Meeting of the Association for the Advance-
ment of Artificial Intelligence, 2002.

Andreas, Jacob, Rohrbach, Marcus, Darrell, Trevor, and
Klein, Dan. Learning to compose neural networks for
question answering. In Proceedings of the Annual Meet-
ing of the North American Chapter of the Association for
Computational Linguistics, 2016.

Artzi, Yoav and Zettlemoyer, Luke. Weakly supervised
learning of semantic parsers for mapping instructions to
actions. Transactions of the Association for Computa-
tional Linguistics, 1(1):49–62, 2013.

Bacon, Pierre-Luc and Precup, Doina. The option-critic ar-
chitecture. In NIPS Deep Reinforcement Learning Work-
shop, 2015.

Bakker, Bram and Schmidhuber, Jürgen. Hierarchical rein-
forcement learning based on subgoal discovery and sub-
policy specialization. In Proc. of the 8-th Conf. on Intel-
ligent Autonomous Systems, pp. 438–445, 2004.

Bengio, Yoshua, Louradour, Jérôme, Collobert, Ronan, and
Weston, Jason. Curriculum learning. In International
Conference on Machine Learning, pp. 41–48. ACM,
2009.

Branavan, S.R.K., Chen, Harr, Zettlemoyer, Luke S., and
Barzilay, Regina. Reinforcement learning for mapping
instructions to actions. In Proceedings of the Annual
Meeting of the Association for Computational Linguis-
tics, pp. 82–90. Association for Computational Linguis-
tics, 2009.

Chen, David L. and Mooney, Raymond J. Learning to inter-
pret natural language navigation instructions from obser-
vations. In Proceedings of the Meeting of the Association
for the Advancement of Artificial Intelligence, volume 2,
pp. 1–2, 2011.

Daniel, Christian, Neumann, Gerhard, and Peters, Jan. Hi-
erarchical relative entropy policy search. In Proceedings
of the International Conference on Artificial Intelligence
and Statistics, pp. 273–281, 2012.

Devin, Coline, Gupta, Abhishek, Darrell, Trevor, Abbeel,
Pieter, and Levine, Sergey. Learning modular neural
network policies for multi-task and multi-robot transfer.
arXiv preprint arXiv:1609.07088, 2016.

Dietterich, Thomas G. Hierarchical reinforcement learning
with the maxq value function decomposition. J. Artif.
Intell. Res. (JAIR), 13:227–303, 2000.

Greensmith, Evan, Bartlett, Peter L, and Baxter, Jonathan.
Variance reduction techniques for gradient estimates in
reinforcement learning. Journal of Machine Learning
Research, 5(Nov):1471–1530, 2004.

Hauser, Kris, Bretl, Timothy, Harada, Kensuke, and
Latombe, Jean-Claude. Using motion primitives in prob-
abilistic sample-based planning for humanoid robots.
In Algorithmic foundation of robotics, pp. 507–522.
Springer, 2008.

Iyyer, Mohit, Boyd-Graber, Jordan, Claudino, Leonardo,
Socher, Richard, and Daumé III, Hal. A neural net-
work for factoid question answering over paragraphs. In
Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2014.

Kearns, Michael and Singh, Satinder. Near-optimal rein-
forcement learning in polynomial time. Machine Learn-
ing, 49(2-3):209–232, 2002.

Konidaris, George and Barto, Andrew G. Building portable
options: Skill transfer in reinforcement learning. In IJ-
CAI, volume 7, pp. 895–900, 2007.

Konidaris, George, Kuindersma, Scott, Grupen, Roderic,
and Barto, Andrew. Robot learning from demonstration
by constructing skill trees. The International Journal of
Robotics Research, pp. 0278364911428653, 2011.

Kulkarni, Tejas D, Narasimhan, Karthik R, Saeedi, Arda-
van, and Tenenbaum, Joshua B. Hierarchical deep rein-
forcement learning: Integrating temporal abstraction and
intrinsic motivation. arXiv preprint arXiv:1604.06057,
2016.

Marthi, Bhaskara, Lantham, David, Guestrin, Carlos, and
Russell, Stuart. Concurrent hierarchical reinforcement
learning. In Proceedings of the Meeting of the Associa-
tion for the Advancement of Artificial Intelligence, 2004.

Menache, Ishai, Mannor, Shie, and Shimkin, Nahum.
Q-cutdynamic discovery of sub-goals in reinforcement
learning. In European Conference on Machine Learn-
ing, pp. 295–306. Springer, 2002.

Neelakantan, Arvind, Le, Quoc V, and Sutskever, Ilya.
Neural programmer: Inducing latent programs with gra-
dient descent. arXiv preprint arXiv:1511.04834, 2015.



Modular Multitask Reinforcement Learning with Policy Sketches

Niekum, Scott, Osentoski, Sarah, Konidaris, George,
Chitta, Sachin, Marthi, Bhaskara, and Barto, Andrew G.
Learning grounded finite-state representations from un-
structured demonstrations. The International Journal of
Robotics Research, 34(2):131–157, 2015.

Parr, Ron and Russell, Stuart. Reinforcement learning with
hierarchies of machines. In Advances in Neural Infor-
mation Processing Systems, 1998.

Precup, Doina. Temporal abstraction in reinforcement
learning. PhD thesis, 2000.

Reed, Scott and de Freitas, Nando. Neural programmer-
interpreters. Proceedings of the International Confer-
ence on Learning Representations, 2016.

Schulman, John, Moritz, Philipp, Levine, Sergey, Jordan,
Michael, and Abbeel, Pieter. High-dimensional con-
tinuous control using generalized advantage estimation.
arXiv preprint arXiv:1506.02438, 2015a.

Schulman, John, Moritz, Philipp, Levine, Sergey, Jordan,
Michael, and Abbeel, Pieter. Trust region policy op-
timization. In International Conference on Machine
Learning, 2015b.

Socher, Richard, Huval, Brody, Manning, Christopher, and
Ng, Andrew. Semantic compositionality through recur-
sive matrix-vector spaces. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pp. 1201–1211, Jeju, Korea, 2012.

Stolle, Martin and Precup, Doina. Learning options in rein-
forcement learning. In International Symposium on Ab-
straction, Reformulation, and Approximation, pp. 212–
223. Springer, 2002.

Sutton, Richard S, Precup, Doina, and Singh, Satinder. Be-
tween MDPs and semi-MDPs: A framework for tempo-
ral abstraction in reinforcement learning. Artificial intel-
ligence, 112(1):181–211, 1999.

Tellex, Stefanie, Kollar, Thomas, Dickerson, Steven, Wal-
ter, Matthew R., Banerjee, Ashis Gopal, Teller, Seth, and
Roy, Nicholas. Understanding natural language com-
mands for robotic navigation and mobile manipulation.
In In Proceedings of the National Conference on Artifi-
cial Intelligence, 2011.

Tieleman, Tijmen. RMSProp (unpublished), 2012.

Vezhnevets, Alexander, Mnih, Volodymyr, Agapiou, John,
Osindero, Simon, Graves, Alex, Vinyals, Oriol, and
Kavukcuoglu, Koray. Strategic attentive writer for learn-
ing macro-actions. arXiv preprint arXiv:1606.04695,
2016.

Vogel, Adam and Jurafsky, Dan. Learning to follow navi-
gational directions. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics,
pp. 806–814. Association for Computational Linguistics,
2010.

Williams, Ronald J. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.



Modular Multitask Reinforcement Learning with Policy Sketches

A. Tasks and Sketches
The complete list of tasks, sketches, and symbols is given below. Tasks marked with an asterisk∗ are held out for the
generalization experiments described in Section 4.5, but included in the multitask training experiments in Sections 4.3 and
4.4.

Goal Sketch

Crafting environment

make plank get wood use toolshed
make stick get wood use workbench
make cloth get grass use factory
make rope get grass use toolshed
make bridge get iron get wood use factory
make bed∗ get wood use toolshed get grass use workbench
make axe∗ get wood use workbench get iron use toolshed
make shears get wood use workbench get iron use workbench
get gold get iron get wood use factory use bridge
get gem get wood use workbench get iron use toolshed use axe

Maze environment

room 1 left left
room 2 left down
room 3 right down
room 4 up left
room 5 up right
room 6 up right up
room 7 down right up
room 8 left left down
room 9 right down down
room 10 left up right

Cliff environment

path 0 north
path 1 east
path 2 south
path 3 west
path 4 west south
path 5 west north north
path 6 north east north
path 7 west north
path 8 east south
path 9 north west west
path 10 east north east
path 11 south east
path 12 south west
path 13 south south
path 14 south south west
path 15 east south south
path 16 east east
path 17 east north
path 18 north east
path 19 west west
path 20 north north
path 21 north west
path 22 west west south
path 23 south east south


